Some specific classes of permutation polynomials over $ {\textbf{F}}_{q^3}
Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over $ {\bf F}_{q^2} $ have been studied. In this paper, by using AGW criterion and piecewise method, we construct several classes of permutation polynomials over $ {\bf F}_{q^3} $ o...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 10; pp. 17815 - 17828 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022981 |
Cover
Loading…
Abstract | Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over $ {\bf F}_{q^2} $ have been studied. In this paper, by using AGW criterion and piecewise method, we construct several classes of permutation polynomials over $ {\bf F}_{q^3} $ of the forms similar to $ (x^{q^2}+x^q+x+\delta)^{\frac{q^{3}-1}{d}+1}+L(x) $, for $ d = 2, 3, 4, 6, $ where $ L(x) $ is a linearized polynomial over $ {\bf F}_{q} $. |
---|---|
AbstractList | Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over $ {\bf F}_{q^2} $ have been studied. In this paper, by using AGW criterion and piecewise method, we construct several classes of permutation polynomials over $ {\bf F}_{q^3} $ of the forms similar to $ (x^{q^2}+x^q+x+\delta)^{\frac{q^{3}-1}{d}+1}+L(x) $, for $ d = 2, 3, 4, 6, $ where $ L(x) $ is a linearized polynomial over $ {\bf F}_{q} $. |
Author | Yan, Li Qin, Xiaoer |
Author_xml | – sequence: 1 givenname: Xiaoer surname: Qin fullname: Qin, Xiaoer organization: School of Mathematics and Big Data, Chongqing University of Education, Chongqing 400065, China – sequence: 2 givenname: Li surname: Yan fullname: Yan, Li organization: School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China |
BookMark | eNpNkEtLw0AUhQepYK3d-QOycGnrPJPJUorVSsGFuhOHm3loSpKJM1Espf_d1BZxdQ7nXr7Fd4oGjW8sQucET1nO-FUN3fuUYkpzSY7QkPKMTdJcysG_foLGMa4wxpRQTjM-RPePvrZJbK0uXakTXUGMNibeJa0N9WcHXembpPXVuvF1CVV_-rIhuUg2L5397gq3mW-3avPxyrZn6Nj1D3Z8yBF6nt88ze4my4fbxex6OdFEYjIBAzk2wuWCMo41BYOl6QdBM7DSmcwKgNxSlxuhMXE85ZSl3KWaWqAa2Agt9lzjYaXaUNYQ1spDqX4HH94UhK7UlVVMCkOEkEVKBBeuKDJNXJ4yUgBxkrKedbln6eBjDNb98QhWO61qp1UdtLIf0LFtkQ |
Cites_doi | 10.1016/S1071-5797(02)00028-X 10.1142/S1793042115500220 10.1007/s12095-017-0234-9 10.1016/j.ffa.2014.01.006 10.1007/s00200-018-0350-6 10.1016/j.ffa.2014.10.001 10.1007/s12095-018-0292-7 10.1016/j.ffa.2014.04.004 10.1201/b15006 10.1016/j.ffa.2015.05.001 10.1007/s11425-008-0142-8 10.1016/j.ffa.2014.09.005 10.1515/9783110642094-015 10.1007/s00200-016-0305-8 10.1016/j.ffa.2010.10.002 10.1016/j.ffa.2013.02.004 10.1017/S0004972713000646 10.1016/j.ffa.2011.04.001 10.1017/CBO9780511525926 10.1007/s10623-015-0172-5 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022981 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 17828 |
ExternalDocumentID | oai_doaj_org_article_385d1558b61545fbb7c1f9631ba1f823 10_3934_math_2022981 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c1801-ada90d5f952340c2ad08d0d5527ae8fd7e5aa9e2f9d5c01f4642364f6c2ea2ca3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 00:57:56 EDT 2025 Tue Jul 01 03:56:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1801-ada90d5f952340c2ad08d0d5527ae8fd7e5aa9e2f9d5c01f4642364f6c2ea2ca3 |
OpenAccessLink | https://doaj.org/article/385d1558b61545fbb7c1f9631ba1f823 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_385d1558b61545fbb7c1f9631ba1f823 crossref_primary_10_3934_math_2022981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221001 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022981-10 key-10.3934/math.2022981-21 key-10.3934/math.2022981-20 key-10.3934/math.2022981-16 key-10.3934/math.2022981-15 key-10.3934/math.2022981-18 key-10.3934/math.2022981-17 key-10.3934/math.2022981-9 key-10.3934/math.2022981-12 key-10.3934/math.2022981-8 key-10.3934/math.2022981-11 key-10.3934/math.2022981-22 key-10.3934/math.2022981-14 key-10.3934/math.2022981-13 key-10.3934/math.2022981-5 key-10.3934/math.2022981-4 key-10.3934/math.2022981-7 key-10.3934/math.2022981-6 key-10.3934/math.2022981-1 key-10.3934/math.2022981-19 key-10.3934/math.2022981-3 key-10.3934/math.2022981-2 |
References_xml | – ident: key-10.3934/math.2022981-4 doi: 10.1016/S1071-5797(02)00028-X – ident: key-10.3934/math.2022981-10 – ident: key-10.3934/math.2022981-12 doi: 10.1142/S1793042115500220 – ident: key-10.3934/math.2022981-15 – ident: key-10.3934/math.2022981-20 doi: 10.1007/s12095-017-0234-9 – ident: key-10.3934/math.2022981-17 doi: 10.1016/j.ffa.2014.01.006 – ident: key-10.3934/math.2022981-8 doi: 10.1007/s00200-018-0350-6 – ident: key-10.3934/math.2022981-3 doi: 10.1016/j.ffa.2014.10.001 – ident: key-10.3934/math.2022981-5 doi: 10.1007/s12095-018-0292-7 – ident: key-10.3934/math.2022981-18 doi: 10.1016/j.ffa.2014.04.004 – ident: key-10.3934/math.2022981-9 doi: 10.1201/b15006 – ident: key-10.3934/math.2022981-19 doi: 10.1016/j.ffa.2015.05.001 – ident: key-10.3934/math.2022981-2 doi: 10.1007/s11425-008-0142-8 – ident: key-10.3934/math.2022981-13 doi: 10.1016/j.ffa.2014.09.005 – ident: key-10.3934/math.2022981-14 doi: 10.1515/9783110642094-015 – ident: key-10.3934/math.2022981-21 doi: 10.1007/s00200-016-0305-8 – ident: key-10.3934/math.2022981-1 doi: 10.1016/j.ffa.2010.10.002 – ident: key-10.3934/math.2022981-6 doi: 10.1016/j.ffa.2013.02.004 – ident: key-10.3934/math.2022981-11 doi: 10.1017/S0004972713000646 – ident: key-10.3934/math.2022981-16 doi: 10.1016/j.ffa.2011.04.001 – ident: key-10.3934/math.2022981-7 doi: 10.1017/CBO9780511525926 – ident: key-10.3934/math.2022981-22 doi: 10.1007/s10623-015-0172-5 |
SSID | ssj0002124274 |
Score | 2.1973794 |
Snippet | Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over $ {\bf F}_{q^2} $ have been studied.... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 17815 |
SubjectTerms | agw criterion finite filed permutation polynomial piecewise method |
Title | Some specific classes of permutation polynomials over $ {\textbf{F}}_{q^3} |
URI | https://doaj.org/article/385d1558b61545fbb7c1f9631ba1f823 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8lDGqInj1M4IiKqqVBao1AERnV8TNIW2A6r637lLQlUmFpYMVmxZ353uIX93x1jHyWpytY-8cC6S3ugIJH7Qu1ipFBX-UKHw6LE3GMvhJJtsjfoiTljdHrgGrpvqzKHP06ZHhwZjlE0Cak1iIAlaVH0-0edtJVNkg9EgS8y3aqZ7mqeyi_EfvT0Ikevklw_aatVf-ZT-AdtvgkF-W1_ikO346RHbG206qc6P2fCpfPec6iGJ08MtBbt-zsvAZ2hTl_VDOp-Vb19UX4y6xImTyTt89UKcDhNW_fW6WH28pusTNu4_PN8Pomb-QWQTdBwROMhjl4Uck0UZWwEu1g4XMqHA6-CUzwByL0LuMhsnQWIukfZk6FnhQVhIT1lrWk79GeP0fiY17gBQ0gSVY2DjQCtvlHcJQJvd_CBSzOo2FwWmB4RcQcgVDXJtdkdwbf6h5tTVAoqsaERW_CWy8_845ILt0p1qXt0lay0-l_4K44OFua5U4RtzVrnM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+specific+classes+of+permutation+polynomials+over+%24+%7B%5Ctextbf%7BF%7D%7D_%7Bq%5E3%7D&rft.jtitle=AIMS+mathematics&rft.au=Xiaoer+Qin&rft.au=Li+Yan&rft.date=2022-10-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=10&rft.spage=17815&rft.epage=17828&rft_id=info:doi/10.3934%2Fmath.2022981&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_385d1558b61545fbb7c1f9631ba1f823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |