On the set of eigenvalues for some classes of coercive and noncoercive problems involving (2, p ( x ) )-Laplacian-like operators

We consider a class of double-phase nonlinear eigenvalue problems driven by a ( 2 , ϕ ) -Laplace-like operator: − Δ u − ε div ⁡ [ ϕ ( x , | ∇ u | ) ∇ u ] = λ ( u + ε ) in a domain Ω , subject to Dirichlet boundary conditions, where Ω is a bounded subset of R N with a smooth boundary. Here, ε > 0...

Full description

Saved in:
Bibliographic Details
Published inElectronic journal of qualitative theory of differential equations Vol. 2025; no. 31; pp. 1 - 21
Main Author Uța, Vasile
Format Journal Article
LanguageEnglish
Published University of Szeged 2025
Subjects
Online AccessGet full text
ISSN1417-3875
1417-3875
DOI10.14232/ejqtde.2025.1.31

Cover

Loading…
Abstract We consider a class of double-phase nonlinear eigenvalue problems driven by a ( 2 , ϕ ) -Laplace-like operator: − Δ u − ε div ⁡ [ ϕ ( x , | ∇ u | ) ∇ u ] = λ ( u + ε ) in a domain Ω , subject to Dirichlet boundary conditions, where Ω is a bounded subset of R N with a smooth boundary. Here, ε > 0 , and the potential function ϕ exhibits p ( x ) -variable growth. We establish several results on the existence and concentration of eigenvalues for this problem, focusing on the influence of the growth behavior of the potential function ϕ , specifically through the interaction between the variable growth exponent p ( x ) and the constant growth exponent 2 . The proofs rely on variational arguments based on the Direct Method in the Calculus of Variations, Ekeland's variational principle, and energy estimates.
AbstractList We consider a class of double-phase nonlinear eigenvalue problems driven by a ( 2 , ϕ ) -Laplace-like operator: − Δ u − ε div ⁡ [ ϕ ( x , | ∇ u | ) ∇ u ] = λ ( u + ε ) in a domain Ω , subject to Dirichlet boundary conditions, where Ω is a bounded subset of R N with a smooth boundary. Here, ε > 0 , and the potential function ϕ exhibits p ( x ) -variable growth. We establish several results on the existence and concentration of eigenvalues for this problem, focusing on the influence of the growth behavior of the potential function ϕ , specifically through the interaction between the variable growth exponent p ( x ) and the constant growth exponent 2 . The proofs rely on variational arguments based on the Direct Method in the Calculus of Variations, Ekeland's variational principle, and energy estimates.
We consider a class of double-phase nonlinear eigenvalue problems driven by a $(2,\phi)$-Laplace-like operator: $$ -\Delta u - \varepsilon \operatorname{div}\left[\phi(x,|\nabla u|)\nabla u\right] = \lambda(u+\varepsilon) $$ in a domain $\Omega$, subject to Dirichlet boundary conditions, where $\Omega$ is a bounded subset of $\mathbb{R}^N$ with a smooth boundary. Here, $\varepsilon > 0$, and the potential function $\phi$ exhibits $p(x)$-variable growth. We establish several results on the existence and concentration of eigenvalues for this problem, focusing on the influence of the growth behavior of the potential function $\phi$, specifically through the interaction between the variable growth exponent $p(x)$ and the constant growth exponent $2$. The proofs rely on variational arguments based on the Direct Method in the Calculus of Variations, Ekeland's variational principle, and energy estimates.
Author Uța, Vasile
Author_xml – sequence: 1
  givenname: Vasile
  orcidid: 0000-0002-4522-0117
  surname: Uța
  fullname: Uța, Vasile
BookMark eNpNkU1PHDEMhiMEEp8_gJuPIHUWJ5mPzbFCLUVaiUt7jkziLFlmJ9Nkuio3fnoHtkKcbL-WHlt6TsXhkAYW4lLiQtZKqxve_J48LxSqZiEXWh6IE1nLrtLLrjn81B-L01I2iEq1TXsiXh8GmJ4YCk-QAnBc87Cj_g8XCClDSVsG11MpczDvXeLs4o6BBg_zCx_zmNNjz9sCcdilfheHNVypLzDCFfyFa7iuVjT25CINVR-fGdLImaaUy7k4CtQXvvhfz8Sv799-3v6oVg9397dfV5WTS5wq0xKrWnJDSklNXZCmbglDjWgwBFRBMdZNZ8gbbp1UpsWlc6Fplp3BOugzcb_n-kQbO-a4pfxiE0X7HqS8tpSn6Hq2skWvyYfQkZ5PauMfUSH7mp3xrHFmyT3L5VRK5vDBk2jfddi9Dvumw0qrpf4HCN-BDw
Cites_doi 10.1080/17476931003786709
10.1090/S0002-9939-07-08815-6
10.1070/IM1987v029n01ABEH000958
10.14232/ejqtde.2022.1.5
10.1515/crll.2005.2005.584.117
10.1007/s00245-016-9330-z
10.14232/ejqtde.2020.1.28
10.1515/ans-2016-6020
10.1007/s00229-014-0718-2
10.1186/s13662-019-2202-5
10.3934/dcdss.2018015
10.1016/j.crma.2007.10.012
10.1201/b18601
10.3390/sym13040633
10.2478/auom-2019-0015
10.1016/j.na.2014.07.015
10.1007/978-3-642-18363-8
10.1137/050624522
10.3934/cpaa.2005.4.9
10.3934/dcdss.2019026
10.1007/978-3-540-74013-1
10.14232/ejqtde.2020.1.10
10.1007/s00009-022-02097-0
10.14232/ejqtde.2017.1.98
10.1007/s002050000101
10.21136/CMJ.1991.102493
10.1007/s10898-007-9176-7
10.3390/sym13020264
10.1016/j.na.2014.11.002
10.1080/00036810802713826
10.1016/j.aml.2017.05.007
10.1007/s13540-024-00246-8
10.1016/0022-247X(74)90025-0
10.1016/j.na.2009.01.021
10.1186/1687-2770-2013-55
10.1016/j.jmaa.2007.09.015
10.1016/j.na.2018.03.016
10.1515/math-2021-0010
10.1016/j.na.2009.02.117
10.1007/s00009-023-02470-7
10.1016/j.na.2014.11.007
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.14232/ejqtde.2025.1.31
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1417-3875
EndPage 21
ExternalDocumentID oai_doaj_org_article_160d3adff7a341e39db020ed4ec9de30
10_14232_ejqtde_2025_1_31
GroupedDBID -~9
29G
2WC
5GY
5VS
AAYXX
ABDBF
ACGFO
ACIPV
ACUHS
ADBBV
AEGXH
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
B0M
BCNDV
C1A
CITATION
E3Z
EAP
EBS
EJD
EMK
EN8
EOJEC
EPL
EST
ESX
FRJ
FRP
GROUPED_DOAJ
J9A
KQ8
LO0
OBODZ
OK1
OVT
P2P
REM
RNS
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c180t-96ae241e5a2213a7f1946a0f40090ff02f2e04579ad9e6c129608ccf5587904f3
IEDL.DBID DOA
ISSN 1417-3875
IngestDate Wed Aug 27 01:26:42 EDT 2025
Wed Jul 16 16:36:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c180t-96ae241e5a2213a7f1946a0f40090ff02f2e04579ad9e6c129608ccf5587904f3
ORCID 0000-0002-4522-0117
OpenAccessLink https://doaj.org/article/160d3adff7a341e39db020ed4ec9de30
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_160d3adff7a341e39db020ed4ec9de30
crossref_primary_10_14232_ejqtde_2025_1_31
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Electronic journal of qualitative theory of differential equations
PublicationYear 2025
Publisher University of Szeged
Publisher_xml – name: University of Szeged
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref37
– ident: ref8
  doi: 10.1080/17476931003786709
– ident: ref28
  doi: 10.1090/S0002-9939-07-08815-6
– ident: ref44
  doi: 10.1070/IM1987v029n01ABEH000958
– ident: ref39
  doi: 10.14232/ejqtde.2022.1.5
– ident: ref3
  doi: 10.1515/crll.2005.2005.584.117
– ident: ref31
  doi: 10.1007/s00245-016-9330-z
– ident: ref41
  doi: 10.14232/ejqtde.2020.1.28
– ident: ref5
  doi: 10.1515/ans-2016-6020
– ident: ref29
– ident: ref21
  doi: 10.1007/s00229-014-0718-2
– ident: ref19
  doi: 10.1186/s13662-019-2202-5
– ident: ref24
  doi: 10.3934/dcdss.2018015
– ident: ref27
  doi: 10.1016/j.crma.2007.10.012
– ident: ref33
  doi: 10.1201/b18601
– ident: ref30
  doi: 10.3390/sym13040633
– ident: ref38
  doi: 10.2478/auom-2019-0015
– ident: ref10
  doi: 10.1016/j.na.2014.07.015
– ident: ref20
  doi: 10.1007/978-3-642-18363-8
– ident: ref11
  doi: 10.1137/050624522
– ident: ref13
  doi: 10.3934/cpaa.2005.4.9
– ident: ref15
– ident: ref35
  doi: 10.3934/dcdss.2019026
– ident: ref36
  doi: 10.1007/978-3-540-74013-1
– ident: ref43
  doi: 10.14232/ejqtde.2020.1.10
– ident: ref2
  doi: 10.1007/s00009-022-02097-0
– ident: ref42
  doi: 10.14232/ejqtde.2017.1.98
– ident: ref7
  doi: 10.1007/s002050000101
– ident: ref22
  doi: 10.21136/CMJ.1991.102493
– ident: ref34
  doi: 10.1007/s10898-007-9176-7
– ident: ref1
  doi: 10.3390/sym13020264
– ident: ref6
  doi: 10.1016/j.na.2014.11.002
– ident: ref25
  doi: 10.1080/00036810802713826
– ident: ref12
  doi: 10.1016/j.aml.2017.05.007
– ident: ref16
  doi: 10.1007/s13540-024-00246-8
– ident: ref17
  doi: 10.1016/0022-247X(74)90025-0
– ident: ref23
  doi: 10.1016/j.na.2009.01.021
– ident: ref4
  doi: 10.1186/1687-2770-2013-55
– ident: ref26
  doi: 10.1016/j.jmaa.2007.09.015
– ident: ref9
  doi: 10.1016/j.na.2018.03.016
– ident: ref18
  doi: 10.1515/math-2021-0010
– ident: ref14
  doi: 10.1016/j.na.2009.02.117
– ident: ref40
  doi: 10.1007/s00009-023-02470-7
– ident: ref32
  doi: 10.1016/j.na.2014.11.007
SSID ssj0022656
Score 2.330352
Snippet We consider a class of double-phase nonlinear eigenvalue problems driven by a ( 2 , ϕ ) -Laplace-like operator: − Δ u − ε div ⁡ [ ϕ ( x , | ∇ u | ) ∇ u ] = λ (...
We consider a class of double-phase nonlinear eigenvalue problems driven by a $(2,\phi)$-Laplace-like operator: $$ -\Delta u - \varepsilon...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1
SubjectTerms coercive and noncoercive case
continuous bounded or unbounded spectrum
double-phase differential operator
eigenvalue problem
variable exponent
Title On the set of eigenvalues for some classes of coercive and noncoercive problems involving (2, p ( x ) )-Laplacian-like operators
URI https://doaj.org/article/160d3adff7a341e39db020ed4ec9de30
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYquLQHVKAVW1rkwx6ganbt2Hn4uAtdIcTjUiRukWPPSAttdkvSihO_veMku1pOXHq0Y1nWzMTzjWf0DWNDQAGJSTBCg1lE8YaOSke2nGmhEJzPbVcge52e3-qLu-Ruo9VXqAnr6IE7wY1lKryyHjGzdOGCMr4khANegzMeVButk89bBVN9qBUTTOlzmCETOYb7340PrJhxMpIjJV94oQ2y_tarzN6znR4O8kl3jF32Bqo99u5qzaVa77Pnm4rTkNfQ8AVyCPSZgaIbak6Ak9eLX8BdwMA0Qd_dIvRQ-gvcVp5TbL8e961jaj6v6EoK7wh8eBx_48vjp5OTYXRpQ3kWGUv0c_4AfLGENgFff2C3s-8_Ts-jvmtC5GQumsikFsgtQ2LjWCqboTQ6tQLpZzUCUcQYA-G4zFhvIHXk71ORO4dJkmdGaFQf2RadDg4YJ3ihMQNlIUetUlW6MpcqMZo2tQb0gH1dSbFYduQYRQgqgsiLTuRFEHkhCyUHbBrkvF4YeK3bCdJ20Wu7eE3bn_7HJofsbThV95DymW01j3_gC0GLpjxi25Pp2XR21FrTPy2hz_Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+set+of+eigenvalues+for+some+classes+of+coercive+and+noncoercive+problems+involving+%24%282%2C+p%28x%29%29%24-Laplacian-like+operators&rft.jtitle=Electronic+journal+of+qualitative+theory+of+differential+equations&rft.au=Vasile+U%C8%9Ba&rft.date=2025&rft.pub=University+of+Szeged&rft.eissn=1417-3875&rft.volume=2025&rft.issue=31&rft.spage=1&rft.epage=21&rft_id=info:doi/10.14232%2Fejqtde.2025.1.31&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_160d3adff7a341e39db020ed4ec9de30
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1417-3875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1417-3875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1417-3875&client=summon