Exploring Medical Students’ and Faculty’s Perception on Artificial Intelligence and Robotics. A Questionnaire Survey
Over the last decade, the emerging fields of artificial intelligence (AI) and robotics have been introduced in medicine, gaining much attention. This study aims to assess the insight of medical students and faculty regarding AI and robotics in medicine. A cross-sectional study was conducted among me...
Saved in:
Published in | Journal of Artificial Intelligence for Medical Sciences Vol. 2; no. 1-2; pp. 76 - 84 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the last decade, the emerging fields of artificial intelligence (AI) and robotics have been introduced in medicine, gaining much attention. This study aims to assess the insight of medical students and faculty regarding AI and robotics in medicine. A cross-sectional study was conducted among medical students and faculty of the University of Nicosia. An online questionnaire was used to evaluate medical students’ and faculty’s prior knowledge and perceptions toward AI and robotics. Data analysis was carried out using SPSS software, and the statistical significance was assumed as
p
value < 0.05. Three hundred eighty-seven medical students and 23 faculty responded to the questionnaire. Students who were “familiar” with AI and robotics stated that these breakthrough technologies make them more enthusiastic about working in their speciality of interest (
p
value = 0.012). Also, students (59.9%) and faculty (47.8%) agreed that physician’s opinion should be followed when doctors’ and AI’s judgment differ and that the doctor in charge should be liable for possible AI’s mistakes (38.8% students: 47.7% faculty). Although the most significant drawback of AI and robotics in healthcare is the dehumanization of medicine (54.5% students; 47.8% faculty), most participants (77.6% students; 78.2% faculty) agreed that medical schools should include in their curriculum AI and robotics by offering relevant courses (39.5% students; 52.2% faculty). Medical students and faculty are not anxious about the advancements of AI and robotics in medicine. Medical schools should take the lead and introduce AI and robotics in undergraduate medical curricula because the new era needs fully aware healthcare providers with better insight regarding these concepts. |
---|---|
AbstractList | Over the last decade, the emerging fields of artificial intelligence (AI) and robotics have been introduced in medicine, gaining much attention. This study aims to assess the insight of medical students and faculty regarding AI and robotics in medicine. A cross-sectional study was conducted among medical students and faculty of the University of Nicosia. An online questionnaire was used to evaluate medical students’ and faculty’s prior knowledge and perceptions toward AI and robotics. Data analysis was carried out using SPSS software, and the statistical significance was assumed as
p
value < 0.05. Three hundred eighty-seven medical students and 23 faculty responded to the questionnaire. Students who were “familiar” with AI and robotics stated that these breakthrough technologies make them more enthusiastic about working in their speciality of interest (
p
value = 0.012). Also, students (59.9%) and faculty (47.8%) agreed that physician’s opinion should be followed when doctors’ and AI’s judgment differ and that the doctor in charge should be liable for possible AI’s mistakes (38.8% students: 47.7% faculty). Although the most significant drawback of AI and robotics in healthcare is the dehumanization of medicine (54.5% students; 47.8% faculty), most participants (77.6% students; 78.2% faculty) agreed that medical schools should include in their curriculum AI and robotics by offering relevant courses (39.5% students; 52.2% faculty). Medical students and faculty are not anxious about the advancements of AI and robotics in medicine. Medical schools should take the lead and introduce AI and robotics in undergraduate medical curricula because the new era needs fully aware healthcare providers with better insight regarding these concepts. |
Author | Sassis, Leandros Kefala-Karli, Pelagia Sassi, Marina Zervides, Constantinos |
Author_xml | – sequence: 1 givenname: Leandros surname: Sassis fullname: Sassis, Leandros organization: University of Nicosia, School of Medicine – sequence: 2 givenname: Pelagia surname: Kefala-Karli fullname: Kefala-Karli, Pelagia organization: University of Nicosia, School of Medicine – sequence: 3 givenname: Marina surname: Sassi fullname: Sassi, Marina organization: Biotypos Medical Diagnostic Center – sequence: 4 givenname: Constantinos surname: Zervides fullname: Zervides, Constantinos email: Zervides.c@unic.ac.cy organization: University of Nicosia, School of Medicine |
BookMark | eNp9kEtOwzAQhi1UJErpBVj5Ag1-JE6yrKoWKhXxKKwtx55UrlInshPU7rgG1-MkpC0LVkgjzfyLbzTzXaOBqx0gdEtJxPKc3m2V3YXIRIwSQdOIEHaBhkwIMaFxSgZ_5is0DsEWJElITARPh2g_3zdV7a3b4EcwVqsKr9vOgGvD9-cXVs7ghdJd1R76GPAzeA1Na2uH-5r61pZW2x5auhaqym7AaThRr3VRt1aHCE_xSwfhyDhlPeB15z_gcIMuS1UFGP_2EXpfzN9mD5PV0_1yNl1NNM0ImwDPYpaQQhUGylgnCgjLC5H1z_A4FVmik1SXJadpplWclynXQsQ6MxkwQ3nCR4id92pfh-ChlI23O-UPkhJ51CdP-qSRZ32y19dD_AyF5qgGvNzWnXf9nf9RP7Bcex4 |
CitedBy_id | crossref_primary_10_1080_0142159X_2024_2314198 crossref_primary_10_1186_s12912_022_01048_0 crossref_primary_10_1038_s41415_024_7184_3 crossref_primary_10_5977_jkasne_2022_28_4_357 crossref_primary_10_2147_AMEP_S368519 crossref_primary_10_1007_s10639_024_12850_5 |
Cites_doi | 10.1038/nature26000 10.1007/s00345-019-03037-6 10.1038/s41591-018-0147-y 10.1016/S0140-6736(18)31645-3 10.1161/CIRCULATIONAHA.118.034338 10.1016/j.acra.2018.10.007 10.1371/journal.pone.0204155 10.1038/s41591-018-0300-7 10.1038/s41551-018-0301-3 10.1097/PAS.0000000000001151 10.1001/jamaophthalmol.2017.3782 10.1038/nature21056 10.1016/j.jid.2018.01.028 10.1148/radiol.2018180237 10.1007/s00330-018-5601-1 10.1016/j.artmed.2014.12.012 10.1093/bioinformatics/btu297 10.1038/s41746-018-0040-6 10.1109/IROS.2018.8594290 10.1126/scitranslmed.aad9398 10.1186/s13244-019-0830-7 10.1007/s00068-020-01444-8 10.1136/leader-2018-000071 10.1067/j.cpradiol.2020.06.011 10.1038/s41591-018-0177-5 |
ContentType | Journal Article |
Copyright | The Authors 2021 |
Copyright_xml | – notice: The Authors 2021 |
DBID | C6C AAYXX CITATION |
DOI | 10.2991/jaims.d.210617.002 |
DatabaseName | Springer Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-1470 |
EndPage | 84 |
ExternalDocumentID | 10_2991_jaims_d_210617_002 |
GroupedDBID | C6C AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
ID | FETCH-LOGICAL-c1802-e384250babdef4c5ae029b68470347685c57cff3178ca49f73c664c8d8e2d1353 |
IEDL.DBID | C6C |
ISSN | 2666-1470 |
IngestDate | Fri Aug 23 01:21:53 EDT 2024 Tue Mar 05 01:17:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Medical students Medical education Medical faculty Artificial intelligence Robotics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1802-e384250babdef4c5ae029b68470347685c57cff3178ca49f73c664c8d8e2d1353 |
OpenAccessLink | https://doi.org/10.2991/jaims.d.210617.002 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_2991_jaims_d_210617_002 springer_journals_10_2991_jaims_d_210617_002 |
PublicationCentury | 2000 |
PublicationDate | 6-2021 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 6-2021 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of Artificial Intelligence for Medical Sciences |
PublicationTitleAbbrev | J Artif Intell Med Sci |
PublicationYear | 2021 |
Publisher | Springer Netherlands |
Publisher_xml | – name: Springer Netherlands |
References | Theofilatos, Pavlopoulou, Papasavvas, Likothanassis, Dimitrakopoulos, Georgopoulos (CR18) 2015; 63 Zhang, Gajjala, Agrawal, Tison, Hallock, Beussink-Nelson (CR15) 2018; 138 Topol (CR2) 2019; 25 Titano, Badgeley, Schefflein, Pain, Su, Cai (CR6) 2018; 24 Pinto Dos Santos, Giese, Brodehl, Chon, Staab, Kleinert (CR23) 2019; 29 Steiner, MacDonald, Liu, Truszkowski, Hipp, Gammage (CR9) 2018; 42 Abràmoff, Lavin, Birch, Shah, Folk (CR12) 2018; 1 Sit, Srinivasan, Amlani, Muthuswamy, Azam, Monzon (CR25) 2020; 11 McCarthy, Mins, Rochester, Shannon (CR1) 2006; 27 Rimmer, Howard, Picca, Bashir (CR16) 2020; 47 Burlina, Joshi, Pekala, Pacheco, Freund, Bressler (CR13) 2017; 135 Esteva, Kuprel, Novoa, Ko, Swetter, Blau (CR10) 2017; 542 Saeidi, Opfermann, Kam, Raghunathan, Leonard, Krieger (CR20) 2018; 2018 Capper, Jones, Sill, Hovestadt, Schrimpf, Sturm (CR7) 2018; 555 Chilamkurthy, Ghosh, Tanamala, Biviji, Campeau, Venugopal (CR3) 2018; 392 Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyö (CR8) 2018; 24 Nam, Park, Hwang, Lee, Jin, Lim (CR4) 2019; 290 CR5 Wang, Xiao, Glissen Brown, Berzin, Tu, Xiong (CR14) 2018; 2 CR29 CR28 CR27 Han, Kim, Lim, Park, Park, Chang (CR11) 2018; 138 CR26 Rapakoulia, Theofilatos, Kleftogiannis, Likothanasis, Tsakalidis, Mavroudi (CR17) 2014; 30 Andras, Mazzone, van Leeuwen, De Naeyer, van Oosterom, Beato (CR19) 2020; 38 CR21 Gong, Nugent, Guest, Parker, Chang, Khosa (CR24) 2019; 26 Loh (CR22) 2018; 2 ref=27 ref=26 ref=25 ref=24 ref=23 ref=22 ref=21 ref=20 ref=1 ref=29 ref=28 ref=7 ref=6 ref=9 ref=8 ref=3 ref=2 ref=5 ref=4 ref=16 ref=15 ref=14 ref=13 ref=12 ref=11 ref=10 ref=19 ref=18 ref=17 |
References_xml | – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: CR10 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature. contributor: fullname: Blau – volume: 138 start-page: 1529 year: 2018 end-page: 1538 ident: CR11 article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm publication-title: J. Invest. Dermatol. contributor: fullname: Chang – volume: 27 start-page: 12 year: 2006 ident: CR1 article-title: A proposal for the dartmouth summer research project on artificial intelligence, the 31st of August, 1955 publication-title: AI Mag. contributor: fullname: Shannon – volume: 2 start-page: 741 year: 2018 end-page: 748 ident: CR14 article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy publication-title: Nat. Biomed. Eng. contributor: fullname: Xiong – volume: 63 start-page: 181 year: 2015 end-page: 189 ident: CR18 article-title: Predicting protein complexes from weighted protein–protein interaction graphs with a novel unsupervised methodology: evolutionary enhanced Markov clustering publication-title: Artif. Intell. Med. contributor: fullname: Georgopoulos – volume: 38 start-page: 2359 year: 2020 end-page: 2366 ident: CR19 article-title: Artificial intelligence and robotics: a combination that is changing the operating room publication-title: World J. Urol. contributor: fullname: Beato – volume: 138 start-page: 1623 year: 2018 end-page: 1635 ident: CR15 article-title: Fully automated echocardiogram interpretation in clinical practice publication-title: Circulation. contributor: fullname: Beussink-Nelson – volume: 2018 start-page: 1268 year: 2018 end-page: 1275 ident: CR20 article-title: A confidence-based shared control strategy for the Smart Tissue Autonomous Robot (STAR) publication-title: Rep. U. S. contributor: fullname: Krieger – ident: CR29 – volume: 29 start-page: 1640 year: 2019 end-page: 1646 ident: CR23 article-title: Medical students’ attitude towards artificial intelligence: a multi-centre survey publication-title: Eur. Radiol. contributor: fullname: Kleinert – volume: 26 start-page: 566 year: 2019 end-page: 577 ident: CR24 article-title: Influence of artificial intelligence on Canadian medical students’ preference for radiology specialty: a national survey study publication-title: Acad. Radiol. contributor: fullname: Khosa – ident: CR27 – volume: 11 start-page: 14 year: 2020 ident: CR25 article-title: Attitudes and perceptions of UK medical students towards artificial intelligence and radiology: a multi-centre survey publication-title: Insights Imaging. contributor: fullname: Monzon – volume: 290 start-page: 218 year: 2019 end-page: 228 ident: CR4 article-title: Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs publication-title: Radiol. contributor: fullname: Lim – ident: CR21 – volume: 555 start-page: 469 year: 2018 end-page: 674 ident: CR7 article-title: DNA methylation-based classification of central nervous system tumours publication-title: Nature. contributor: fullname: Sturm – volume: 1 start-page: 39 year: 2018 ident: CR12 article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices publication-title: NPJ Digit Med. contributor: fullname: Folk – volume: 135 start-page: 1170 year: 2017 end-page: 1176 ident: CR13 article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks publication-title: JAMA Ophthalmol. contributor: fullname: Bressler – volume: 47 start-page: 757 year: 2020 end-page: 762 ident: CR16 article-title: The automaton as a surgeon: the future of artificial intelligence in emergency and general surgery publication-title: Eur. J. Trauma Emerg. Surg. contributor: fullname: Bashir – volume: 30 start-page: 2324 year: 2014 end-page: 2333 ident: CR17 article-title: EnsembleGASVR: a novel ensemble method for classifying missense single nucleotide polymorphisms publication-title: Bioinformatics contributor: fullname: Mavroudi – volume: 24 start-page: 1337 year: 2018 end-page: 1341 ident: CR6 article-title: Automated deep-neural-network surveillance of cranial images for acute neurologic events publication-title: Nat. Med. contributor: fullname: Cai – ident: CR5 – volume: 392 start-page: 2388 year: 2018 end-page: 2396 ident: CR3 article-title: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study publication-title: Lancet. contributor: fullname: Venugopal – volume: 24 start-page: 1559 year: 2018 end-page: 1567 ident: CR8 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. contributor: fullname: Fenyö – ident: CR28 – volume: 2 start-page: 59 year: 2018 end-page: 63 ident: CR22 article-title: Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health publication-title: BMJ Leader. contributor: fullname: Loh – ident: CR26 – volume: 42 start-page: 1636 year: 2018 end-page: 1646 ident: CR9 article-title: Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer publication-title: Am. J. Surg. Pathol. contributor: fullname: Gammage – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: CR2 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. Med. contributor: fullname: Topol – ident: ref=7 doi: 10.1038/nature26000 – ident: ref=1 – ident: ref=19 doi: 10.1007/s00345-019-03037-6 – ident: ref=6 doi: 10.1038/s41591-018-0147-y – ident: ref=27 – ident: ref=3 doi: 10.1016/S0140-6736(18)31645-3 – ident: ref=15 doi: 10.1161/CIRCULATIONAHA.118.034338 – ident: ref=29 – ident: ref=24 doi: 10.1016/j.acra.2018.10.007 – ident: ref=5 doi: 10.1371/journal.pone.0204155 – ident: ref=2 doi: 10.1038/s41591-018-0300-7 – ident: ref=14 doi: 10.1038/s41551-018-0301-3 – ident: ref=9 doi: 10.1097/PAS.0000000000001151 – ident: ref=13 doi: 10.1001/jamaophthalmol.2017.3782 – ident: ref=10 doi: 10.1038/nature21056 – ident: ref=11 doi: 10.1016/j.jid.2018.01.028 – ident: ref=4 doi: 10.1148/radiol.2018180237 – ident: ref=23 doi: 10.1007/s00330-018-5601-1 – ident: ref=28 – ident: ref=18 doi: 10.1016/j.artmed.2014.12.012 – ident: ref=17 doi: 10.1093/bioinformatics/btu297 – ident: ref=12 doi: 10.1038/s41746-018-0040-6 – ident: ref=20 doi: 10.1109/IROS.2018.8594290 – ident: ref=21 doi: 10.1126/scitranslmed.aad9398 – ident: ref=25 doi: 10.1186/s13244-019-0830-7 – ident: ref=16 doi: 10.1007/s00068-020-01444-8 – ident: ref=22 doi: 10.1136/leader-2018-000071 – ident: ref=26 doi: 10.1067/j.cpradiol.2020.06.011 – ident: ref=8 doi: 10.1038/s41591-018-0177-5 |
SSID | ssib055040637 |
Score | 2.1806636 |
Snippet | Over the last decade, the emerging fields of artificial intelligence (AI) and robotics have been introduced in medicine, gaining much attention. This study... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 76 |
SubjectTerms | Research Article |
Title | Exploring Medical Students’ and Faculty’s Perception on Artificial Intelligence and Robotics. A Questionnaire Survey |
URI | https://link.springer.com/article/10.2991/jaims.d.210617.002 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yL15EUXH-IgdvmtElbdoeR9mYwkScg91CmibgwU7WbbiL-G_47_mX-F7bje2gIJRC4aWHL-F97-W9fCHkGig-hSiaMwnxLvOt8FhknGZtZwRqfegwxAPOgwfZH_n342Bcy-TgWZiN-j04SlQHenktWlmLY-qCaoPgbneBgyNs30pkUp2D-cV0m2u2C50lf_QOyH4d-NFONVOHZMfmR-R93QJH64oJHVZik8X35xeFLJ_2NIpjLOGzoI_rLhQKD_6q0n-gdxvCmuWop0k6QQHmFu3Qck8TxuQa3BsdzqcLuzwmo173Oemz-i4EZlCjjVmB9TIv1WlmnW8CbT0epxK4xRM-pAyBCULjHEQDkdF-7EJhpPRNlEWWZ3i3xQlp5JPcnmIzU-xpLrK4jco0Qui2jZ0BqrcccjcZNsnNCjX1VkleKEgVEGNVYqwyVWGsAOMmuV0Bq-rlX_xhfvY_83Oyx7GJpNzzuCCN2XRuLyEKmKVX5fTDe_DR_QE2eLNR |
link.rule.ids | 315,783,787,4031,27935,27936,27937,41132,42201,51588 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0MHvRiNGrEzx68acnSdr-OhEhAgRiBhFvT7XYTDy6EBSM3_4Z_z1_izO5C4KCJyV42me7hbTNvpjPzSsgtUHwEUTRnHsS7TFrhsMAkmtUTI1DrQ_s-Djj3-l57JB_H7riUycFZmI36PThKVAd6fctqcY1j6oJqg-BudyUH2sLCrNcs5mB-Md3mmu1CZ84frUNyUAZ-tFH8qSOyY9Nj8rFugaNlxYQOCrHJ7Pvzi0KWT1saxTGW8JrR53UXCoUHP1XoP9DOhrBmvuplEk1QgLlGGzQ_04Q1qQb3RgeL2btdnpBR62HYbLPyLgRmUKONWYH1MifSUWwTaVxtHR5GHnCLIySkDK5xfZMkEA0ERssw8YXxPGmCOLA8xrstTkklnaT2DJuZQkdzEYd1VKYRQtdtmBigesshd_P8KrlboaamheSFglQBMVY5xipWBcYKMK6S-xWwqtz-2R_m5_8zvyF77WGvq7qd_tMF2efYUJKff1ySyny2sFcQEcyj63wr_ABd97T4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kgngRRcX63IM3TZtm8zyWamh9lGIt9LZsNrugYFqaVuzNv-Hf85c4s0lLe1AQcgnM5jBJdr7Z-eYbQi4hxCeAoh3LB7xruYrZVii1sBpaMtT6EEGADc6PXb89cO-G3nCli9-w3RclyaKnAVWasml9nGpDXAZAU38VL295La05mNCgBiFswpsuDk3Hcq3fKrpjfjFdj0Dr5U8TVeJdslPCQdos3t8e2VDZPvlYEuNoWUeh_UKCMv_-_KKQ-9NYoGTGHG5z2ltyUyhc-KhCFYJ2VuQ2zaqnUTJCWeYabVJz0glrMgGbHu3PJu9qfkAG8e1zq22VExIsicptlmJYRbMTkaRKu9ITynaixIeIYzMXEglPeoHUGjBCKIUb6YBJ33dlmIbKSXHixSGpZKNMHSHFKbKFw9KogXo1jImGirQEAKAcyOj8oEquFl7j40IIg0MCgT7mxsc85YWPOfi4Sq4XjuXlT5H_YX78P_MLstW7iflDp3t_QrYdZJmYQ5FTUplOZuoMYMI0OTdfwg-gJr1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Medical+Students%27+and+Faculty%27s+Perception+on+Artificial+Intelligence+and+Robotics.+A+Questionnaire+Survey&rft.jtitle=Journal+of+Artificial+Intelligence+for+Medical+Sciences&rft.au=Sassis%2C+Leandros&rft.au=Kefala-Karli%2C+Pelagia&rft.au=Sassi%2C+Marina&rft.au=Zervides%2C+Constantinos&rft.date=2021&rft.issn=2666-1470&rft.eissn=2666-1470&rft.volume=2&rft.issue=1-2&rft.spage=76&rft.epage=84&rft_id=info:doi/10.2991%2Fjaims.d.210617.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_jaims_d_210617_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1470&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1470&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1470&client=summon |