Some specific classes of permutation polynomials over $ {\textbf{F}}_{q^3}

Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over $ {\bf F}_{q^2} $ have been studied. In this paper, by using AGW criterion and piecewise method, we construct several classes of permutation polynomials over $ {\bf F}_{q^3} $ o...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 10; pp. 17815 - 17828
Main Authors Qin, Xiaoer, Yan, Li
Format Journal Article
LanguageEnglish
Published AIMS Press 01.10.2022
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2022981

Cover

Loading…
Abstract Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over $ {\bf F}_{q^2} $ have been studied. In this paper, by using AGW criterion and piecewise method, we construct several classes of permutation polynomials over $ {\bf F}_{q^3} $ of the forms similar to $ (x^{q^2}+x^q+x+\delta)^{\frac{q^{3}-1}{d}+1}+L(x) $, for $ d = 2, 3, 4, 6, $ where $ L(x) $ is a linearized polynomial over $ {\bf F}_{q} $.
AbstractList Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over $ {\bf F}_{q^2} $ have been studied. In this paper, by using AGW criterion and piecewise method, we construct several classes of permutation polynomials over $ {\bf F}_{q^3} $ of the forms similar to $ (x^{q^2}+x^q+x+\delta)^{\frac{q^{3}-1}{d}+1}+L(x) $, for $ d = 2, 3, 4, 6, $ where $ L(x) $ is a linearized polynomial over $ {\bf F}_{q} $.
Author Yan, Li
Qin, Xiaoer
Author_xml – sequence: 1
  givenname: Xiaoer
  surname: Qin
  fullname: Qin, Xiaoer
  organization: School of Mathematics and Big Data, Chongqing University of Education, Chongqing 400065, China
– sequence: 2
  givenname: Li
  surname: Yan
  fullname: Yan, Li
  organization: School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
BookMark eNpNkEtLw0AUhQepYK3d-QOycGnrPJPJUorVSsGFuhOHm3loSpKJM1Espf_d1BZxdQ7nXr7Fd4oGjW8sQucET1nO-FUN3fuUYkpzSY7QkPKMTdJcysG_foLGMa4wxpRQTjM-RPePvrZJbK0uXakTXUGMNibeJa0N9WcHXembpPXVuvF1CVV_-rIhuUg2L5397gq3mW-3avPxyrZn6Nj1D3Z8yBF6nt88ze4my4fbxex6OdFEYjIBAzk2wuWCMo41BYOl6QdBM7DSmcwKgNxSlxuhMXE85ZSl3KWaWqAa2Agt9lzjYaXaUNYQ1spDqX4HH94UhK7UlVVMCkOEkEVKBBeuKDJNXJ4yUgBxkrKedbln6eBjDNb98QhWO61qp1UdtLIf0LFtkQ
Cites_doi 10.1016/S1071-5797(02)00028-X
10.1142/S1793042115500220
10.1007/s12095-017-0234-9
10.1016/j.ffa.2014.01.006
10.1007/s00200-018-0350-6
10.1016/j.ffa.2014.10.001
10.1007/s12095-018-0292-7
10.1016/j.ffa.2014.04.004
10.1201/b15006
10.1016/j.ffa.2015.05.001
10.1007/s11425-008-0142-8
10.1016/j.ffa.2014.09.005
10.1515/9783110642094-015
10.1007/s00200-016-0305-8
10.1016/j.ffa.2010.10.002
10.1016/j.ffa.2013.02.004
10.1017/S0004972713000646
10.1016/j.ffa.2011.04.001
10.1017/CBO9780511525926
10.1007/s10623-015-0172-5
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022981
DatabaseName CrossRef
DOAJ Directory of Open Access Journal Collection
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 17828
ExternalDocumentID oai_doaj_org_article_385d1558b61545fbb7c1f9631ba1f823
10_3934_math_2022981
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c1801-ada90d5f952340c2ad08d0d5527ae8fd7e5aa9e2f9d5c01f4642364f6c2ea2ca3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 00:57:56 EDT 2025
Tue Jul 01 03:56:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1801-ada90d5f952340c2ad08d0d5527ae8fd7e5aa9e2f9d5c01f4642364f6c2ea2ca3
OpenAccessLink https://doaj.org/article/385d1558b61545fbb7c1f9631ba1f823
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_385d1558b61545fbb7c1f9631ba1f823
crossref_primary_10_3934_math_2022981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221001
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022981-10
key-10.3934/math.2022981-21
key-10.3934/math.2022981-20
key-10.3934/math.2022981-16
key-10.3934/math.2022981-15
key-10.3934/math.2022981-18
key-10.3934/math.2022981-17
key-10.3934/math.2022981-9
key-10.3934/math.2022981-12
key-10.3934/math.2022981-8
key-10.3934/math.2022981-11
key-10.3934/math.2022981-22
key-10.3934/math.2022981-14
key-10.3934/math.2022981-13
key-10.3934/math.2022981-5
key-10.3934/math.2022981-4
key-10.3934/math.2022981-7
key-10.3934/math.2022981-6
key-10.3934/math.2022981-1
key-10.3934/math.2022981-19
key-10.3934/math.2022981-3
key-10.3934/math.2022981-2
References_xml – ident: key-10.3934/math.2022981-4
  doi: 10.1016/S1071-5797(02)00028-X
– ident: key-10.3934/math.2022981-10
– ident: key-10.3934/math.2022981-12
  doi: 10.1142/S1793042115500220
– ident: key-10.3934/math.2022981-15
– ident: key-10.3934/math.2022981-20
  doi: 10.1007/s12095-017-0234-9
– ident: key-10.3934/math.2022981-17
  doi: 10.1016/j.ffa.2014.01.006
– ident: key-10.3934/math.2022981-8
  doi: 10.1007/s00200-018-0350-6
– ident: key-10.3934/math.2022981-3
  doi: 10.1016/j.ffa.2014.10.001
– ident: key-10.3934/math.2022981-5
  doi: 10.1007/s12095-018-0292-7
– ident: key-10.3934/math.2022981-18
  doi: 10.1016/j.ffa.2014.04.004
– ident: key-10.3934/math.2022981-9
  doi: 10.1201/b15006
– ident: key-10.3934/math.2022981-19
  doi: 10.1016/j.ffa.2015.05.001
– ident: key-10.3934/math.2022981-2
  doi: 10.1007/s11425-008-0142-8
– ident: key-10.3934/math.2022981-13
  doi: 10.1016/j.ffa.2014.09.005
– ident: key-10.3934/math.2022981-14
  doi: 10.1515/9783110642094-015
– ident: key-10.3934/math.2022981-21
  doi: 10.1007/s00200-016-0305-8
– ident: key-10.3934/math.2022981-1
  doi: 10.1016/j.ffa.2010.10.002
– ident: key-10.3934/math.2022981-6
  doi: 10.1016/j.ffa.2013.02.004
– ident: key-10.3934/math.2022981-11
  doi: 10.1017/S0004972713000646
– ident: key-10.3934/math.2022981-16
  doi: 10.1016/j.ffa.2011.04.001
– ident: key-10.3934/math.2022981-7
  doi: 10.1017/CBO9780511525926
– ident: key-10.3934/math.2022981-22
  doi: 10.1007/s10623-015-0172-5
SSID ssj0002124274
Score 2.1973794
Snippet Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over $ {\bf F}_{q^2} $ have been studied....
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 17815
SubjectTerms agw criterion
finite filed
permutation polynomial
piecewise method
Title Some specific classes of permutation polynomials over $ {\textbf{F}}_{q^3}
URI https://doaj.org/article/385d1558b61545fbb7c1f9631ba1f823
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8lDGqInj1M4IiKqqVBao1AERnV8TNIW2A6r637lLQlUmFpYMVmxZ353uIX93x1jHyWpytY-8cC6S3ugIJH7Qu1ipFBX-UKHw6LE3GMvhJJtsjfoiTljdHrgGrpvqzKHP06ZHhwZjlE0Cak1iIAlaVH0-0edtJVNkg9EgS8y3aqZ7mqeyi_EfvT0Ikevklw_aatVf-ZT-AdtvgkF-W1_ikO346RHbG206qc6P2fCpfPec6iGJ08MtBbt-zsvAZ2hTl_VDOp-Vb19UX4y6xImTyTt89UKcDhNW_fW6WH28pusTNu4_PN8Pomb-QWQTdBwROMhjl4Uck0UZWwEu1g4XMqHA6-CUzwByL0LuMhsnQWIukfZk6FnhQVhIT1lrWk79GeP0fiY17gBQ0gSVY2DjQCtvlHcJQJvd_CBSzOo2FwWmB4RcQcgVDXJtdkdwbf6h5tTVAoqsaERW_CWy8_845ILt0p1qXt0lay0-l_4K44OFua5U4RtzVrnM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+specific+classes+of+permutation+polynomials+over+%24+%7B%5Ctextbf%7BF%7D%7D_%7Bq%5E3%7D&rft.jtitle=AIMS+mathematics&rft.au=Xiaoer+Qin&rft.au=Li+Yan&rft.date=2022-10-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=10&rft.spage=17815&rft.epage=17828&rft_id=info:doi/10.3934%2Fmath.2022981&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_385d1558b61545fbb7c1f9631ba1f823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon