Intelligent monitoring and control of farmland based on edge-cloud collaboration and digital twin for digital energy management: investment benefit analysis
The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and insufficient intelligent decision-making. Focusing on digital energy management, this paper proposes a data collection and analysis based on...
Saved in:
Published in | Renewables : wind, water, and solar Vol. 12; no. 1; pp. 43 - 13 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.12.2025
SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and insufficient intelligent decision-making. Focusing on digital energy management, this paper proposes a data collection and analysis based on edge computing and cloud collaboration architecture to improve the accuracy and real-time performance of farmland environmental monitoring. In terms of intelligent control, deep reinforcement learning is used to optimize irrigation decision-making, and adaptive algorithms are combined to improve the flexibility of agricultural equipment scheduling. Regarding energy management, a digital twin model of the photovoltaic energy storage system is constructed to achieve accurate prediction and optimization of energy flow. Edge-cloud collaborative architecture for real-time data collection/analysis, reducing network latency by 40% compared to traditional cloud-only models; deep reinforcement learning (DRL)-driven irrigation optimization, achieving 51% crop yield increase and 18% water efficiency improvement; digital twin modeling of photovoltaic-energy storage systems, enhancing energy flow prediction accuracy to 98.2% and reducing energy waste by 9.5%; game theory-based resource allocation to balance energy supply–demand, improving system economic benefits by 15%. The system stability reached 96.24%, and the maintenance cost was reduced by 21.0%. The utilization rate of irrigation water increased from 76.9% to 43.0% by 1.8 times, reaching 77.4%. |
---|---|
AbstractList | The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and insufficient intelligent decision-making. Focusing on digital energy management, this paper proposes a data collection and analysis based on edge computing and cloud collaboration architecture to improve the accuracy and real-time performance of farmland environmental monitoring. In terms of intelligent control, deep reinforcement learning is used to optimize irrigation decision-making, and adaptive algorithms are combined to improve the flexibility of agricultural equipment scheduling. Regarding energy management, a digital twin model of the photovoltaic energy storage system is constructed to achieve accurate prediction and optimization of energy flow. Edge-cloud collaborative architecture for real-time data collection/analysis, reducing network latency by 40% compared to traditional cloud-only models; deep reinforcement learning (DRL)-driven irrigation optimization, achieving 51% crop yield increase and 18% water efficiency improvement; digital twin modeling of photovoltaic-energy storage systems, enhancing energy flow prediction accuracy to 98.2% and reducing energy waste by 9.5%; game theory-based resource allocation to balance energy supply–demand, improving system economic benefits by 15%. The system stability reached 96.24%, and the maintenance cost was reduced by 21.0%. The utilization rate of irrigation water increased from 76.9% to 43.0% by 1.8 times, reaching 77.4%. Abstract The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and insufficient intelligent decision-making. Focusing on digital energy management, this paper proposes a data collection and analysis based on edge computing and cloud collaboration architecture to improve the accuracy and real-time performance of farmland environmental monitoring. In terms of intelligent control, deep reinforcement learning is used to optimize irrigation decision-making, and adaptive algorithms are combined to improve the flexibility of agricultural