On the set of eigenvalues for some classes of coercive and noncoercive problems involving (2, p ( x ) )-Laplacian-like operators
We consider a class of double-phase nonlinear eigenvalue problems driven by a ( 2 , ϕ ) -Laplace-like operator: − Δ u − ε div [ ϕ ( x , | ∇ u | ) ∇ u ] = λ ( u + ε ) in a domain Ω , subject to Dirichlet boundary conditions, where Ω is a bounded subset of R N with a smooth boundary. Here, ε > 0...
Saved in:
Published in | Electronic journal of qualitative theory of differential equations Vol. 2025; no. 31; pp. 1 - 21 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
University of Szeged
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1417-3875 1417-3875 |
DOI | 10.14232/ejqtde.2025.1.31 |
Cover
Loading…
Abstract | We consider a class of double-phase nonlinear eigenvalue problems driven by a ( 2 , ϕ ) -Laplace-like operator: − Δ u − ε div [ ϕ ( x , | ∇ u | ) ∇ u ] = λ ( u + ε ) in a domain Ω , subject to Dirichlet boundary conditions, where Ω is a bounded subset of R N with a smooth boundary. Here, ε > 0 , and the potential function ϕ exhibits p ( x ) -variable growth.
We establish several results on the existence and concentration of eigenvalues for this problem, focusing on the influence of the growth behavior of the potential function ϕ , specifically through the interaction between the variable growth exponent p ( x ) and the constant growth exponent 2 . The proofs rely on variational arguments based on the Direct Method in the Calculus of Variations, Ekeland's variational principle, and energy estimates. |
---|---|
AbstractList | We consider a class of double-phase nonlinear eigenvalue problems driven by a ( 2 , ϕ ) -Laplace-like operator: − Δ u − ε div [ ϕ ( x , | ∇ u | ) ∇ u ] = λ ( u + ε ) in a domain Ω , subject to Dirichlet boundary conditions, where Ω is a bounded subset of R N with a smooth boundary. Here, ε > 0 , and the potential function ϕ exhibits p ( x ) -variable growth.
We establish several results on the existence and concentration of eigenvalues for this problem, focusing on the influence of the growth behavior of the potential function ϕ , specifically through the interaction between the variable growth exponent p ( x ) and the constant growth exponent 2 . The proofs rely on variational arguments based on the Direct Method in the Calculus of Variations, Ekeland's variational principle, and energy estimates. We consider a class of double-phase nonlinear eigenvalue problems driven by a $(2,\phi)$-Laplace-like operator: $$ -\Delta u - \varepsilon \operatorname{div}\left[\phi(x,|\nabla u|)\nabla u\right] = \lambda(u+\varepsilon) $$ in a domain $\Omega$, subject to Dirichlet boundary conditions, where $\Omega$ is a bounded subset of $\mathbb{R}^N$ with a smooth boundary. Here, $\varepsilon > 0$, and the potential function $\phi$ exhibits $p(x)$-variable growth. We establish several results on the existence and concentration of eigenvalues for this problem, focusing on the influence of the growth behavior of the potential function $\phi$, specifically through the interaction between the variable growth exponent $p(x)$ and the constant growth exponent $2$. The proofs rely on variational arguments based on the Direct Method in the Calculus of Variations, Ekeland's variational principle, and energy estimates. |
Author | Uța, Vasile |
Author_xml | – sequence: 1 givenname: Vasile orcidid: 0000-0002-4522-0117 surname: Uța fullname: Uța, Vasile |
BookMark | eNpNkU1PHDEMhiMEEp8_gJuPIHUWJ5mPzbFCLUVaiUt7jkziLFlmJ9Nkuio3fnoHtkKcbL-WHlt6TsXhkAYW4lLiQtZKqxve_J48LxSqZiEXWh6IE1nLrtLLrjn81B-L01I2iEq1TXsiXh8GmJ4YCk-QAnBc87Cj_g8XCClDSVsG11MpczDvXeLs4o6BBg_zCx_zmNNjz9sCcdilfheHNVypLzDCFfyFa7iuVjT25CINVR-fGdLImaaUy7k4CtQXvvhfz8Sv799-3v6oVg9397dfV5WTS5wq0xKrWnJDSklNXZCmbglDjWgwBFRBMdZNZ8gbbp1UpsWlc6Fplp3BOugzcb_n-kQbO-a4pfxiE0X7HqS8tpSn6Hq2skWvyYfQkZ5PauMfUSH7mp3xrHFmyT3L5VRK5vDBk2jfddi9Dvumw0qrpf4HCN-BDw |
Cites_doi | 10.1080/17476931003786709 10.1090/S0002-9939-07-08815-6 10.1070/IM1987v029n01ABEH000958 10.14232/ejqtde.2022.1.5 10.1515/crll.2005.2005.584.117 10.1007/s00245-016-9330-z 10.14232/ejqtde.2020.1.28 10.1515/ans-2016-6020 10.1007/s00229-014-0718-2 10.1186/s13662-019-2202-5 10.3934/dcdss.2018015 10.1016/j.crma.2007.10.012 10.1201/b18601 10.3390/sym13040633 10.2478/auom-2019-0015 10.1016/j.na.2014.07.015 10.1007/978-3-642-18363-8 10.1137/050624522 10.3934/cpaa.2005.4.9 10.3934/dcdss.2019026 10.1007/978-3-540-74013-1 10.14232/ejqtde.2020.1.10 10.1007/s00009-022-02097-0 10.14232/ejqtde.2017.1.98 10.1007/s002050000101 10.21136/CMJ.1991.102493 10.1007/s10898-007-9176-7 10.3390/sym13020264 10.1016/j.na.2014.11.002 10.1080/00036810802713826 10.1016/j.aml.2017.05.007 10.1007/s13540-024-00246-8 10.1016/0022-247X(74)90025-0 10.1016/j.na.2009.01.021 10.1186/1687-2770-2013-55 10.1016/j.jmaa.2007.09.015 10.1016/j.na.2018.03.016 10.1515/math-2021-0010 10.1016/j.na.2009.02.117 10.1007/s00009-023-02470-7 10.1016/j.na.2014.11.007 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.14232/ejqtde.2025.1.31 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1417-3875 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_160d3adff7a341e39db020ed4ec9de30 10_14232_ejqtde_2025_1_31 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAYXX ABDBF ACGFO ACIPV ACUHS ADBBV AEGXH AENEX AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM B0M BCNDV C1A CITATION E3Z EAP EBS EJD EMK EN8 EOJEC EPL EST ESX FRJ FRP GROUPED_DOAJ J9A KQ8 LO0 OBODZ OK1 OVT P2P REM RNS TR2 TUS XSB ~8M |
ID | FETCH-LOGICAL-c180t-96ae241e5a2213a7f1946a0f40090ff02f2e04579ad9e6c129608ccf5587904f3 |
IEDL.DBID | DOA |
ISSN | 1417-3875 |
IngestDate | Wed Aug 27 01:26:42 EDT 2025 Wed Jul 16 16:36:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c180t-96ae241e5a2213a7f1946a0f40090ff02f2e04579ad9e6c129608ccf5587904f3 |
ORCID | 0000-0002-4522-0117 |
OpenAccessLink | https://doaj.org/article/160d3adff7a341e39db020ed4ec9de30 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_160d3adff7a341e39db020ed4ec9de30 crossref_primary_10_14232_ejqtde_2025_1_31 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Electronic journal of qualitative theory of differential equations |
PublicationYear | 2025 |
Publisher | University of Szeged |
Publisher_xml | – name: University of Szeged |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref37 – ident: ref8 doi: 10.1080/17476931003786709 – ident: ref28 doi: 10.1090/S0002-9939-07-08815-6 – ident: ref44 doi: 10.1070/IM1987v029n01ABEH000958 – ident: ref39 doi: 10.14232/ejqtde.2022.1.5 – ident: ref3 doi: 10.1515/crll.2005.2005.584.117 – ident: ref31 doi: 10.1007/s00245-016-9330-z – ident: ref41 doi: 10.14232/ejqtde.2020.1.28 – ident: ref5 doi: 10.1515/ans-2016-6020 – ident: ref29 – ident: ref21 doi: 10.1007/s00229-014-0718-2 – ident: ref19 doi: 10.1186/s13662-019-2202-5 – ident: ref24 doi: 10.3934/dcdss.2018015 – ident: ref27 doi: 10.1016/j.crma.2007.10.012 – ident: ref33 doi: 10.1201/b18601 – ident: ref30 doi: 10.3390/sym13040633 – ident: ref38 doi: 10.2478/auom-2019-0015 – ident: ref10 doi: 10.1016/j.na.2014.07.015 – ident: ref20 doi: 10.1007/978-3-642-18363-8 – ident: ref11 doi: 10.1137/050624522 – ident: ref13 doi: 10.3934/cpaa.2005.4.9 – ident: ref15 – ident: ref35 doi: 10.3934/dcdss.2019026 – ident: ref36 doi: 10.1007/978-3-540-74013-1 – ident: ref43 doi: 10.14232/ejqtde.2020.1.10 – ident: ref2 doi: 10.1007/s00009-022-02097-0 – ident: ref42 doi: 10.14232/ejqtde.2017.1.98 – ident: ref7 doi: 10.1007/s002050000101 – ident: ref22 doi: 10.21136/CMJ.1991.102493 – ident: ref34 doi: 10.1007/s10898-007-9176-7 – ident: ref1 doi: 10.3390/sym13020264 – ident: ref6 doi: 10.1016/j.na.2014.11.002 – ident: ref25 doi: 10.1080/00036810802713826 – ident: ref12 doi: 10.1016/j.aml.2017.05.007 – ident: ref16 doi: 10.1007/s13540-024-00246-8 – ident: ref17 doi: 10.1016/0022-247X(74)90025-0 – ident: ref23 doi: 10.1016/j.na.2009.01.021 – ident: ref4 doi: 10.1186/1687-2770-2013-55 – ident: ref26 doi: 10.1016/j.jmaa.2007.09.015 – ident: ref9 doi: 10.1016/j.na.2018.03.016 – ident: ref18 doi: 10.1515/math-2021-0010 – ident: ref14 doi: 10.1016/j.na.2009.02.117 – ident: ref40 doi: 10.1007/s00009-023-02470-7 – ident: ref32 doi: 10.1016/j.na.2014.11.007 |
SSID | ssj0022656 |
Score | 2.330352 |
Snippet | We consider a class of double-phase nonlinear eigenvalue problems driven by a ( 2 , ϕ ) -Laplace-like operator: − Δ u − ε div [ ϕ ( x , | ∇ u | ) ∇ u ] = λ (... We consider a class of double-phase nonlinear eigenvalue problems driven by a $(2,\phi)$-Laplace-like operator: $$ -\Delta u - \varepsilon... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 1 |
SubjectTerms | coercive and noncoercive case continuous bounded or unbounded spectrum double-phase differential operator eigenvalue problem variable exponent |
Title | On the set of eigenvalues for some classes of coercive and noncoercive problems involving (2, p ( x ) )-Laplacian-like operators |
URI | https://doaj.org/article/160d3adff7a341e39db020ed4ec9de30 |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYquLQHVKAVW1rkwx6ganbt2Hn4uAtdIcTjUiRukWPPSAttdkvSihO_veMku1pOXHq0Y1nWzMTzjWf0DWNDQAGJSTBCg1lE8YaOSke2nGmhEJzPbVcge52e3-qLu-Ruo9VXqAnr6IE7wY1lKryyHjGzdOGCMr4khANegzMeVButk89bBVN9qBUTTOlzmCETOYb7340PrJhxMpIjJV94oQ2y_tarzN6znR4O8kl3jF32Bqo99u5qzaVa77Pnm4rTkNfQ8AVyCPSZgaIbak6Ak9eLX8BdwMA0Qd_dIvRQ-gvcVp5TbL8e961jaj6v6EoK7wh8eBx_48vjp5OTYXRpQ3kWGUv0c_4AfLGENgFff2C3s-8_Ts-jvmtC5GQumsikFsgtQ2LjWCqboTQ6tQLpZzUCUcQYA-G4zFhvIHXk71ORO4dJkmdGaFQf2RadDg4YJ3ihMQNlIUetUlW6MpcqMZo2tQb0gH1dSbFYduQYRQgqgsiLTuRFEHkhCyUHbBrkvF4YeK3bCdJ20Wu7eE3bn_7HJofsbThV95DymW01j3_gC0GLpjxi25Pp2XR21FrTPy2hz_Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+set+of+eigenvalues+for+some+classes+of+coercive+and+noncoercive+problems+involving+%24%282%2C+p%28x%29%29%24-Laplacian-like+operators&rft.jtitle=Electronic+journal+of+qualitative+theory+of+differential+equations&rft.au=Vasile+U%C8%9Ba&rft.date=2025&rft.pub=University+of+Szeged&rft.eissn=1417-3875&rft.volume=2025&rft.issue=31&rft.spage=1&rft.epage=21&rft_id=info:doi/10.14232%2Fejqtde.2025.1.31&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_160d3adff7a341e39db020ed4ec9de30 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1417-3875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1417-3875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1417-3875&client=summon |