Intelligent monitoring and control of farmland based on edge-cloud collaboration and digital twin for digital energy management: investment benefit analysis

The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and insufficient intelligent decision-making. Focusing on digital energy management, this paper proposes a data collection and analysis based on...

Full description

Saved in:
Bibliographic Details
Published inRenewables : wind, water, and solar Vol. 12; no. 1; pp. 43 - 13
Main Author Liu, Zheng
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.12.2025
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and insufficient intelligent decision-making. Focusing on digital energy management, this paper proposes a data collection and analysis based on edge computing and cloud collaboration architecture to improve the accuracy and real-time performance of farmland environmental monitoring. In terms of intelligent control, deep reinforcement learning is used to optimize irrigation decision-making, and adaptive algorithms are combined to improve the flexibility of agricultural equipment scheduling. Regarding energy management, a digital twin model of the photovoltaic energy storage system is constructed to achieve accurate prediction and optimization of energy flow. Edge-cloud collaborative architecture for real-time data collection/analysis, reducing network latency by 40% compared to traditional cloud-only models; deep reinforcement learning (DRL)-driven irrigation optimization, achieving 51% crop yield increase and 18% water efficiency improvement; digital twin modeling of photovoltaic-energy storage systems, enhancing energy flow prediction accuracy to 98.2% and reducing energy waste by 9.5%; game theory-based resource allocation to balance energy supply–demand, improving system economic benefits by 15%. The system stability reached 96.24%, and the maintenance cost was reduced by 21.0%. The utilization rate of irrigation water increased from 76.9% to 43.0% by 1.8 times, reaching 77.4%.
AbstractList The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and insufficient intelligent decision-making. Focusing on digital energy management, this paper proposes a data collection and analysis based on edge computing and cloud collaboration architecture to improve the accuracy and real-time performance of farmland environmental monitoring. In terms of intelligent control, deep reinforcement learning is used to optimize irrigation decision-making, and adaptive algorithms are combined to improve the flexibility of agricultural equipment scheduling. Regarding energy management, a digital twin model of the photovoltaic energy storage system is constructed to achieve accurate prediction and optimization of energy flow. Edge-cloud collaborative architecture for real-time data collection/analysis, reducing network latency by 40% compared to traditional cloud-only models; deep reinforcement learning (DRL)-driven irrigation optimization, achieving 51% crop yield increase and 18% water efficiency improvement; digital twin modeling of photovoltaic-energy storage systems, enhancing energy flow prediction accuracy to 98.2% and reducing energy waste by 9.5%; game theory-based resource allocation to balance energy supply–demand, improving system economic benefits by 15%. The system stability reached 96.24%, and the maintenance cost was reduced by 21.0%. The utilization rate of irrigation water increased from 76.9% to 43.0% by 1.8 times, reaching 77.4%.
Abstract The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and insufficient intelligent decision-making. Focusing on digital energy management, this paper proposes a data collection and analysis based on edge computing and cloud collaboration architecture to improve the accuracy and real-time performance of farmland environmental monitoring. In terms of intelligent control, deep reinforcement learning is used to optimize irrigation decision-making, and adaptive algorithms are combined to improve the flexibility of agricultural equipment scheduling. Regarding energy management, a digital twin model of the photovoltaic energy storage system is constructed to achieve accurate prediction and optimization of energy flow. Edge-cloud collaborative architecture for real-time data collection/analysis, reducing network latency by 40% compared to traditional cloud-only models; deep reinforcement learning (DRL)-driven irrigation optimization, achieving 51% crop yield increase and 18% water efficiency improvement; digital twin modeling of photovoltaic-energy storage systems, enhancing energy flow prediction accuracy to 98.2% and reducing energy waste by 9.5%; game theory-based resource allocation to balance energy supply–demand, improving system economic benefits by 15%. The system stability reached 96.24%, and the maintenance cost was reduced by 21.0%. The utilization rate of irrigation water increased from 76.9% to 43.0% by 1.8 times, reaching 77.4%.
ArticleNumber 43
Author Liu, Zheng
Author_xml – sequence: 1
  givenname: Zheng
  surname: Liu
  fullname: Liu, Zheng
BookMark eNpNkc2KFDEUhQsZwXGcF3AVcF16k3RVUu5k0LFhwI2uQ35uijSpZEzSSr-LD2t6WgZXuZx7ci6H7_VwlXLCYXhL4T2lcv5QdyBBjMCmEYCKZRQvhmsmOB0XxsXVf_Or4bbWAwAwuVBO5-vhzz41jDGsmBrZcgotl5BWopMjNqdWciTZE6_LFs-a0RUdyYmgW3G0MR_Pvhi1yUW30BdnlwtraDqS9jsk4nN5FjBhWU9k00mvuPWbH0lIv7C280xMX_vQeoSOpxrqm-Gl17Hi7b_3Zvjx5fP3u6_jw7f7_d2nh9FSScXIYGZyZtygFhIQ58loi4Bu6kWN45JRzu1iuBfCeElB7phDWPg8TVJqx2-G_SXXZX1QjyVsupxU1kE9CbmsSpcWbEQFXnrq-m8wZjcbpq2nlDFgOIG1BnrWu0vWY8k_j72ZOuRj6YWq4ox3UmKZaHexi8uWXGtB_3yVgjpDVReoqkNVT1CV4H8BrceZSA
Cites_doi 10.1039/D4GC05967K
10.1007/s13762-022-03958-7
10.1002/int.22566
10.3390/su151310558
10.1109/TII.2023.3272625
10.1016/j.aej.2023.10.041
10.3390/smartcities8010020
10.1002/joc.7506
10.1016/j.envsci.2022.02.019
10.1007/s10668-024-05300-2
10.1007/s13762-023-04955-0
10.3390/s151128314
10.1007/s12583-022-1724-z
ContentType Journal Article
Copyright The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.1186/s40807-025-00179-7
DatabaseName CrossRef
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2731-9237
2198-994X
EndPage 13
ExternalDocumentID oai_doaj_org_article_0f8f1dde00bb46b2acf112202e50ccb0
10_1186_s40807_025_00179_7
GroupedDBID 0R~
AAJSJ
AAKKN
AASML
AAYXX
ABEEZ
ACACY
ACULB
ADMLS
ADUKV
AFGXO
ALMA_UNASSIGNED_HOLDINGS
BMC
C24
C6C
CITATION
EBLON
EBS
GROUPED_DOAJ
M~E
ROL
SOJ
2XV
7TN
7XC
8FE
8FG
8FH
AAFWJ
ABJCF
ABUWG
ACGFS
ADBBV
AEUYN
AFKRA
AFPKN
AHBYD
AHYZX
AMKLP
ASPBG
ATCPS
AZQEC
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
IAO
IEP
ITC
L.G
L6V
LK5
M7R
M7S
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PUEGO
PYCSY
ID FETCH-LOGICAL-c1817-20628623bea780ee65bace0ed5002bd382133c9b3f77bf810842de09365588ad3
IEDL.DBID BENPR
ISSN 2731-9237
IngestDate Wed Aug 27 01:16:41 EDT 2025
Sat Aug 23 13:29:06 EDT 2025
Thu Jul 31 00:02:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1817-20628623bea780ee65bace0ed5002bd382133c9b3f77bf810842de09365588ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3234087951?pq-origsite=%requestingapplication%
PQID 3234087951
PQPubID 2044440
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0f8f1dde00bb46b2acf112202e50ccb0
proquest_journals_3234087951
crossref_primary_10_1186_s40807_025_00179_7
PublicationCentury 2000
PublicationDate 20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 20251201
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Renewables : wind, water, and solar
PublicationYear 2025
Publisher Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature B.V
– name: SpringerOpen
References X Li (179_CR15) 2023; 12
179_CR5
Y Han (179_CR9) 2023; 15
M Dong (179_CR4) 2022; 2022
S Mishra (179_CR24) 2023; 83
E Naderi (179_CR26) 2025; 8
CH Luo (179_CR21) 2022; 12
E Shanshan (179_CR29) 2025; 27
RH Guan (179_CR7) 2024; 14
L Jia (179_CR11) 2022; 42
PF Liu (179_CR18) 2023; 15
ZF Shao (179_CR30) 2020; 9
M Niekurzak (179_CR27) 2023; 15
ZH Chao (179_CR1) 2021; 13
GX Gu (179_CR6) 2022; 102
G Latif (179_CR13) 2020; 39
YJ Liu (179_CR19) 2021; 308
H Dong (179_CR3) 2022; 10
ZW Guo (179_CR8) 2022; 14
KS Luo (179_CR22) 2022; 132
SM Cheema (179_CR2) 2022; 12
SK Kabilesh (179_CR12) 2023; 44
ZP Li (179_CR16) 2023; 15
NS Liu (179_CR17) 2015; 15
K Ma (179_CR23) 2023; 34
E Naderi (179_CR25) 2024; 20
R Jenitha (179_CR10) 2024; 21
W Li (179_CR14) 2022; 19
FY Lou (179_CR20) 2021; 40
XY Ran (179_CR28) 2021; 36
References_xml – volume: 27
  start-page: 2478
  year: 2025
  ident: 179_CR29
  publication-title: Green Chemistry
  doi: 10.1039/D4GC05967K
– volume: 14
  start-page: 14
  issue: 9
  year: 2024
  ident: 179_CR7
  publication-title: Agronomy-Basel
– volume: 102
  start-page: 10
  year: 2022
  ident: 179_CR6
  publication-title: Nano Energy
– volume: 19
  start-page: 9587
  issue: 10
  year: 2022
  ident: 179_CR14
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-022-03958-7
– volume: 36
  start-page: 6731
  issue: 11
  year: 2021
  ident: 179_CR28
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.22566
– volume: 12
  start-page: 23
  issue: 8
  year: 2022
  ident: 179_CR2
  publication-title: Agriculture-Basel
– volume: 12
  start-page: 18
  issue: 2
  year: 2023
  ident: 179_CR15
  publication-title: Actuators
– volume: 15
  start-page: 22
  issue: 15
  year: 2023
  ident: 179_CR9
  publication-title: Sustainability
– volume: 13
  start-page: 13
  issue: 16
  year: 2021
  ident: 179_CR1
  publication-title: Water
– volume: 15
  start-page: 10558
  issue: 13
  year: 2023
  ident: 179_CR27
  publication-title: Sustainability
  doi: 10.3390/su151310558
– volume: 15
  start-page: 21
  issue: 8
  year: 2023
  ident: 179_CR16
  publication-title: Remote Sensing
– volume: 20
  start-page: 1208
  issue: 2
  year: 2024
  ident: 179_CR25
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2023.3272625
– volume: 308
  start-page: 12
  year: 2021
  ident: 179_CR19
  publication-title: Agricultural and Forest Meteorology
– volume: 9
  start-page: 17
  issue: 7
  year: 2020
  ident: 179_CR30
  publication-title: Isprs International Journal of Geo-Information
– volume: 2022
  start-page: 11
  year: 2022
  ident: 179_CR4
  publication-title: Mobile Information Systems
– volume: 83
  start-page: 298
  year: 2023
  ident: 179_CR24
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2023.10.041
– volume: 40
  start-page: 2827
  issue: 2
  year: 2021
  ident: 179_CR20
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 8
  start-page: 20
  issue: 1
  year: 2025
  ident: 179_CR26
  publication-title: Smart Cities
  doi: 10.3390/smartcities8010020
– volume: 14
  start-page: 24
  issue: 6
  year: 2022
  ident: 179_CR8
  publication-title: Remote Sensing
– volume: 42
  start-page: 4830
  issue: 9
  year: 2022
  ident: 179_CR11
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.7506
– volume: 15
  start-page: 18
  issue: 7
  year: 2023
  ident: 179_CR18
  publication-title: Water
– volume: 132
  start-page: 91
  year: 2022
  ident: 179_CR22
  publication-title: Environmental Science & Policy
  doi: 10.1016/j.envsci.2022.02.019
– ident: 179_CR5
  doi: 10.1007/s10668-024-05300-2
– volume: 21
  start-page: 1905
  issue: 2
  year: 2024
  ident: 179_CR10
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-023-04955-0
– volume: 12
  start-page: 22
  issue: 9
  year: 2022
  ident: 179_CR21
  publication-title: Agriculture-Basel
– volume: 15
  start-page: 28314
  issue: 11
  year: 2015
  ident: 179_CR17
  publication-title: Sensors
  doi: 10.3390/s151128314
– volume: 44
  start-page: 6593
  issue: 4
  year: 2023
  ident: 179_CR12
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 34
  start-page: 1390
  issue: 5
  year: 2023
  ident: 179_CR23
  publication-title: Journal of Earth Science
  doi: 10.1007/s12583-022-1724-z
– volume: 10
  start-page: 14
  year: 2022
  ident: 179_CR3
  publication-title: Frontiers in Environmental Science
– volume: 39
  start-page: 8103
  issue: 6
  year: 2020
  ident: 179_CR13
  publication-title: Journal of Intelligent & Fuzzy Systems
SSID ssj0002891316
ssj0002267552
Score 2.310595
Snippet The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and...
Abstract The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 43
SubjectTerms Accuracy
Adaptive algorithms
Agricultural equipment
Agricultural land
Agricultural resources
Bottlenecks
Collaboration
Crop diseases
Crop yield
Data analysis
Data collection
Decision making
Deep learning
Deep reinforcement learning
Digital energy management
Digital twins
Economic benefits
Edge computing
Energy consumption
Energy flow
Energy management
Energy storage
Energy utilization
Environmental monitoring
Game theory
Intelligent monitoring of farmland
Investment benefit analysis
Irrigation
Irrigation water
Latency
Maintenance costs
Monitoring systems
Network latency
Optimization
Photovoltaic cells
Photovoltaics
Reinforcement
Resource allocation
Sensors
Systems stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvAmwbRpXt5UFBX0pOAtJG1GVtyuaMU_4491knaXFQ9evJU0bco8MjPpzDeEHOrALVjbMKm9YFXBI7PcR6ahNGguKg-5e8Ptnbp6qG4e5eNCq6-UE9bDA_eEO-ZgoEAd5DyESoXS14AuAobsUfK6DjlaR5u3EEw997_PClGoWZWMUcfvFfpGmqXurWlntkz_sEQZsP_XfpyNzOUaWR28Q3raf9U6WYrtBvm6nsNmdnSSdTAdxlHfNnTINKdToODfJilNkSbD1NBpS9NRGatfph9p3gK785PN-Cn1C6Hd57il6LnOB2KuBqSTeV7MCR1nMI50TQPehnGHr-jBTDbJw-XF_fkVG5oqsBqNuUatSMWopQjRa8NjVDL4OvLYSKRaaIQpMWqtbRCgdQBTcFOVSH0rlJTG-EZskeV22sZtQlUB3CtpIVieGtWZEgDqYKQSYEUII3I0I7B77bEzXI45jHI9Oxyyw2V2OD0iZ4kH85kJ9zoPoDS4QRrcX9IwInszDrpBGd-dKAWuptGX3PmPNXbJSpnEKOe07JHl7u0j7qNn0oWDLITfU4Hjmw
  priority: 102
  providerName: Directory of Open Access Journals
Title Intelligent monitoring and control of farmland based on edge-cloud collaboration and digital twin for digital energy management: investment benefit analysis
URI https://www.proquest.com/docview/3234087951
https://doaj.org/article/0f8f1dde00bb46b2acf112202e50ccb0
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JbxMxFLZoc4EDYhWhJfKBG7LqsccbF9RCQ0G0QkCl3iyvVaRmpiRT9c_wY7EdZyhC4jayPT747c_P7wPgtbBYRaU8YsJQ1DY4IIVNQCISmcxFa2JBbzg94yfn7ecLdlETbutaVrnViUVR-97lHPkBJbTFGRm7eXf9E2XUqHy7WiE0dsAkqWCZgq_J0fHZ129jliU5F4Ixsn0tI_nBOu2Ss3OEoayhFRJ_WaTSuP8fvVyMzfwReFi9RHi4IetjcC90T8CDO70Dn4Jfn8ZmmgNcFsnME9B0Htb6c9hHGM1qmYsXYTZXHvYdzAk05K76m7zuDhOUP_3iMqOIwOF20cHkz44DobwRhMuxWuYtXJQWHfkb2jQdF0PaYtPi5Bk4nx__eH-CKtQCcsnEiyQr-YkqoTYYIXEInFnjAg6epTO0nkqSYlmnLI1C2CgbLFviA1aUMyal8fQ52O36LrwAkDcRG85UtApn-DpJYozOSsZpVNTaKXizPW59vemooUskIrneEEcn4uhCHC2m4ChTZFyZu2GXgX51qatwaRxlbJKextjalltiXExuJMEkMOycxVOwv6WnriK61n8Y6uX_p_fAfZLZpdSw7IPdYXUTXiVPZLAzsCPnH2dgcvjh9Mv3WWW-WYnrfwMS_-OT
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPFU-xUMAHOCGrjh3HNhJCvJZd-ji1Um_GTuxqJTZpd1NV_S_8Bn4jHudBERK33iLbiaLM5_nGk3kg9Eo6qoPWFRHScpJn1BNNrScyMBXpIrchdW84OCxmx_m3E3GygX4NuTAQVjnoxKSoq6YEH_kuZzyn0Bk7e392TqBrFPxdHVpodLDY81eX8ci2fjf_HOX7mrHpl6NPM9J3FSBlZDMZYQHZmIw7b6Wi3hfC2dJTX4moHFzFFYvHtlI7HqR0QWVU5azy8eBfCKGUrXh87i10O-dcw45S06-jTyeaMlIINuTmqGJ3Hd8ZfIFMEOADTeRf_JfaBPzDAonapvfQdm-T4g8diO6jDV8_QFvXKhU-RD_nY-nOFi-THoAJbOsK99HuuAk42NUSQiUxkGOFmxqDu46UP5oLWHcNcunOanEKPUtwe7mocbSexwGfMhLxcozNeYsXqSAIXGMXp8OijY_oCqo8Qsc3IoLHaLNuav8E4SIL1BZCB6cpNMtTLIRQOiUKHjR3boLeDJ_bnHX1O0w696jCdMIxUTgmCcfICfoIEhlXQu3tNNCsTk2_lQ0NKmSRFSh1Li8cs2WIRiujzAtalo5O0M4gT9MrhLX5A9-n_59-ie7Mjg72zf78cO8ZussAOil6ZgdttqsL_zzaQK17kYCH0febRvpvN-gaKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+monitoring+and+control+of+farmland+based+on+edge-cloud+collaboration+and+digital+twin+for+digital+energy+management%3A+investment+benefit+analysis&rft.jtitle=Renewables+%3A+wind%2C+water%2C+and+solar&rft.au=Liu%2C+Zheng&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2198-994X&rft.volume=12&rft.issue=1&rft.spage=43&rft_id=info:doi/10.1186%2Fs40807-025-00179-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-9237&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-9237&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-9237&client=summon