A nuclease-dead Cas9-derived tool represses target gene expression
Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without D...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 195; no. 3; pp. 1880 - 1892 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
28.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The non-canonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). Electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops. |
---|---|
AbstractList | Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The noncanonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). The electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops.Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The noncanonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). The electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops. Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The non-canonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). Electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops. Abstract Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The noncanonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). The electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops. |
Author | Xin, Tongxu Liu, Xiaolin Zeng, Kang Zhang, Zhen Li, Jian-Feng Yang, Xueyong Guo, Jiangyi Wang, Bowen Li, Zhenxiang |
Author_xml | – sequence: 1 givenname: Bowen orcidid: 0000-0003-0884-7452 surname: Wang fullname: Wang, Bowen organization: Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China – sequence: 2 givenname: Xiaolin orcidid: 0009-0000-1574-414X surname: Liu fullname: Liu, Xiaolin organization: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 3 givenname: Zhenxiang orcidid: 0000-0002-4800-2668 surname: Li fullname: Li, Zhenxiang organization: Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China – sequence: 4 givenname: Kang orcidid: 0009-0001-8316-6756 surname: Zeng fullname: Zeng, Kang organization: College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China – sequence: 5 givenname: Jiangyi orcidid: 0009-0002-0924-0572 surname: Guo fullname: Guo, Jiangyi organization: Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China – sequence: 6 givenname: Tongxu orcidid: 0000-0002-0318-8446 surname: Xin fullname: Xin, Tongxu organization: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 7 givenname: Zhen orcidid: 0000-0002-4864-6180 surname: Zhang fullname: Zhang, Zhen organization: State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China – sequence: 8 givenname: Jian-Feng orcidid: 0000-0001-5783-0804 surname: Li fullname: Li, Jian-Feng organization: Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China – sequence: 9 givenname: Xueyong orcidid: 0000-0003-0453-2023 surname: Yang fullname: Yang, Xueyong organization: State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38478589$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kD1PwzAQhi1URD9gZUQeWdKeHTuxx1KVD6kSC8yWk1xKII2DnSD670lpYbpXp-denZ4pGTWuQUKuGcwZ6HjR1u3bPiw-KotM6DMyYTLmEZdCjcgEYMiglB6TaQjvAMBiJi7IOFYiVVLpCblb0qbPa7QBowJtQVc26CH56gsL2jlXU4-txxAw0M76LXZ0iw1S_P7dVq65JOelrQNeneaMvN6vX1aP0eb54Wm13EQ5U9BFRcZlprQsE2G5yDVTTHFRZsxCAqoc_k4LAIsJaBDIc5nIMmVCSMhSy2QSz8jtsbf17rPH0JldFXKsa9ug64PhWqYsEVoc0PkRzb0LwWNpWl_trN8bBubgzRy9mZO34eDm1N1nOyz-8T9R8Q_X92v0 |
Cites_doi | 10.1094/MPMI.2001.14.6.695 10.1371/journal.pone.0222778 10.1038/s41592-018-0048-5 10.1186/1471-2164-12-540 10.1038/s41477-019-0461-5 10.1371/journal.pone.0003647 10.1038/nature14136 10.1007/s42994-019-00003-z 10.1038/s41477-017-0046-0 10.1016/j.jmb.2018.06.037 10.1046/j.1365-313x.1998.00343.x 10.1016/j.molp.2017.06.004 10.1016/j.hpj.2022.04.007 10.1104/pp.15.00636 10.1016/j.cell.2014.09.029 10.1038/s41477-020-0715-2 10.1186/s13007-016-0101-2 10.1126/science.1231143 10.1038/s41467-019-08736-7 10.1111/pbi.12284 10.1016/j.molcel.2015.02.032 10.1038/nbt.2654 10.1016/j.cell.2013.06.044 10.1038/nrc3950 10.3390/epigenomes5030017 10.1186/s12870-014-0327-y 10.1093/hr/uhab086 10.1016/j.molp.2017.11.010 10.1016/j.molp.2015.10.005 10.1093/nar/gkac166 10.1038/nbt.3199 10.1038/s41592-020-0966-x 10.1016/S1097-2765(00)80265-8 10.1038/s41477-021-00953-7 10.1038/nrm3890 10.1046/j.1365-313X.2003.01759.x 10.1038/s41467-022-34269-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1093/plphys/kiae149 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 1892 |
ExternalDocumentID | 10_1093_plphys_kiae149 38478589 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2WC 4.4 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABXVV ACBTR ACGOD ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADQBN ADVEK AEEJZ AENEX AFAZZ AFFZL AFGWE AFRAH AHMBA AJEEA ALIPV ALMA_UNASSIGNED_HOLDINGS ATGXG BAWUL BCRHZ BEYMZ BTFSW CS3 DU5 E3Z EBS F5P FLUFQ FOEOM JBS JLS KOP KQ8 KSI KSN MV1 NOMLY NPM OBOKY OJZSN OK1 OWPYF P2P Q2X RHF RHI ROX RPB RPM RWL RXW TAE TN5 TR2 VQA WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ~02 ~KM AASNB AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c180t-db25b895f64a24c9181824fb1a0608f1537d00ae60904e2c565f714450b7a1563 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Sat Oct 26 04:50:30 EDT 2024 Fri Aug 23 04:54:31 EDT 2024 Thu Oct 24 10:03:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | dCas9 transcription repression CRISPR interference CRISPR/Cas9 molecular breeding |
Language | English |
License | The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c180t-db25b895f64a24c9181824fb1a0608f1537d00ae60904e2c565f714450b7a1563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4800-2668 0000-0001-5783-0804 0009-0001-8316-6756 0009-0002-0924-0572 0000-0002-0318-8446 0000-0002-4864-6180 0000-0003-0884-7452 0009-0000-1574-414X 0000-0003-0453-2023 |
PMID | 38478589 |
PQID | 2957164946 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2957164946 crossref_primary_10_1093_plphys_kiae149 pubmed_primary_38478589 |
PublicationCentury | 2000 |
PublicationDate | 20240628 |
PublicationDateYYYYMMDD | 2024-06-28 |
PublicationDate_xml | – month: 06 year: 2024 text: 20240628 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2024 |
References | Piatek (2024062818170724100_kiae149-B23) 2015; 13 Gilbert (2024062818170724100_kiae149-B8) 2013; 154 Lee (2024062818170724100_kiae149-B13) 2019; 14 Zhang (2024062818170724100_kiae149-B37) 2019; 5 Xu (2024062818170724100_kiae149-B34) 2019; 431 Yeo (2024062818170724100_kiae149-B36) 2018; 15 Lowder (2024062818170724100_kiae149-B19) 2015; 169 Xin (2024062818170724100_kiae149-B31) 2022; 9 Boisson-Dernier (2024062818170724100_kiae149-B2) 2001; 14 Li (2024062818170724100_kiae149-B16) 2017; 3 Papikian (2024062818170724100_kiae149-B22) 2019; 10 Vazquez-Vilar (2024062818170724100_kiae149-B27) 2016; 12 Konermann (2024062818170724100_kiae149-B12) 2015; 517 Sternberg (2024062818170724100_kiae149-B25) 2015; 58 Pan (2024062818170724100_kiae149-B21) 2021; 7 Li (2024062818170724100_kiae149-B17) 2011; 12 Yang (2024062818170724100_kiae149-B35) 2020; 6 Alerasool (2024062818170724100_kiae149-B1) 2020; 17 Lowder (2024062818170724100_kiae149-B20) 2018; 11 Engler (2024062818170724100_kiae149-B6) 2008; 3 Gómez-Gómez (2024062818170724100_kiae149-B9) 2000; 5 Tessarz (2024062818170724100_kiae149-B26) 2014; 15 Liu (2024062818170724100_kiae149-B18) 2022; 8 Sanchez-Rivera (2024062818170724100_kiae149-B24) 2015; 15 Veggiani (2024062818170724100_kiae149-B28) 2022; 13 Dubois (2024062818170724100_kiae149-B5) 2021; 5 Hilton (2024062818170724100_kiae149-B10) 2015; 33 Clough (2024062818170724100_kiae149-B3) 1998; 16 Hiratsu (2024062818170724100_kiae149-B11) 2003; 34 Li (2024062818170724100_kiae149-B15) 2020; 1 Li (2024062818170724100_kiae149-B14) 2013; 31 Cong (2024062818170724100_kiae149-B4) 2013; 339 Xing (2024062818170724100_kiae149-B32) 2014; 14 Xiong (2024062818170724100_kiae149-B33) 2022; 50 Xie (2024062818170724100_kiae149-B30) 2017; 10 Gilbert (2024062818170724100_kiae149-B7) 2014; 159 Wang (2024062818170724100_kiae149-B29) 2015; 8 |
References_xml | – volume: 14 start-page: 695 issue: 6 year: 2001 ident: 2024062818170724100_kiae149-B2 article-title: Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.2001.14.6.695 contributor: fullname: Boisson-Dernier – volume: 14 start-page: e0222778 issue: 9 year: 2019 ident: 2024062818170724100_kiae149-B13 article-title: CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants publication-title: PLoS One doi: 10.1371/journal.pone.0222778 contributor: fullname: Lee – volume: 15 start-page: 611 issue: 8 year: 2018 ident: 2024062818170724100_kiae149-B36 article-title: An enhanced CRISPR repressor for targeted mammalian gene regulation publication-title: Nat Methods doi: 10.1038/s41592-018-0048-5 contributor: fullname: Yeo – volume: 12 start-page: 540 issue: 1 year: 2011 ident: 2024062818170724100_kiae149-B17 article-title: RNA-seq improves annotation of protein-coding genes in the cucumber genome publication-title: BMC Genomics doi: 10.1186/1471-2164-12-540 contributor: fullname: Li – volume: 5 start-page: 778 issue: 8 year: 2019 ident: 2024062818170724100_kiae149-B37 article-title: The emerging and uncultivated potential of CRISPR technology in plant science publication-title: Nat Plants doi: 10.1038/s41477-019-0461-5 contributor: fullname: Zhang – volume: 3 start-page: e3647 issue: 11 year: 2008 ident: 2024062818170724100_kiae149-B6 article-title: A one pot, one step, precision cloning method with high throughput capability publication-title: PLoS One doi: 10.1371/journal.pone.0003647 contributor: fullname: Engler – volume: 517 start-page: 583 issue: 7536 year: 2015 ident: 2024062818170724100_kiae149-B12 article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex publication-title: Nature doi: 10.1038/nature14136 contributor: fullname: Konermann – volume: 1 start-page: 32 issue: 1 year: 2020 ident: 2024062818170724100_kiae149-B15 article-title: The working dead: repurposing inactive CRISPR-associated nucleases as programmable transcriptional regulators in plants publication-title: aBIOTECH doi: 10.1007/s42994-019-00003-z contributor: fullname: Li – volume: 3 start-page: 930 issue: 12 year: 2017 ident: 2024062818170724100_kiae149-B16 article-title: A potent Cas9-derived gene activator for plant and mammalian cells publication-title: Nat Plants doi: 10.1038/s41477-017-0046-0 contributor: fullname: Li – volume: 431 start-page: 34 issue: 1 year: 2019 ident: 2024062818170724100_kiae149-B34 article-title: A CRISPR-dCas9 toolbox for genetic engineering and synthetic biology publication-title: J Mol Biol doi: 10.1016/j.jmb.2018.06.037 contributor: fullname: Xu – volume: 16 start-page: 735 issue: 6 year: 1998 ident: 2024062818170724100_kiae149-B3 article-title: Floral dip: a simplified method for Agrobacterium–mediated transformation of Arabidopsis thaliana publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00343.x contributor: fullname: Clough – volume: 10 start-page: 1246 issue: 9 year: 2017 ident: 2024062818170724100_kiae149-B30 article-title: CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing publication-title: Mol Plant doi: 10.1016/j.molp.2017.06.004 contributor: fullname: Xie – volume: 8 start-page: 395 issue: 4 year: 2022 ident: 2024062818170724100_kiae149-B18 article-title: CRISPR/cas9 technology and its application in horticultural crops publication-title: Hortic Plant J doi: 10.1016/j.hpj.2022.04.007 contributor: fullname: Liu – volume: 169 start-page: 971 issue: 2 year: 2015 ident: 2024062818170724100_kiae149-B19 article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation publication-title: Plant Physiol doi: 10.1104/pp.15.00636 contributor: fullname: Lowder – volume: 159 start-page: 647 issue: 3 year: 2014 ident: 2024062818170724100_kiae149-B7 article-title: Genome-scale CRISPR-mediated control of gene repression and activation publication-title: Cell doi: 10.1016/j.cell.2014.09.029 contributor: fullname: Gilbert – volume: 6 start-page: 809 issue: 7 year: 2020 ident: 2024062818170724100_kiae149-B35 article-title: Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies publication-title: Nat Plants doi: 10.1038/s41477-020-0715-2 contributor: fullname: Yang – volume: 12 start-page: 10 issue: 1 year: 2016 ident: 2024062818170724100_kiae149-B27 article-title: A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard publication-title: Plant Methods doi: 10.1186/s13007-016-0101-2 contributor: fullname: Vazquez-Vilar – volume: 339 start-page: 819 issue: 6121 year: 2013 ident: 2024062818170724100_kiae149-B4 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 contributor: fullname: Cong – volume: 10 start-page: 729 issue: 1 year: 2019 ident: 2024062818170724100_kiae149-B22 article-title: Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems publication-title: Nat Commun doi: 10.1038/s41467-019-08736-7 contributor: fullname: Papikian – volume: 13 start-page: 578 issue: 4 year: 2015 ident: 2024062818170724100_kiae149-B23 article-title: RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors publication-title: Plant Biotechnol J doi: 10.1111/pbi.12284 contributor: fullname: Piatek – volume: 58 start-page: 568 issue: 4 year: 2015 ident: 2024062818170724100_kiae149-B25 article-title: Expanding the biologist's toolkit with CRISPR-Cas9 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.02.032 contributor: fullname: Sternberg – volume: 31 start-page: 688 issue: 8 year: 2013 ident: 2024062818170724100_kiae149-B14 article-title: Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 publication-title: Nat Biotechnol doi: 10.1038/nbt.2654 contributor: fullname: Li – volume: 154 start-page: 442 issue: 2 year: 2013 ident: 2024062818170724100_kiae149-B8 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell doi: 10.1016/j.cell.2013.06.044 contributor: fullname: Gilbert – volume: 15 start-page: 387 issue: 7 year: 2015 ident: 2024062818170724100_kiae149-B24 article-title: Applications of the CRISPR-Cas9 system in cancer biology publication-title: Nat Rev Cancer doi: 10.1038/nrc3950 contributor: fullname: Sanchez-Rivera – volume: 5 start-page: 17 issue: 3 year: 2021 ident: 2024062818170724100_kiae149-B5 article-title: Deciphering plant chromatin regulation via CRISPR/dCas9-based epigenome engineering publication-title: Epigenomes doi: 10.3390/epigenomes5030017 contributor: fullname: Dubois – volume: 14 start-page: 327 issue: 1 year: 2014 ident: 2024062818170724100_kiae149-B32 article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0327-y contributor: fullname: Xing – volume: 9 start-page: uhab086 year: 2022 ident: 2024062818170724100_kiae149-B31 article-title: Targeted creating new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants publication-title: Hortic Res doi: 10.1093/hr/uhab086 contributor: fullname: Xin – volume: 11 start-page: 245 issue: 2 year: 2018 ident: 2024062818170724100_kiae149-B20 article-title: Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems publication-title: Mol Plant doi: 10.1016/j.molp.2017.11.010 contributor: fullname: Lowder – volume: 8 start-page: 1795 issue: 12 year: 2015 ident: 2024062818170724100_kiae149-B29 article-title: A rare SNP identified a TCP transcription factor essential for tendril development in cucumber publication-title: Mol Plant doi: 10.1016/j.molp.2015.10.005 contributor: fullname: Wang – volume: 50 start-page: 3565 issue: 6 year: 2022 ident: 2024062818170724100_kiae149-B33 article-title: A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac166 contributor: fullname: Xiong – volume: 33 start-page: 510 issue: 5 year: 2015 ident: 2024062818170724100_kiae149-B10 article-title: Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers publication-title: Nat Biotechnol doi: 10.1038/nbt.3199 contributor: fullname: Hilton – volume: 17 start-page: 1093 issue: 11 year: 2020 ident: 2024062818170724100_kiae149-B1 article-title: An efficient KRAB domain for CRISPRi applications in human cells publication-title: Nat Methods doi: 10.1038/s41592-020-0966-x contributor: fullname: Alerasool – volume: 5 start-page: 1003 issue: 6 year: 2000 ident: 2024062818170724100_kiae149-B9 article-title: FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80265-8 contributor: fullname: Gómez-Gómez – volume: 7 start-page: 942 issue: 7 year: 2021 ident: 2024062818170724100_kiae149-B21 article-title: CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants publication-title: Nat Plants doi: 10.1038/s41477-021-00953-7 contributor: fullname: Pan – volume: 15 start-page: 703 issue: 11 year: 2014 ident: 2024062818170724100_kiae149-B26 article-title: Histone core modifications regulating nucleosome structure and dynamics publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3890 contributor: fullname: Tessarz – volume: 34 start-page: 733 issue: 5 year: 2003 ident: 2024062818170724100_kiae149-B11 article-title: Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01759.x contributor: fullname: Hiratsu – volume: 13 start-page: 6975 issue: 1 year: 2022 ident: 2024062818170724100_kiae149-B28 article-title: High-affinity chromodomains engineered for improved detection of histone methylation and enhanced CRISPR-based gene repression publication-title: Nat Commun doi: 10.1038/s41467-022-34269-7 contributor: fullname: Veggiani |
SSID | ssj0001314 |
Score | 2.5135367 |
Snippet | Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production... Abstract Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 1880 |
Title | A nuclease-dead Cas9-derived tool represses target gene expression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38478589 https://www.proquest.com/docview/2957164946 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9aK8UXsfXrqpYtFHyQ6Gazm4_HO1GkLYWC4r2F3c3GHtXk8HK09a93JpuPUxRsX8Iy4TZhfrnJzGTmN4R8VpFJMl_BP81XEKAIbjxtVAzGUDGRW5FpXbN9fg_PLsSXsRz3I_3q7pJKH5q7J_tK_gdVkAGu2CX7D8h2m4IA1oAvHAFhOL4I4-FBgXTE8CLyMsDq4FjNEljdggXLwKkskbO_LnRFHoe65BsnJluk9Xflr8Wib4rziyqX6nDETOB8jrAfeJaphYTBZZNhHpW_-zayb5M5ysYThUOAemn97eOnLf7AU3jVJaltY2BaWZN14AKro5oubttaSu5BdBk_aYcdR9X0Gu8ZFr8myvqOmnQBlulNjUsAL8hYukFCj7iv21OvyRsOhgRL9r7-6Nng_cAXHRFncOQud9RcbIW8bX_-0Od4JpCoHYrzNbLaRAJ06GB9R17Z4j1ZHpXgrf9dJ6MhfYAtXcSWIra0w5Y6bCliS3tsN8jF6cn58ZnXzLvwjB-zyss0lzpOZB4KxYVJwPmKuci1r1jI4hw0HmWMKRuyhAnLDfjieQQBsWQ6UhCHB5tkqSgLu00oN4mKdC4s-KMiFDY2QkpupQ6tELAekP1WI-nU0ZqkrhwhSJ0a00aNA_KpVVgKlgc_J6nClvNZyhOJwTbsPyBbTpPdXq3mPzx7Zoes9M_VLlmqbud2D_y7Sn-sQb4HjrlRPA |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nuclease-dead+Cas9-derived+tool+represses+target+gene+expression&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Wang%2C+Bowen&rft.au=Liu%2C+Xiaolin&rft.au=Li%2C+Zhenxiang&rft.au=Zeng%2C+Kang&rft.date=2024-06-28&rft.eissn=1532-2548&rft_id=info:doi/10.1093%2Fplphys%2Fkiae149&rft_id=info%3Apmid%2F38478589&rft.externalDocID=38478589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |