STATIONARY LINEAR MEAN SQUARE FILTER FOR THE OPERATION MODE OF CONTINUOUS-TIME MARKOVIAN JUMP LINEAR SYSTEMS

This paper makes a further foray on the study of the filtering problem for the class of Markov jump linear systems (MJLSs) with partial observations of the Markov parameter (the operation mode). We derive a stationary filter for the best linear mean square filter (BLMSF) devised in a recent paper by...

Full description

Saved in:
Bibliographic Details
Published inAnnals. Series on mathematics and its applications Vol. 12; no. 1-2; pp. 501 - 521
Main Authors Vergés, Fortià Vila, Fragoso, Marcelo Dutra
Format Journal Article
LanguageEnglish
Published 2020
Online AccessGet full text
ISSN2066-5997
2066-6594
DOI10.56082/annalsarscimath.2020.1-2.501

Cover

Abstract This paper makes a further foray on the study of the filtering problem for the class of Markov jump linear systems (MJLSs) with partial observations of the Markov parameter (the operation mode). We derive a stationary filter for the best linear mean square filter (BLMSF) devised in a recent paper by the authors. It amounts here to obtain the convergence of the error covariance matrix of the best linear mean square filter to a stationary value under some suitable assumptions which includes ergodicity of the Markov chain. The advantage of this scheme is that it is easier to implement since the filter gain computation can be performed offline, leading to a linear time-invariant filter.
AbstractList This paper makes a further foray on the study of the filtering problem for the class of Markov jump linear systems (MJLSs) with partial observations of the Markov parameter (the operation mode). We derive a stationary filter for the best linear mean square filter (BLMSF) devised in a recent paper by the authors. It amounts here to obtain the convergence of the error covariance matrix of the best linear mean square filter to a stationary value under some suitable assumptions which includes ergodicity of the Markov chain. The advantage of this scheme is that it is easier to implement since the filter gain computation can be performed offline, leading to a linear time-invariant filter.
Author Vergés, Fortià Vila
Fragoso, Marcelo Dutra
Author_xml – sequence: 1
  givenname: Fortià Vila
  surname: Vergés
  fullname: Vergés, Fortià Vila
– sequence: 2
  givenname: Marcelo Dutra
  surname: Fragoso
  fullname: Fragoso, Marcelo Dutra
BookMark eNpdkLFOwzAURS1UJErpP3hhTLCd2I4Hhqi4NJDEJXGQOlmu64hKJUUJC39PKGVhevc9PR1dnWsw6Y6dB-AWo5AylJA723X2MNh-cPt3-_kWEkRQiAMSUoQvwJQgxgJGRTw5ZyoEvwLzYdhvEYkwY1zQKTjUOtWZKtNqA_OslGkFC5mWsH5p0krCZZZrWcGlqqBeSajWsjq9w0I9jOsSLlSps7JRTR3orJCwSKtn9ZqNhKemWP8h602tZVHfgMt27Ozn5zkDzVLqxSrI1WO2SPPAYS5wwKPW-h3nzibeYe8FbjmOd4S6mFGUxMJx51ofjXe6xdwR0lomrCfbNmZR4qIZuP_luv44DL1vzUc_Suq_DEbmZM_8s2d-7BlsiBntRd-_LWL9
ContentType Journal Article
CorporateAuthor National Laboratory for Scientific Computing – LNCC/MCTIC
CorporateAuthor_xml – name: National Laboratory for Scientific Computing – LNCC/MCTIC
DBID AAYXX
CITATION
DOI 10.56082/annalsarscimath.2020.1-2.501
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2066-6594
EndPage 521
ExternalDocumentID 10_56082_annalsarscimath_2020_1_2_501
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
KQ8
ID FETCH-LOGICAL-c1791-73faed77ca8ec1ee91f714d25c4650849c7ccfe391f5b17c22fa69ae2bf4638c3
ISSN 2066-5997
IngestDate Tue Jul 01 00:41:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1-2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1791-73faed77ca8ec1ee91f714d25c4650849c7ccfe391f5b17c22fa69ae2bf4638c3
OpenAccessLink https://doi.org/10.56082/annalsarscimath.2020.1-2.501
PageCount 21
ParticipantIDs crossref_primary_10_56082_annalsarscimath_2020_1_2_501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationTitle Annals. Series on mathematics and its applications
PublicationYear 2020
SSID ssib023166795
ssj0000516707
ssib026139329
ssib044729835
ssib025702190
Score 2.1055586
Snippet This paper makes a further foray on the study of the filtering problem for the class of Markov jump linear systems (MJLSs) with partial observations of the...
SourceID crossref
SourceType Index Database
StartPage 501
Title STATIONARY LINEAR MEAN SQUARE FILTER FOR THE OPERATION MODE OF CONTINUOUS-TIME MARKOVIAN JUMP LINEAR SYSTEMS
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZhC6U9lD7pGx3ak7Eby5IVH8Ouw6Zbx9vECbsnYytyWUiTks1e-rv6Aztj2YobStnuxcQCD5HmYzQzmvlEyIcCQBDKUrkyksJF-ha3ZEHghkqFlVyqitd3ESST8HTOP1-Ii17vV6dq6WZXeurnX_tK7qJVGAO9Ypfsf2jWCoUB-A36hSdoGJ630vEsM1y200swQpN4OHUSLMqboZsaO6PxF_BVHQjz6rqe9Dw2CSknSU9irPY5TifZeDJP5zM3GyexkwynZ-lijGV98-S8FTm7nGVxk7r-g3XZQ0Nzpevzhu-W_fXaHkd0z8ZbvS6wmqw-m6_xM9pgOQG-953F1cpuEeBOf9tcb5pmIqVXG-fkZrctujkK1t8bMWSLd0VkanA9vR8Lhbnc2Fph1kVb0xJpjKpo0h1mfxamo_rQ9IPnNmCG9BhWoNiCA4FT9_DveCDPs1K6lNsHW6EtUITQqBaYH4jLUVzu5ywX2DR4j0npYyHp2VdrxcBhDkO573bGawJhW7BWEULWAJxm60RyDvFNS3rXMNKHsu7zt4t3n3xsp_jpXxPsOFcdLyl7TB414Q0dGqw-IT29fkoeJnt0PCOrPWqpgRhF1FKDWmpQSwG1FFBLLWopopamI3qAWmpRSxG1rcgGtc_JfBRnx6duc-eHq5Ao15VBVeillKoYaOVrHfmV9PmSCcUxluCRkkpVOoBxUfpSMVYVYVRoVlYcthIVvCBH681avyRUsFKGkcB7eQNeVDzqa9-PBkXEo7JfDoJXJGwXK_9hqF3yW-n99V0_fEMe4KvJ4L0lR7vtjX4HPu2ufF9D6DcBiIvu
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STATIONARY+LINEAR+MEAN+SQUARE+FILTER+FOR+THE+OPERATION+MODE+OF+CONTINUOUS-TIME+MARKOVIAN+JUMP+LINEAR+SYSTEMS&rft.jtitle=Annals.+Series+on+mathematics+and+its+applications&rft.au=Verg%C3%A9s%2C+Forti%C3%A0+Vila&rft.au=Fragoso%2C+Marcelo+Dutra&rft.date=2020&rft.issn=2066-5997&rft.eissn=2066-6594&rft.volume=12&rft.issue=1-2&rft.spage=501&rft.epage=521&rft_id=info:doi/10.56082%2Fannalsarscimath.2020.1-2.501&rft.externalDBID=n%2Fa&rft.externalDocID=10_56082_annalsarscimath_2020_1_2_501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2066-5997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2066-5997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2066-5997&client=summon