Trifluoromethylation Enables Compact 2D Linear Stacking and Improves the Efficiency and Stability of Q-PHJ Organic Solar Cells

Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxI...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) p. e2403821
Main Authors Qiu, Dongsheng, Xiong, Shilong, Lai, Hanjian, Wang, Yunpeng, Li, Heng, Lai, Xue, Zhu, Yiwu, He, Feng
Format Journal Article
LanguageEnglish
Published Germany 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF and QxIC-CH are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH , the single crystal structure reveals that QxIC-CF exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.
AbstractList Abstract Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q‐PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long‐term stability, it is necessary to design new materials for Q‐PHJ devices. In this study, QxIC‐CF 3 and QxIC‐CH 3 are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC‐CH 3 , the single crystal structure reveals that QxIC‐CF 3 exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q‐PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC‐CF 3 exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q‐PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T 80 is 420 h, which is nearly twice that of the renowned Y6‐based BHJ device (T 80 = 220 h). By combining the advantages of the trifluoromethylation and Q‐PHJ device, efficient and stable organic solar cell devices can be constructed.
Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF and QxIC-CH are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH , the single crystal structure reveals that QxIC-CF exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.
Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF3 and QxIC-CH3 are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH3, the single crystal structure reveals that QxIC-CF3 exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF3 exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T80 is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T80 = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF3 and QxIC-CH3 are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH3, the single crystal structure reveals that QxIC-CF3 exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF3 exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T80 is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T80 = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.
Author Li, Heng
Xiong, Shilong
Qiu, Dongsheng
Lai, Hanjian
He, Feng
Wang, Yunpeng
Zhu, Yiwu
Lai, Xue
Author_xml – sequence: 1
  givenname: Dongsheng
  surname: Qiu
  fullname: Qiu, Dongsheng
  organization: Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 2
  givenname: Shilong
  surname: Xiong
  fullname: Xiong, Shilong
  organization: Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 3
  givenname: Hanjian
  surname: Lai
  fullname: Lai, Hanjian
  organization: Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 4
  givenname: Yunpeng
  surname: Wang
  fullname: Wang, Yunpeng
  organization: Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 5
  givenname: Heng
  surname: Li
  fullname: Li, Heng
  organization: Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 6
  givenname: Xue
  surname: Lai
  fullname: Lai, Xue
  organization: School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 7
  givenname: Yiwu
  surname: Zhu
  fullname: Zhu, Yiwu
  organization: Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 8
  givenname: Feng
  orcidid: 0000-0002-8596-1366
  surname: He
  fullname: He, Feng
  organization: Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38949043$$D View this record in MEDLINE/PubMed
BookMark eNo9kDtPwzAURi0EAlpYGZFHlhS_kjgjKoWCKhVUmCPbscHg2MVOkLrw20l5dLpXuud--nRGYN8HrwE4w2iCESKXqXVuQhBhiHKC98AxLjDNCk6q_d2O0REYpfSGEMWElYfgiPKKVYjRY_D1FK1xfYih1d3rxonOBg9nXkinE5yGdi1UB8k1XFivRYSrTqh361-g8A28a9cxfA5c96rhzBirrPZq83MbQGmd7TYwGPiYPczv4TK-CG8VXAU3JE21c-kEHBjhkj79m2PwfDN7ms6zxfL2bnq1yBTmqMsaLDnWFc8VLxuikFHM6KpopOF5mRNZSIPKomGyEEIhLCusm4IblvOmxJIVdAwufnOHwh-9Tl3d2qSGBsLr0KeaopJhWuaMDOjkF1UxpBS1qdfRtiJuaozqrfN667zeOR8ezv-ye9nqZof_S6bf6lGACw
Cites_doi 10.1021/acsmaterialslett.2c00329
10.1002/adfm.202201828
10.1002/adma.202102778
10.1016/j.joule.2019.01.004
10.1002/aenm.202300458
10.1002/adfm.202214392
10.31635/ccschem.022.202201875
10.1021/acs.chemmater.2c01604
10.1002/adma.202300631
10.1038/s41467-020-19853-z
10.1021/acsami.9b20544
10.1038/s41560-022-01138-y
10.1002/aenm.202204154
10.1002/cplu.202100012
10.1016/j.joule.2021.12.017
10.1002/aenm.201904234
10.1021/jacs.0c05560
10.1002/adma.201404317
10.1039/D3EE01333B
10.1039/D3EE01690K
10.1002/adfm.202305765
10.1002/adfm.202301573
10.1016/j.nanoen.2023.108593
10.1038/s41563-022-01244-y
10.1038/s41560-021-00820-x
10.1002/adfm.202304449
10.1002/adma.201906324
10.1016/j.isci.2019.06.033
10.1021/acs.chemrev.1c00955
10.1016/j.cej.2023.147091
10.1002/adma.201908205
10.1093/nsr/nwz197
10.1002/adfm.202305608
10.1002/anie.202201844
10.1021/acsami.3c10038
10.1039/D2EE00595F
10.1016/j.joule.2020.02.004
10.1038/s41467-023-40806-9
10.1039/c3py20848f
10.1038/s41467-023-37526-5
10.1039/D3EE00908D
10.1039/D3EE01164J
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1002/smll.202403821
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
ExternalDocumentID 10_1002_smll_202403821
38949043
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 22305112
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M721466
– fundername: Center for Computational Science and Engineering at the Southern University of Science and Technology
– fundername: National Natural Science Foundation of China
  grantid: 22225504
– fundername: Shenzhen Fundamental Research Program
  grantid: JCYJ20210324120010028
– fundername: Guangdong Provincial Key Laboratory Of Catalysis
  grantid: 2020B121201002
– fundername: High level of special funds
  grantid: G03050K002
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NPM
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
7X8
ID FETCH-LOGICAL-c180t-d1b81e985c87d2c0fc4fe96dbf85752b6bf076d4b6aac01b91ed68f458d71b463
ISSN 1613-6810
1613-6829
IngestDate Sat Aug 17 04:36:49 EDT 2024
Fri Aug 23 05:26:19 EDT 2024
Wed Oct 09 10:31:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords organic solar cells
quasiplanar heterojunction
small‐molecule acceptors
molecular packing
trifluoromethylation
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c180t-d1b81e985c87d2c0fc4fe96dbf85752b6bf076d4b6aac01b91ed68f458d71b463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8596-1366
PMID 38949043
PQID 3074137542
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3074137542
crossref_primary_10_1002_smll_202403821
pubmed_primary_38949043
PublicationCentury 2000
PublicationDate 2024-Jul-01
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
References Pang B. (e_1_2_7_7_1) 2023; 35
Zhu W. (e_1_2_7_35_1) 2020; 142
Shi Y. (e_1_2_7_16_1) 2023; 13
Chen H. (e_1_2_7_39_1) 2023; 113
Li Y. (e_1_2_7_41_1) 2022; 4
Cui Y. (e_1_2_7_20_1) 2020; 32
Wang J. (e_1_2_7_31_1) 2023; 33
Li X. (e_1_2_7_34_1) 2021; 86
Jiang K. (e_1_2_7_5_1) 2022; 7
Qiu D. (e_1_2_7_26_1) 2023; 15
Yao C. (e_1_2_7_27_1) 2020; 12
Chen Z. (e_1_2_7_9_1) 2023; 16
Zhu L. (e_1_2_7_3_1) 2022; 21
Chen H. (e_1_2_7_11_1) 2021; 33
Deng P. (e_1_2_7_25_1) 2013; 4
Cao C. (e_1_2_7_43_1) 2022; 32
Lai H. (e_1_2_7_10_1) 2023; 16
Ye L. (e_1_2_7_14_1) 2020; 11
Jiang Y. (e_1_2_7_13_1) 2023; 14
Yuan J. (e_1_2_7_2_1) 2019; 3
He C. (e_1_2_7_6_1) 2022; 15
Fu J. (e_1_2_7_8_1) 2023; 14
Zhu L. (e_1_2_7_33_1) 2020; 10
Luo Z. H. (e_1_2_7_12_1) 2023; 16
Lai H. (e_1_2_7_36_1) 2023; 5
Lai X. (e_1_2_7_42_1) 2022; 34
Zheng Z. (e_1_2_7_4_1) 2022; 6
Wang J. (e_1_2_7_28_1) 2023; 477
Zhang G. (e_1_2_7_22_1) 2022; 122
Cui Y. (e_1_2_7_21_1) 2020; 7
Lai H. (e_1_2_7_37_1) 2019; 17
Lai H. J. (e_1_2_7_29_1) 2020; 4
Zhou Z. (e_1_2_7_32_1) 2020; 32
Li C. (e_1_2_7_19_1) 2021; 6
He C. (e_1_2_7_15_1) 2023; 13
Xie M. L. (e_1_2_7_18_1) 2023; 16
Tan P. (e_1_2_7_38_1) 2023; 34
Wang H. (e_1_2_7_40_1) 2022; 61
Chen C. (e_1_2_7_17_1) 2023; 33
Lin Y. (e_1_2_7_1_1) 2015; 27
Yao Z. (e_1_2_7_23_1) 2023; 4
Zhang C. (e_1_2_7_30_1) 2023; 33
Liang H. (e_1_2_7_24_1) 2023; 33
References_xml – volume: 4
  start-page: 1322
  year: 2022
  ident: e_1_2_7_41_1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.2c00329
  contributor:
    fullname: Li Y.