equipment scheduling. Regarding energy management, a digital twin model of the photovoltaic energy storage system is constructed to achieve accurate prediction and optimization of energy flow. Edge-cloud collaborative architecture for real-time data collection/analysis, reducing network latency by 40% compared to traditional cloud-only models; deep reinforcement learning (DRL)-driven irrigation optimization, achieving 51% crop yield increase and 18% water efficiency improvement; digital twin modeling of photovoltaic-energy storage systems, enhancing energy flow prediction accuracy to 98.2% and reducing energy waste by 9.5%; game theory-based resource allocation to balance energy supply–demand, improving system economic benefits by 15%. The system stability reached 96.24%, and the maintenance cost was reduced by 21.0%. The utilization rate of irrigation water increased from 76.9% to 43.0% by 1.8 times, reaching 77.4%. |
ArticleNumber | 43 |
Author | Liu, Zheng |
Author_xml | – sequence: 1 givenname: Zheng surname: Liu fullname: Liu, Zheng |
BookMark | eNpNkc2KFDEUhQsZwXGcF3AVcF16k3RVUu5k0LFhwI2uQ35uijSpZEzSSr-LD2t6WgZXuZx7ci6H7_VwlXLCYXhL4T2lcv5QdyBBjMCmEYCKZRQvhmsmOB0XxsXVf_Or4bbWAwAwuVBO5-vhzz41jDGsmBrZcgotl5BWopMjNqdWciTZE6_LFs-a0RUdyYmgW3G0MR_Pvhi1yUW30BdnlwtraDqS9jsk4nN5FjBhWU9k00mvuPWbH0lIv7C280xMX_vQeoSOpxrqm-Gl17Hi7b_3Zvjx5fP3u6_jw7f7_d2nh9FSScXIYGZyZtygFhIQ58loi4Bu6kWN45JRzu1iuBfCeElB7phDWPg8TVJqx2-G_SXXZX1QjyVsupxU1kE9CbmsSpcWbEQFXnrq-m8wZjcbpq2nlDFgOIG1BnrWu0vWY8k_j72ZOuRj6YWq4ox3UmKZaHexi8uWXGtB_3yVgjpDVReoqkNVT1CV4H8BrceZSA |
Cites_doi | 10.1039/D4GC05967K 10.1007/s13762-022-03958-7 10.1002/int.22566 10.3390/su151310558 10.1109/TII.2023.3272625 10.1016/j.aej.2023.10.041 10.3390/smartcities8010020 10.1002/joc.7506 10.1016/j.envsci.2022.02.019 10.1007/s10668-024-05300-2 10.1007/s13762-023-04955-0 10.3390/s151128314 10.1007/s12583-022-1724-z |
ContentType | Journal Article |
Copyright | The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.1186/s40807-025-00179-7 |
DatabaseName | CrossRef Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2731-9237 2198-994X |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_0f8f1dde00bb46b2acf112202e50ccb0 10_1186_s40807_025_00179_7 |
GroupedDBID | 0R~ AAJSJ AAKKN AASML AAYXX ABEEZ ACACY ACULB ADMLS ADUKV AFGXO ALMA_UNASSIGNED_HOLDINGS BMC C24 C6C CITATION EBLON EBS GROUPED_DOAJ M~E ROL SOJ 2XV 7TN 7XC 8FE 8FG 8FH AAFWJ ABJCF ABUWG ACGFS ADBBV AEUYN AFKRA AFPKN AHBYD AHYZX AMKLP ASPBG ATCPS AZQEC BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W GNUQQ H96 HCIFZ IAO IEP ITC L.G L6V LK5 M7R M7S OK1 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PUEGO PYCSY |
ID | FETCH-LOGICAL-c1817-20628623bea780ee65bace0ed5002bd382133c9b3f77bf810842de09365588ad3 |
IEDL.DBID | BENPR |
ISSN | 2731-9237 |
IngestDate | Wed Aug 27 01:16:41 EDT 2025 Sat Aug 23 13:29:06 EDT 2025 Thu Jul 31 00:02:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1817-20628623bea780ee65bace0ed5002bd382133c9b3f77bf810842de09365588ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3234087951?pq-origsite=%requestingapplication% |
PQID | 3234087951 |
PQPubID | 2044440 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f8f1dde00bb46b2acf112202e50ccb0 proquest_journals_3234087951 crossref_primary_10_1186_s40807_025_00179_7 |
PublicationCentury | 2000 |
PublicationDate | 20251201 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 20251201 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Renewables : wind, water, and solar |
PublicationYear | 2025 |
Publisher | Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature B.V – name: SpringerOpen |
References | X Li (179_CR15) 2023; 12 179_CR5 Y Han (179_CR9) 2023; 15 M Dong (179_CR4) 2022; 2022 S Mishra (179_CR24) 2023; 83 E Naderi (179_CR26) 2025; 8 CH Luo (179_CR21) 2022; 12 E Shanshan (179_CR29) 2025; 27 RH Guan (179_CR7) 2024; 14 L Jia (179_CR11) 2022; 42 PF Liu (179_CR18) 2023; 15 ZF Shao (179_CR30) 2020; 9 M Niekurzak (179_CR27) 2023; 15 ZH Chao (179_CR1) 2021; 13 GX Gu (179_CR6) 2022; 102 G Latif (179_CR13) 2020; 39 YJ Liu (179_CR19) 2021; 308 H Dong (179_CR3) 2022; 10 ZW Guo (179_CR8) 2022; 14 KS Luo (179_CR22) 2022; 132 SM Cheema (179_CR2) 2022; 12 SK Kabilesh (179_CR12) 2023; 44 ZP Li (179_CR16) 2023; 15 NS Liu (179_CR17) 2015; 15 K Ma (179_CR23) 2023; 34 E Naderi (179_CR25) 2024; 20 R Jenitha (179_CR10) 2024; 21 W Li (179_CR14) 2022; 19 FY Lou (179_CR20) 2021; 40 XY Ran (179_CR28) 2021; 36 |
References_xml | – volume: 27 start-page: 2478 year: 2025 ident: 179_CR29 publication-title: Green Chemistry doi: 10.1039/D4GC05967K – volume: 14 start-page: 14 issue: 9 year: 2024 ident: 179_CR7 publication-title: Agronomy-Basel – volume: 102 start-page: 10 year: 2022 ident: 179_CR6 publication-title: Nano Energy – volume: 19 start-page: 9587 issue: 10 year: 2022 ident: 179_CR14 publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-022-03958-7 – volume: 36 start-page: 6731 issue: 11 year: 2021 ident: 179_CR28 publication-title: International Journal of Intelligent Systems doi: 10.1002/int.22566 – volume: 12 start-page: 23 issue: 8 year: 2022 ident: 179_CR2 publication-title: Agriculture-Basel – volume: 12 start-page: 18 issue: 2 year: 2023 ident: 179_CR15 publication-title: Actuators – volume: 15 start-page: 22 issue: 15 year: 2023 ident: 179_CR9 publication-title: Sustainability – volume: 13 start-page: 13 issue: 16 year: 2021 ident: 179_CR1 publication-title: Water – volume: 15 start-page: 10558 issue: 13 year: 2023 ident: 179_CR27 publication-title: Sustainability doi: 10.3390/su151310558 – volume: 15 start-page: 21 issue: 8 year: 2023 ident: 179_CR16 publication-title: Remote Sensing – volume: 20 start-page: 1208 issue: 2 year: 2024 ident: 179_CR25 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2023.3272625 – volume: 308 start-page: 12 year: 2021 ident: 179_CR19 publication-title: Agricultural and Forest Meteorology – volume: 9 start-page: 17 issue: 7 year: 2020 ident: 179_CR30 publication-title: Isprs International Journal of Geo-Information – volume: 2022 start-page: 11 year: 2022 ident: 179_CR4 publication-title: Mobile Information Systems – volume: 83 start-page: 298 year: 2023 ident: 179_CR24 publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2023.10.041 – volume: 40 start-page: 2827 issue: 2 year: 2021 ident: 179_CR20 publication-title: Journal of Intelligent & Fuzzy Systems – volume: 8 start-page: 20 issue: 1 year: 2025 ident: 179_CR26 publication-title: Smart Cities doi: 10.3390/smartcities8010020 – volume: 14 start-page: 24 issue: 6 year: 2022 ident: 179_CR8 publication-title: Remote Sensing – volume: 42 start-page: 4830 issue: 9 year: 2022 ident: 179_CR11 publication-title: International Journal of Climatology doi: 10.1002/joc.7506 – volume: 15 start-page: 18 issue: 7 year: 2023 ident: 179_CR18 publication-title: Water – volume: 132 start-page: 91 year: 2022 ident: 179_CR22 publication-title: Environmental Science & Policy doi: 10.1016/j.envsci.2022.02.019 – ident: 179_CR5 doi: 10.1007/s10668-024-05300-2 – volume: 21 start-page: 1905 issue: 2 year: 2024 ident: 179_CR10 publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-023-04955-0 – volume: 12 start-page: 22 issue: 9 year: 2022 ident: 179_CR21 publication-title: Agriculture-Basel – volume: 15 start-page: 28314 issue: 11 year: 2015 ident: 179_CR17 publication-title: Sensors doi: 10.3390/s151128314 – volume: 44 start-page: 6593 issue: 4 year: 2023 ident: 179_CR12 publication-title: Journal of Intelligent & Fuzzy Systems – volume: 34 start-page: 1390 issue: 5 year: 2023 ident: 179_CR23 publication-title: Journal of Earth Science doi: 10.1007/s12583-022-1724-z – volume: 10 start-page: 14 year: 2022 ident: 179_CR3 publication-title: Frontiers in Environmental Science – volume: 39 start-page: 8103 issue: 6 year: 2020 ident: 179_CR13 publication-title: Journal of Intelligent & Fuzzy Systems |
SSID | ssj0002891316 ssj0002267552 |
Score | 2.310595 |
Snippet | The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization efficiency, and... Abstract The current farmland energy management and monitoring system still has problems, such as poor real-time data collection, low energy utilization... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 43 |
SubjectTerms | Accuracy Adaptive algorithms Agricultural equipment Agricultural land Agricultural resources Bottlenecks Collaboration Crop diseases Crop yield Data analysis Data collection Decision making Deep learning Deep reinforcement learning Digital energy management Digital twins Economic benefits Edge computing Energy consumption Energy flow Energy management Energy storage Energy utilization Environmental monitoring Game theory Intelligent monitoring of farmland Investment benefit analysis Irrigation Irrigation water Latency Maintenance costs Monitoring systems Network latency Optimization Photovoltaic cells Photovoltaics Reinforcement Resource allocation Sensors Systems stability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvAmwbRpXt5UFBX0pOAtJG1GVtyuaMU_4491knaXFQ9evJU0bco8MjPpzDeEHOrALVjbMKm9YFXBI7PcR6ahNGguKg-5e8Ptnbp6qG4e5eNCq6-UE9bDA_eEO-ZgoEAd5DyESoXS14AuAobsUfK6DjlaR5u3EEw997_PClGoWZWMUcfvFfpGmqXurWlntkz_sEQZsP_XfpyNzOUaWR28Q3raf9U6WYrtBvm6nsNmdnSSdTAdxlHfNnTINKdToODfJilNkSbD1NBpS9NRGatfph9p3gK785PN-Cn1C6Hd57il6LnOB2KuBqSTeV7MCR1nMI50TQPehnGHr-jBTDbJw-XF_fkVG5oqsBqNuUatSMWopQjRa8NjVDL4OvLYSKRaaIQpMWqtbRCgdQBTcFOVSH0rlJTG-EZskeV22sZtQlUB3CtpIVieGtWZEgDqYKQSYEUII3I0I7B77bEzXI45jHI9Oxyyw2V2OD0iZ4kH85kJ9zoPoDS4QRrcX9IwInszDrpBGd-dKAWuptGX3PmPNXbJSpnEKOe07JHl7u0j7qNn0oWDLITfU4Hjmw priority: 102 providerName: Directory of Open Access Journals |
Title | Intelligent monitoring and control of farmland based on edge-cloud collaboration and digital twin for digital energy management: investment benefit analysis |
URI | https://www.proquest.com/docview/3234087951 https://doaj.org/article/0f8f1dde00bb46b2acf112202e50ccb0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JbxMxFLZoc4EDYhWhJfKBG7LqsccbF9RCQ0G0QkCl3iyvVaRmpiRT9c_wY7EdZyhC4jayPT747c_P7wPgtbBYRaU8YsJQ1DY4IIVNQCISmcxFa2JBbzg94yfn7ecLdlETbutaVrnViUVR-97lHPkBJbTFGRm7eXf9E2XUqHy7WiE0dsAkqWCZgq_J0fHZ129jliU5F4Ixsn0tI_nBOu2Ss3OEoayhFRJ_WaTSuP8fvVyMzfwReFi9RHi4IetjcC90T8CDO70Dn4Jfn8ZmmgNcFsnME9B0Htb6c9hHGM1qmYsXYTZXHvYdzAk05K76m7zuDhOUP_3iMqOIwOF20cHkz44DobwRhMuxWuYtXJQWHfkb2jQdF0PaYtPi5Bk4nx__eH-CKtQCcsnEiyQr-YkqoTYYIXEInFnjAg6epTO0nkqSYlmnLI1C2CgbLFviA1aUMyal8fQ52O36LrwAkDcRG85UtApn-DpJYozOSsZpVNTaKXizPW59vemooUskIrneEEcn4uhCHC2m4ChTZFyZu2GXgX51qatwaRxlbJKextjalltiXExuJMEkMOycxVOwv6WnriK61n8Y6uX_p_fAfZLZpdSw7IPdYXUTXiVPZLAzsCPnH2dgcvjh9Mv3WWW-WYnrfwMS_-OT |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPFU-xUMAHOCGrjh3HNhJCvJZd-ji1Um_GTuxqJTZpd1NV_S_8Bn4jHudBERK33iLbiaLM5_nGk3kg9Eo6qoPWFRHScpJn1BNNrScyMBXpIrchdW84OCxmx_m3E3GygX4NuTAQVjnoxKSoq6YEH_kuZzyn0Bk7e392TqBrFPxdHVpodLDY81eX8ci2fjf_HOX7mrHpl6NPM9J3FSBlZDMZYQHZmIw7b6Wi3hfC2dJTX4moHFzFFYvHtlI7HqR0QWVU5azy8eBfCKGUrXh87i10O-dcw45S06-jTyeaMlIINuTmqGJ3Hd8ZfIFMEOADTeRf_JfaBPzDAonapvfQdm-T4g8diO6jDV8_QFvXKhU-RD_nY-nOFi-THoAJbOsK99HuuAk42NUSQiUxkGOFmxqDu46UP5oLWHcNcunOanEKPUtwe7mocbSexwGfMhLxcozNeYsXqSAIXGMXp8OijY_oCqo8Qsc3IoLHaLNuav8E4SIL1BZCB6cpNMtTLIRQOiUKHjR3boLeDJ_bnHX1O0w696jCdMIxUTgmCcfICfoIEhlXQu3tNNCsTk2_lQ0NKmSRFSh1Li8cs2WIRiujzAtalo5O0M4gT9MrhLX5A9-n_59-ie7Mjg72zf78cO8ZussAOil6ZgdttqsL_zzaQK17kYCH0febRvpvN-gaKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+monitoring+and+control+of+farmland+based+on+edge-cloud+collaboration+and+digital+twin+for+digital+energy+management%3A+investment+benefit+analysis&rft.jtitle=Renewables+%3A+wind%2C+water%2C+and+solar&rft.au=Liu%2C+Zheng&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2198-994X&rft.volume=12&rft.issue=1&rft.spage=43&rft_id=info:doi/10.1186%2Fs40807-025-00179-7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-9237&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-9237&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-9237&client=summon |