Unraveling the Hemolytic Toxicity Tapestry of Peptides using Chemical Space Complex Networks
Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is crucial for developing safe and effective peptide-based therapeutics. Here, we employed chemical space complex networks (CSNs) to unravel the hem...
Saved in:
Published in | Toxicological sciences |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
10.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is crucial for developing safe and effective peptide-based therapeutics. Here, we employed chemical space complex networks (CSNs) to unravel the hemotoxicity tapestry of peptides. CSNs are powerful tools for visualizing and analyzing the relationships between peptides based on their physicochemical properties and structural features. We constructed CSNs from the StarPepDB database, encompassing 2004 hemolytic peptides, and explored the impact of seven different (dis)similarity measures on network topology and cluster (communities) distribution. Our findings revealed that each CSN extracts orthogonal information, enhancing the motif discovery and enrichment process. We identified 12 consensus hemolytic motifs, whose amino acid composition unveiled a high abundance of lysine, leucine, and valine residues, while aspartic acid, methionine, histidine, asparagine and glutamine were depleted. Additionally, physicochemical properties were used to characterize clusters/communities of hemolytic peptides. To predict hemolytic activity directly from peptide sequences, we constructed multi-query similarity searching models (MQSSMs), which outperformed cutting-edge machine learning (ML)-based models, demonstrating robust hemotoxicity prediction capabilities. Overall, this novel in silico approach uses complex network science as its central strategy to develop robust model classifiers, to characterize the chemical space and to discover new motifs from hemolytic peptides. This will help to enhance the design/selection of peptides with potential therapeutic activity and low toxicity. |
---|---|
AbstractList | Abstract Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is crucial for developing safe and effective peptide-based therapeutics. Here, we employed chemical space complex networks (CSNs) to unravel the hemotoxicity tapestry of peptides. CSNs are powerful tools for visualizing and analyzing the relationships between peptides based on their physicochemical properties and structural features. We constructed CSNs from the StarPepDB database, encompassing 2,004 hemolytic peptides, and explored the impact of seven different (dis)similarity measures on network topology and cluster (communities) distribution. Our findings revealed that each CSN extracts orthogonal information, enhancing the motif discovery and enrichment process. We identified 12 consensus hemolytic motifs, whose amino acid composition unveiled a high abundance of lysine, leucine, and valine residues, whereas aspartic acid, methionine, histidine, asparagine, and glutamine were depleted. Additionally, physicochemical properties were used to characterize clusters/communities of hemolytic peptides. To predict hemolytic activity directly from peptide sequences, we constructed multi-query similarity searching models, which outperformed cutting-edge machine learning-based models, demonstrating robust hemotoxicity prediction capabilities. Overall, this novel in silico approach uses complex network science as its central strategy to develop robust model classifiers, characterize the chemical space, and discover new motifs from hemolytic peptides. This will help to enhance the design/selection of peptides with potential therapeutic activity and low toxicity. Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is crucial for developing safe and effective peptide-based therapeutics. Here, we employed chemical space complex networks (CSNs) to unravel the hemotoxicity tapestry of peptides. CSNs are powerful tools for visualizing and analyzing the relationships between peptides based on their physicochemical properties and structural features. We constructed CSNs from the StarPepDB database, encompassing 2004 hemolytic peptides, and explored the impact of seven different (dis)similarity measures on network topology and cluster (communities) distribution. Our findings revealed that each CSN extracts orthogonal information, enhancing the motif discovery and enrichment process. We identified 12 consensus hemolytic motifs, whose amino acid composition unveiled a high abundance of lysine, leucine, and valine residues, while aspartic acid, methionine, histidine, asparagine and glutamine were depleted. Additionally, physicochemical properties were used to characterize clusters/communities of hemolytic peptides. To predict hemolytic activity directly from peptide sequences, we constructed multi-query similarity searching models (MQSSMs), which outperformed cutting-edge machine learning (ML)-based models, demonstrating robust hemotoxicity prediction capabilities. Overall, this novel in silico approach uses complex network science as its central strategy to develop robust model classifiers, to characterize the chemical space and to discover new motifs from hemolytic peptides. This will help to enhance the design/selection of peptides with potential therapeutic activity and low toxicity.Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is crucial for developing safe and effective peptide-based therapeutics. Here, we employed chemical space complex networks (CSNs) to unravel the hemotoxicity tapestry of peptides. CSNs are powerful tools for visualizing and analyzing the relationships between peptides based on their physicochemical properties and structural features. We constructed CSNs from the StarPepDB database, encompassing 2004 hemolytic peptides, and explored the impact of seven different (dis)similarity measures on network topology and cluster (communities) distribution. Our findings revealed that each CSN extracts orthogonal information, enhancing the motif discovery and enrichment process. We identified 12 consensus hemolytic motifs, whose amino acid composition unveiled a high abundance of lysine, leucine, and valine residues, while aspartic acid, methionine, histidine, asparagine and glutamine were depleted. Additionally, physicochemical properties were used to characterize clusters/communities of hemolytic peptides. To predict hemolytic activity directly from peptide sequences, we constructed multi-query similarity searching models (MQSSMs), which outperformed cutting-edge machine learning (ML)-based models, demonstrating robust hemotoxicity prediction capabilities. Overall, this novel in silico approach uses complex network science as its central strategy to develop robust model classifiers, to characterize the chemical space and to discover new motifs from hemolytic peptides. This will help to enhance the design/selection of peptides with potential therapeutic activity and low toxicity. Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is crucial for developing safe and effective peptide-based therapeutics. Here, we employed chemical space complex networks (CSNs) to unravel the hemotoxicity tapestry of peptides. CSNs are powerful tools for visualizing and analyzing the relationships between peptides based on their physicochemical properties and structural features. We constructed CSNs from the StarPepDB database, encompassing 2004 hemolytic peptides, and explored the impact of seven different (dis)similarity measures on network topology and cluster (communities) distribution. Our findings revealed that each CSN extracts orthogonal information, enhancing the motif discovery and enrichment process. We identified 12 consensus hemolytic motifs, whose amino acid composition unveiled a high abundance of lysine, leucine, and valine residues, while aspartic acid, methionine, histidine, asparagine and glutamine were depleted. Additionally, physicochemical properties were used to characterize clusters/communities of hemolytic peptides. To predict hemolytic activity directly from peptide sequences, we constructed multi-query similarity searching models (MQSSMs), which outperformed cutting-edge machine learning (ML)-based models, demonstrating robust hemotoxicity prediction capabilities. Overall, this novel in silico approach uses complex network science as its central strategy to develop robust model classifiers, to characterize the chemical space and to discover new motifs from hemolytic peptides. This will help to enhance the design/selection of peptides with potential therapeutic activity and low toxicity. |
Author | Mora, José R Contreras-Torres, Ernesto Castillo-Mendieta, Kevin Agüero-Chapin, Guillermin Marrero-Ponce, Yovani Valdes-Martini, José R Martinez-Rios, Felix Pérez, Noel |
Author_xml | – sequence: 1 givenname: Kevin orcidid: 0000-0002-0383-8285 surname: Castillo-Mendieta fullname: Castillo-Mendieta, Kevin organization: School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí, 100119, Ecuador – sequence: 2 givenname: Guillermin surname: Agüero-Chapin fullname: Agüero-Chapin, Guillermin organization: Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal – sequence: 3 givenname: José R surname: Mora fullname: Mora, José R organization: Universidad San Francisco de Quito (USFQ), Colegio de Ciencias e Ingenierías "El Politécnico", Diego de Robles y vía Interoceánica, Pichincha, Quito, 170157, Ecuador – sequence: 4 givenname: Noel surname: Pérez fullname: Pérez, Noel organization: Universidad San Francisco de Quito (USFQ), Colegio de Ciencias e Ingenierías "El Politécnico", Diego de Robles y vía Interoceánica, Pichincha, Quito, 170157, Ecuador – sequence: 5 givenname: Ernesto surname: Contreras-Torres fullname: Contreras-Torres, Ernesto organization: Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Pichincha, Quito, 170157, Ecuador – sequence: 6 givenname: José R surname: Valdes-Martini fullname: Valdes-Martini, José R organization: Undoso Consulting, Miami, FL, 33185, USA – sequence: 7 givenname: Felix surname: Martinez-Rios fullname: Martinez-Rios, Felix organization: Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México, 03920, México – sequence: 8 givenname: Yovani orcidid: 0000-0003-2721-1142 surname: Marrero-Ponce fullname: Marrero-Ponce, Yovani organization: Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México, 03920, México |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39254655$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kEtPwzAQhC1URB9w5Yh85JLWju08jigCilQBEu0NKXKdNTVN4hAn0Px7UjVw2V2tZkajb4pGpS0BoWtK5pTEbNHYg1NmsdcSKBVnaNJ_A4_Efjwa7oBEZIymzn0SQmlA4gs0ZrEveCDEBL1vylp-Q27KD9zsAC-hsHnXGIXX9mCUaTq8lhW4pu6w1fgVqsZk4HDrjo5kB4VRMsdvlVSAE1tUORzwMzQ_tt67S3SuZe7gatgztHm4XydLb_Xy-JTcrTxFI9J4TOitJJxTSRRjEArJqSAB05nIgjgjrJ8Rz3gYak0jwbc-5Tqgmvl-FAsu2AzdnnKr2n61fdm0ME5BnssSbOtSRonPQ8oD2kvnJ6mqrXM16LSqTSHrLqUkPRJNT0TTgWhvuBmy220B2b_8DyH7BbaRddI |
Cites_doi | 10.1109/JBHI.2023.3264941 10.1002/spe.4380211102 10.1007/978-1-4939-6737-7_31 10.1016/j.bbamem.2004.05.007 10.1093/nar/gkad976 10.1016/0022-2836(81)90087-5 10.3390/ijms20102383 10.1016/0022-2836(70)90057-4 10.1088/1742-5468/2008/10/P10008 10.4155/fmc-2016-0188 10.1142/S0219720021500219 10.1093/bioinformatics/btv180 10.1039/D1SC01713F 10.20944/preprints202303.0322.v1 10.1609/icwsm.v3i1.13937 10.20944/preprints202303.0193.v1 10.1093/bioinformatics/btz260 10.1038/s41598-020-69995-9 10.1186/s12859-022-04952-z 10.1186/s12864-019-6413-7 10.1093/nar/gkh340 10.1111/voxs.12340 10.1038/s41392-022-00904-4 10.1016/S0006-3495(82)84681-X 10.1111/bjh.13183 10.1021/acs.chemrestox.3c00408 10.1093/bioinformatics/btaa160 10.1021/acsomega.2c03398 10.1074/jbc.275.6.4230 10.3389/fphar.2020.00054 10.1038/s41581-019-0181-0 10.1093/nar/gkf436 10.1038/s41598-020-75029-1 10.1038/s41598-020-73644-6 10.1101/2021.08.23.457422 10.3390/ijms21197047 10.1186/s13321-016-0127-5 10.3390/antibiotics11030401 10.1186/s13040-021-00244-z 10.1128/AAC.49.1.388-397.2005 10.1038/s41598-020-67701-3 10.1038/srep22843 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1093/toxsci/kfae115 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1096-0929 |
ExternalDocumentID | 10_1093_toxsci_kfae115 39254655 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 123 18M 1TH 1~5 2WC 4.4 48X 4G. 53G 5RE 5VS 5WA 5WD 7-5 70D AABZA AACTN AACZT AAHBH AAIMJ AAJKP AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN ABEUO ABIXL ABJNI ABKDP ABMNT ABNHQ ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFO ACGFS ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHXPO AIJHB AJEEA AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM CDBKE CS3 CZ4 DAKXR DILTD DU5 D~K E3Z EBS EDH EE~ F5P F9B FDB FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 KAQDR KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NOYVH NPM NQ- O-L O9- OAWHX OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OWPYF P2P PAFKI PEELM Q1. Q5Y R44 RD5 ROL ROX RUSNO RW1 RXO TJX TLC TR2 WOQ X7H YAYTL YKOAZ YXANX ZKX ~02 ~91 AASNB AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c180t-35fba0441a0c33e75a415063fd5d69d03d6984d477ff1854b214f61f322895453 |
ISSN | 1096-6080 1096-0929 |
IngestDate | Sat Oct 26 04:00:29 EDT 2024 Wed Sep 25 14:10:35 EDT 2024 Thu Oct 24 09:59:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Similarity searching model Multiple sequence alignment Hemolytic peptides Motif discovery Chemical space complex networks Drug discovery StarPep toolbox |
Language | English |
License | The Author(s) 2024. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c180t-35fba0441a0c33e75a415063fd5d69d03d6984d477ff1854b214f61f322895453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2721-1142 0000-0002-0383-8285 0000-0003-3166-745X 0000-0001-6128-9504 0000-0002-9908-2418 |
PMID | 39254655 |
PQID | 3102471461 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3102471461 crossref_primary_10_1093_toxsci_kfae115 pubmed_primary_39254655 |
PublicationCentury | 2000 |
PublicationDate | 2024-Sep-10 |
PublicationDateYYYYMMDD | 2024-09-10 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sep-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Toxicological sciences |
PublicationTitleAlternate | Toxicol Sci |
PublicationYear | 2024 |
References | Smith (2024092008203892800_kfae115-B35) 2017; 12 Aguilera-Mendoza (2024092008203892800_kfae115-B2) 2019; 35 L’Acqua (2024092008203892800_kfae115-B26) 2015; 168 Fruchterman (2024092008203892800_kfae115-B20) 1991; 21 Needleman (2024092008203892800_kfae115-B29) 1970; 48 Aguilera-Mendoza (2024092008203892800_kfae115-B3) 2020; 10 Castillo-Mendieta (2024092008203892800_kfae115-B12) 2024; 37 Greco (2024092008203892800_kfae115-B21) 2020; 10 Ayala-Ruano (2024092008203892800_kfae115-B5) 2022; 7 Yaseen (2024092008203892800_kfae115-B41) 2021; 19 Chicco (2024092008203892800_kfae115-B15) 2020; 21 Browne (2024092008203892800_kfae115-B10) 2020; 21 Castillo-Mendieta (2024092008203892800_kfae115-B13) 2023 Hasan (2024092008203892800_kfae115-B22) 2020; 36 Sharma (2024092008203892800_kfae115-B34) 2023; 28 DeGrado (2024092008203892800_kfae115-B17) 1982; 37 Romero (2024092008203892800_kfae115-B32) 2022; 11 Zahoránszky-Kőhalmi (2024092008203892800_kfae115-B42) 2016; 8 Katoh (2024092008203892800_kfae115-B23) 2002; 30 Plisson (2024092008203892800_kfae115-B31) 2020; 10 Timmons (2024092008203892800_kfae115-B37) 2020; 10 Kumar (2024092008203892800_kfae115-B25) 2020; 11 Van Avondt (2024092008203892800_kfae115-B38) 2019; 15 Bailey (2024092008203892800_kfae115-B6) 2021 Edgar (2024092008203892800_kfae115-B18) 2004; 32 Bastian (2024092008203892800_kfae115-B7) 2009; 3 Win (2024092008203892800_kfae115-B40) 2017; 9 Oddo (2024092008203892800_kfae115-B30) 2017 Aguilera-Mendoza (2024092008203892800_kfae115-B4) 2015; 31 Chicco (2024092008203892800_kfae115-B16) 2021; 14 Blondel (2024092008203892800_kfae115-B9) 2008; 2008 Knox (2024092008203892800_kfae115-B24) 2024; 52 Li (2024092008203892800_kfae115-B28) 2005; 49 Salem (2024092008203892800_kfae115-B33) 2022; 23 Wang (2024092008203892800_kfae115-B39) 2022; 7 Chaudhary (2024092008203892800_kfae115-B14) 2016; 6 Capecchi (2024092008203892800_kfae115-B11) 2021; 12 Belokoneva (2024092008203892800_kfae115-B8) 2004; 1664 Smith (2024092008203892800_kfae115-B36) 1981; 147 Agüero-Chapin (2024092008203892800_kfae115-B1) 2023; 12 Feder (2024092008203892800_kfae115-B19) 2000; 275 Lee (2024092008203892800_kfae115-B27) 2019; 20 |
References_xml | – volume: 28 start-page: 1896 year: 2023 ident: 2024092008203892800_kfae115-B34 article-title: EnDL-HemoLyt: Ensemble deep learning-based tool for identifying therapeutic peptides with low hemolytic activity publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2023.3264941 contributor: fullname: Sharma – volume: 21 start-page: 1129 year: 1991 ident: 2024092008203892800_kfae115-B20 article-title: Graph drawing by force-directed placement publication-title: Softw Pract Exp doi: 10.1002/spe.4380211102 contributor: fullname: Fruchterman – start-page: 427 volume-title: Antimicrobial peptides: methods and protocols year: 2017 ident: 2024092008203892800_kfae115-B30 doi: 10.1007/978-1-4939-6737-7_31 contributor: fullname: Oddo – volume: 1664 start-page: 182 year: 2004 ident: 2024092008203892800_kfae115-B8 article-title: Pore formation of phospholipid membranes by the action of two hemolytic arachnid peptides of different size publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamem.2004.05.007 contributor: fullname: Belokoneva – volume: 52 start-page: D1265 year: 2024 ident: 2024092008203892800_kfae115-B24 article-title: DrugBank 6.0: the DrugBank knowledgebase for 2024 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkad976 contributor: fullname: Knox – volume: 147 start-page: 195 year: 1981 ident: 2024092008203892800_kfae115-B36 article-title: Identification of common molecular subsequences publication-title: J Mol Biol doi: 10.1016/0022-2836(81)90087-5 contributor: fullname: Smith – volume: 20 start-page: 2383 year: 2019 ident: 2024092008203892800_kfae115-B27 article-title: A comprehensive review on current advances in peptide drug development and design publication-title: Int J Mol Sci doi: 10.3390/ijms20102383 contributor: fullname: Lee – volume: 48 start-page: 443 year: 1970 ident: 2024092008203892800_kfae115-B29 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: J Mol Biol doi: 10.1016/0022-2836(70)90057-4 contributor: fullname: Needleman – volume: 2008 start-page: P10008 year: 2008 ident: 2024092008203892800_kfae115-B9 article-title: Fast unfolding of communities in large networks publication-title: J Stat Mech doi: 10.1088/1742-5468/2008/10/P10008 contributor: fullname: Blondel – volume: 9 start-page: 275 year: 2017 ident: 2024092008203892800_kfae115-B40 article-title: HemoPred: a web server for predicting the hemolytic activity of peptides publication-title: Fut Med Chem doi: 10.4155/fmc-2016-0188 contributor: fullname: Win – volume: 19 start-page: 2150021 year: 2021 ident: 2024092008203892800_kfae115-B41 article-title: HemoNet: predicting hemolytic activity of peptides with integrated feature learning publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720021500219 contributor: fullname: Yaseen – volume: 31 start-page: 2553 year: 2015 ident: 2024092008203892800_kfae115-B4 article-title: Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv180 contributor: fullname: Aguilera-Mendoza – volume: 12 start-page: 9221 year: 2021 ident: 2024092008203892800_kfae115-B11 article-title: Machine learning designs non-hemolytic antimicrobial peptides publication-title: Chem Sci doi: 10.1039/D1SC01713F contributor: fullname: Capecchi – year: 2023 ident: 2024092008203892800_kfae115-B13 doi: 10.20944/preprints202303.0322.v1 contributor: fullname: Castillo-Mendieta – volume: 3 start-page: 361 year: 2009 ident: 2024092008203892800_kfae115-B7 article-title: Gephi: an open source software for exploring and manipulating networks publication-title: Proc Int AAAI Conf Web Soc Media doi: 10.1609/icwsm.v3i1.13937 contributor: fullname: Bastian – volume: 12 start-page: 747 year: 2023 ident: 2024092008203892800_kfae115-B1 article-title: Complex networks analyses of antibiofilm peptides: an emerging tool for next generation antimicrobials discovery publication-title: Antibiotics doi: 10.20944/preprints202303.0193.v1 contributor: fullname: Agüero-Chapin – volume: 35 start-page: 4739 year: 2019 ident: 2024092008203892800_kfae115-B2 article-title: Graph-based data integration from bioactive peptide databases of pharmaceutical interest: toward an organized collection enabling visual network analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz260 contributor: fullname: Aguilera-Mendoza – volume: 10 start-page: 13206 year: 2020 ident: 2024092008203892800_kfae115-B21 article-title: Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides publication-title: Sci Rep doi: 10.1038/s41598-020-69995-9 contributor: fullname: Greco – volume: 23 start-page: 389 year: 2022 ident: 2024092008203892800_kfae115-B33 article-title: AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning publication-title: BMC Bioinformatics doi: 10.1186/s12859-022-04952-z contributor: fullname: Salem – volume: 21 start-page: 6 year: 2020 ident: 2024092008203892800_kfae115-B15 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics doi: 10.1186/s12864-019-6413-7 contributor: fullname: Chicco – volume: 32 start-page: 1792 year: 2004 ident: 2024092008203892800_kfae115-B18 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh340 contributor: fullname: Edgar – volume: 12 start-page: 119 year: 2017 ident: 2024092008203892800_kfae115-B35 article-title: Mechanisms of haem toxicity in haemolysis and protection by the haem-binding protein, haemopexin publication-title: ISBT Sci Ser doi: 10.1111/voxs.12340 contributor: fullname: Smith – volume: 7 start-page: 48 year: 2022 ident: 2024092008203892800_kfae115-B39 article-title: Therapeutic peptides: current applications and future directions publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-022-00904-4 contributor: fullname: Wang – volume: 37 start-page: 329 year: 1982 ident: 2024092008203892800_kfae115-B17 article-title: Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue publication-title: Biophys J doi: 10.1016/S0006-3495(82)84681-X contributor: fullname: DeGrado – volume: 168 start-page: 175 year: 2015 ident: 2024092008203892800_kfae115-B26 article-title: New perspectives on the thrombotic complications of haemolysis publication-title: Br J Haematol doi: 10.1111/bjh.13183 contributor: fullname: L’Acqua – volume: 37 start-page: 580 year: 2024 ident: 2024092008203892800_kfae115-B12 article-title: Multiquery similarity searching models: an alternative approach for predicting hemolytic activity from peptide sequence publication-title: Chem Res Toxicol doi: 10.1021/acs.chemrestox.3c00408 contributor: fullname: Castillo-Mendieta – volume: 36 start-page: 3350 year: 2020 ident: 2024092008203892800_kfae115-B22 article-title: HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa160 contributor: fullname: Hasan – volume: 7 start-page: 46012 year: 2022 ident: 2024092008203892800_kfae115-B5 article-title: Network science and group fusion similarity-based searching to explore the chemical space of antiparasitic peptides publication-title: ACS Omega doi: 10.1021/acsomega.2c03398 contributor: fullname: Ayala-Ruano – volume: 275 start-page: 4230 year: 2000 ident: 2024092008203892800_kfae115-B19 article-title: Structure-activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerization on selective cytotoxicity publication-title: J Biol Chem doi: 10.1074/jbc.275.6.4230 contributor: fullname: Feder – volume: 11 start-page: 54 year: 2020 ident: 2024092008203892800_kfae115-B25 article-title: A method for predicting hemolytic potency of chemically modified peptides from its structure publication-title: Front Pharmacol doi: 10.3389/fphar.2020.00054 contributor: fullname: Kumar – volume: 15 start-page: 671 year: 2019 ident: 2024092008203892800_kfae115-B38 article-title: Mechanisms of haemolysis-induced kidney injury publication-title: Nat Rev Nephrol doi: 10.1038/s41581-019-0181-0 contributor: fullname: Van Avondt – volume: 30 start-page: 3059 year: 2002 ident: 2024092008203892800_kfae115-B23 article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf436 contributor: fullname: Katoh – volume: 10 start-page: 18074 year: 2020 ident: 2024092008203892800_kfae115-B3 article-title: Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach publication-title: Sci Rep doi: 10.1038/s41598-020-75029-1 contributor: fullname: Aguilera-Mendoza – volume: 10 start-page: 16581 year: 2020 ident: 2024092008203892800_kfae115-B31 article-title: Machine learning-guided discovery and design of non-hemolytic peptides publication-title: Sci Rep doi: 10.1038/s41598-020-73644-6 contributor: fullname: Plisson – year: 2021 ident: 2024092008203892800_kfae115-B6 doi: 10.1101/2021.08.23.457422 contributor: fullname: Bailey – volume: 21 start-page: 7047 year: 2020 ident: 2024092008203892800_kfae115-B10 article-title: A new era of antibiotics: the clinical potential of antimicrobial peptides publication-title: Int J Mol Sci doi: 10.3390/ijms21197047 contributor: fullname: Browne – volume: 8 start-page: 16 year: 2016 ident: 2024092008203892800_kfae115-B42 article-title: Impact of similarity threshold on the topology of molecular similarity networks and clustering outcomes publication-title: J Cheminform doi: 10.1186/s13321-016-0127-5 contributor: fullname: Zahoránszky-Kőhalmi – volume: 11 start-page: 401 year: 2022 ident: 2024092008203892800_kfae115-B32 article-title: A novel network science and similarity-searching-based approach for discovering potential tumor-homing peptides from antimicrobials publication-title: Antibiotics (Basel) doi: 10.3390/antibiotics11030401 contributor: fullname: Romero – volume: 14 start-page: 13 year: 2021 ident: 2024092008203892800_kfae115-B16 article-title: The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation publication-title: BioData Min doi: 10.1186/s13040-021-00244-z contributor: fullname: Chicco – volume: 49 start-page: 388 year: 2005 ident: 2024092008203892800_kfae115-B28 article-title: Hemolysis of erythrocytes by granulysin-derived peptides but not by granulysin publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.1.388-397.2005 contributor: fullname: Li – volume: 10 start-page: 10869 year: 2020 ident: 2024092008203892800_kfae115-B37 article-title: HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks publication-title: Sci Rep doi: 10.1038/s41598-020-67701-3 contributor: fullname: Timmons – volume: 6 start-page: 22843 year: 2016 ident: 2024092008203892800_kfae115-B14 article-title: A web server and mobile app for computing hemolytic potency of peptides publication-title: Sci Rep doi: 10.1038/srep22843 contributor: fullname: Chaudhary |
SSID | ssj0011609 |
Score | 2.496651 |
Snippet | Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of peptides is... Abstract Peptides have emerged as promising therapeutic agents. However, their potential is hindered by hemotoxicity. Understanding the hemotoxicity of... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
Title | Unraveling the Hemolytic Toxicity Tapestry of Peptides using Chemical Space Complex Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39254655 https://www.proquest.com/docview/3102471461 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZbCmMwRpf9yrYODUb30Lq1LfnXYxq6lYWMMBLWh4GRZWkrS-2SONDsr9_JZ8vt1kG3F2NEcnF8H6dPuu9OhLwFl0vJWe74mcccHoexAzzOc6SG2BcJrpUwBc6TT-HJnH88DU67dEFdXVJlB_LnjXUl_-NVGAO_mirZf_CsNQoDcA_-hSt4GK638vG8MIcHLdqKp-_qvFxsTAfWqrw8k4ZfV-JCmePcamGzEbDkarW3xkrbtlUAxBSpUFuuLvcK1IWvrrLWmTFno2QzaVoyPhIQJhaL0pmoIj9TSEfHMOFa3A2_mXz80UgtS8cUPGDfgg_rug7xvPvcpFyKJi2BCfxOzjjFgSVueBtB7tX9Cp8bcUWjXMUQC4smJ3Tx_KYD1Y25Ce59_BHUseEVvDn4f3DzQwvlYQ3o9f7Zv81rVm2IeXaWooW0-f5dsuVHSRD0yNZw_PnL2OaevLAWBtnntK0-2SFaOGwsXKcyf1mf1Dxltk0eNgsMOkS0PCJ3VNEn9yaNhKJPdqfYrHyzT2dd7d1qn-7SadfGfNMnD3BHl2Kh2mPytUMbBbRRizbaoo22aKOlpi3aaI022qKN1mijDdpoi7YnZP7-eDY6cZqzORzpxW7lsEBnwgUuLVzJmIoCwU2vSqbzIA-T3GVwjXnOo0hroIQ88z2uQ0_D_BEnwNrZU9IrykI9JzTIIxZxyTPFBXeFTHI_1kGSgXHmZ4EYkHfta04vsAVLerNLB-RN64UUoqRJfYlCletVCosYH2gYD70BeYbusbZghRCYLoIvbv07L8n9DtmvSK9artUOcNMqe92A6RdVXJYR |
link.rule.ids | 315,786,790,27955,27956 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+hemolytic+toxicity+tapestry+of+peptides+using+chemical+space+complex+networks&rft.jtitle=Toxicological+sciences&rft.au=Castillo-Mendieta%2C+Kevin&rft.au=Ag%C3%BCero-Chapin%2C+Guillermin&rft.au=Mora%2C+Jos%C3%A9+R&rft.au=P%C3%A9rez%2C+Noel&rft.date=2024-09-10&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093%2Ftoxsci%2Fkfae115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_toxsci_kfae115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-6080&client=summon |