– volume: 32
  year: 2022
  ident: e_1_2_7_43_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202201828
  contributor:
    fullname: Cao C.
– volume: 33
  year: 2021
  ident: e_1_2_7_11_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102778
  contributor:
    fullname: Chen H.
– volume: 3
  start-page: 1140
  year: 2019
  ident: e_1_2_7_2_1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
  contributor:
    fullname: Yuan J.
– volume: 13
  year: 2023
  ident: e_1_2_7_16_1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300458
  contributor:
    fullname: Shi Y.
– volume: 33
  year: 2023
  ident: e_1_2_7_30_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214392
  contributor:
    fullname: Zhang C.
– volume: 5
  start-page: 1118
  year: 2023
  ident: e_1_2_7_36_1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.022.202201875
  contributor:
    fullname: Lai H.
– volume: 34
  start-page: 7886
  year: 2022
  ident: e_1_2_7_42_1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c01604
  contributor:
    fullname: Lai X.
– volume: 35
  year: 2023
  ident: e_1_2_7_7_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300631
  contributor:
    fullname: Pang B.
– volume: 11
  start-page: 6005
  year: 2020
  ident: e_1_2_7_14_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19853-z
  contributor:
    fullname: Ye L.
– volume: 12
  year: 2020
  ident: e_1_2_7_27_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20544
  contributor:
    fullname: Yao C.
– volume: 7
  start-page: 1076
  year: 2022
  ident: e_1_2_7_5_1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01138-y
  contributor:
    fullname: Jiang K.
– volume: 13
  year: 2023
  ident: e_1_2_7_15_1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204154
  contributor:
    fullname: He C.
– volume: 86
  start-page: 700
  year: 2021
  ident: e_1_2_7_34_1
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.202100012
  contributor:
    fullname: Li X.
– volume: 6
  start-page: 171
  year: 2022
  ident: e_1_2_7_4_1
  publication-title: Joule
  doi: 10.1016/j.joule.2021.12.017
  contributor:
    fullname: Zheng Z.
– volume: 10
  year: 2020
  ident: e_1_2_7_33_1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904234
  contributor:
    fullname: Zhu L.
– volume: 142
  year: 2020
  ident: e_1_2_7_35_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05560
  contributor:
    fullname: Zhu W.
– volume: 27
  start-page: 1170
  year: 2015
  ident: e_1_2_7_1_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404317
  contributor:
    fullname: Lin Y.
– volume: 16
  start-page: 3543
  year: 2023
  ident: e_1_2_7_18_1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01333B
  contributor:
    fullname: Xie M. L.
– volume: 16
  start-page: 5944
  year: 2023
  ident: e_1_2_7_10_1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01690K
  contributor:
    fullname: Lai H.
– volume: 33
  year: 2023
  ident: e_1_2_7_17_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305765
  contributor:
    fullname: Chen C.
– volume: 33
  year: 2023
  ident: e_1_2_7_24_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202301573
  contributor:
    fullname: Liang H.
– volume: 113
  year: 2023
  ident: e_1_2_7_39_1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108593
  contributor:
    fullname: Chen H.
– volume: 21
  start-page: 656
  year: 2022
  ident: e_1_2_7_3_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01244-y
  contributor:
    fullname: Zhu L.
– volume: 6
  start-page: 605
  year: 2021
  ident: e_1_2_7_19_1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00820-x
  contributor:
    fullname: Li C.
– volume: 33
  year: 2023
  ident: e_1_2_7_31_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304449
  contributor:
    fullname: Wang J.
– volume: 32
  year: 2020
  ident: e_1_2_7_32_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906324
  contributor:
    fullname: Zhou Z.
– volume: 17
  start-page: 302
  year: 2019
  ident: e_1_2_7_37_1
  publication-title: iScience
  doi: 10.1016/j.isci.2019.06.033
  contributor:
    fullname: Lai H.
– volume: 122
  year: 2022
  ident: e_1_2_7_22_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00955
  contributor:
    fullname: Zhang G.
– volume: 477
  year: 2023
  ident: e_1_2_7_28_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.147091
  contributor:
    fullname: Wang J.
– volume: 32
  year: 2020
  ident: e_1_2_7_20_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908205
  contributor:
    fullname: Cui Y.
– volume: 7
  start-page: 9
  year: 2020
  ident: e_1_2_7_21_1
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwz197
  contributor:
    fullname: Cui Y.
– volume: 34
  year: 2023
  ident: e_1_2_7_38_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305608
  contributor:
    fullname: Tan P.
– volume: 4
  start-page: 772
  year: 2023
  ident: e_1_2_7_23_1
  publication-title: Acc. Chem. Res.
  contributor:
    fullname: Yao Z.
– volume: 61
  year: 2022
  ident: e_1_2_7_40_1
  publication-title: Angew. Chem.Int. Ed.
  doi: 10.1002/anie.202201844
  contributor:
    fullname: Wang H.
– volume: 15
  year: 2023
  ident: e_1_2_7_26_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c10038
  contributor:
    fullname: Qiu D.
– volume: 15
  start-page: 2537
  year: 2022
  ident: e_1_2_7_6_1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00595F
  contributor:
    fullname: He C.
– volume: 4
  start-page: 688
  year: 2020
  ident: e_1_2_7_29_1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.004
  contributor:
    fullname: Lai H. J.
– volume: 14
  start-page: 5079
  year: 2023
  ident: e_1_2_7_13_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40806-9
  contributor:
    fullname: Jiang Y.
– volume: 4
  start-page: 5275
  year: 2013
  ident: e_1_2_7_25_1
  publication-title: Polym. Chem.
  doi: 10.1039/c3py20848f
  contributor:
    fullname: Deng P.
– volume: 14
  start-page: 1760
  year: 2023
  ident: e_1_2_7_8_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37526-5
  contributor:
    fullname: Fu J.
– volume: 16
  start-page: 2732
  year: 2023
  ident: e_1_2_7_12_1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00908D
  contributor:
    fullname: Luo Z. H.
– volume: 16
  start-page: 3119
  year: 2023
  ident: e_1_2_7_9_1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01164J
  contributor:
    fullname: Chen Z.
SSID ssj0031247
Score 2.4957314
Snippet Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer...
Abstract Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q‐PHJ) exhibits a more stable morphology and superior charge...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage e2403821
Title Trifluoromethylation Enables Compact 2D Linear Stacking and Improves the Efficiency and Stability of Q-PHJ Organic Solar Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/38949043
https://www.proquest.com/docview/3074137542/abstract/
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4k15yUhIHKpA4jivI9p2qVZlYWmrLacofmS30E1XTXKAA7-d8SNpKoq0cIkit7GimS_257HnG4ReE3A0i9Wuf0Yih0ZZ4rAg8gHLLktyxpknVHLyx5NwPKfHi2DR63VPLdUVe8t_7s0r-R-vQhv4VWXJ_oNn206hAe7Bv3AFD8P1ej7eLPNVvVaKA2Bvc6ptMNLZUKX50nk1IEO18FZ6PUAs-fcmKdFEE5TAAwBlpIUkdBamPspZGfVuvft-6nweH9ucTT6YqqXw4FCuVmWX104v1RY3sNUzuSwu5FIV3hgIrb-4OVfRlNIUcPygJoLiRyf-cLqsDZEvzssLaedRaF8s7WHhqSq2sG2fmPrZ46z41kH2mQ17f62Lq6YTG8sgtD332gy_QC6cMLbvIPe0mWFWKhXB2KRW_zEHGE3Z8nKldpY6f9wV2z75lB7NJ5N0NlrMbqCbJEoCtXYffmnVx3ygPro2T_MCjeanS97t9r7Laf6yUNGEZXYX3bErDfzewOYe6sniPrrd0Z98gH7tAxC2AMIWQJgMsQEQbgCEASS4ARAGAOEtgPRvLYDwOscaQNgCCGsAYQ2gh2h-NJodjh1bkMPhXuxWjlCftUzigMeRINzNOc1lEgqWqzqvhIUsd6NQUBZmGXc9lnhShHFOg1hEHqOh_wgdFOtCPkFY5jmYL5AJTwT1fcYSFhIeUhkLj3Ph99GbxqTpldFdSY3CNkmV8dPW-H30qrF4CkOj2u_KCrmuy9RXdFmXeO6jx8YVbV_A02niUv_pNZ5-hm5twfocHVSbWr4AKlqxlxowvwF-84ux
link.rule.ids 315,786,790,27957,27958
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trifluoromethylation+Enables+Compact+2D+Linear+Stacking+and+Improves+the+Efficiency+and+Stability+of+Q-PHJ+Organic+Solar+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Qiu%2C+Dongsheng&rft.au=Xiong%2C+Shilong&rft.au=Lai%2C+Hanjian&rft.au=Wang%2C+Yunpeng&rft.date=2024-07-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.spage=e2403821&rft_id=info:doi/10.1002%2Fsmll.202403821&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon