Fast-PADMA: Rapidly Adapting Facial Affect Model From Similar Individuals

A user-specific model generally performs better in facial affect recognition. Existing solutions, however, have usability issues since the annotation can be long and tedious for the end users (e.g., consumers). We address this critical issue by presenting a more user-friendly user-adaptive model to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 20; no. 7; pp. 1901 - 1915
Main Authors Huang, Michael Xuelin, Li, Jiajia, Ngai, Grace, Leong, Hong Va, Hua, Kien A.
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2018
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2017.2775206

Cover

Loading…
Abstract A user-specific model generally performs better in facial affect recognition. Existing solutions, however, have usability issues since the annotation can be long and tedious for the end users (e.g., consumers). We address this critical issue by presenting a more user-friendly user-adaptive model to make the personalized approach more practical. This paper proposes a novel user-adaptive model, which we have called fast-Personal Affect Detection with Minimal Annotation (Fast-PADMA). Fast-PADMA integrates data from multiple source subjects with a small amount of data from the target subject. Collecting this target subject data is feasible since fast-PADMA requires only one self-reported affect annotation per facial video segment. To alleviate overfitting in this context of limited individual training data, we propose an efficient bootstrapping technique, which strengthens the contribution of multiple similar source subjects. Specifically, we employ an ensemble classifier to construct pretrained weak generic classifiers from data of multiple source subjects, which is weighted according to the available data from the target user. The result is a model that does not require expensive computation, such as distribution dissimilarity calculation or model retraining. We evaluate our method with in-depth experimental evaluations on five publicly available facial datasets, with results that compare favorably with the state-of-the-art performance on classifying pain, arousal, and valence. Our findings show that fast-PADMA is effective at rapidly constructing a user-adaptive model that outperforms both its generic and user-specific counterparts. This efficient technique has the potential to significantly improve user-adaptive facial affect recognition for personal use and, therefore, enable comprehensive affect-aware applications.
AbstractList A user-specific model generally performs better in facial affect recognition. Existing solutions, however, have usability issues since the annotation can be long and tedious for the end users (e.g., consumers). We address this critical issue by presenting a more user-friendly user-adaptive model to make the personalized approach more practical. This paper proposes a novel user-adaptive model, which we have called fast-Personal Affect Detection with Minimal Annotation (Fast-PADMA). Fast-PADMA integrates data from multiple source subjects with a small amount of data from the target subject. Collecting this target subject data is feasible since fast-PADMA requires only one self-reported affect annotation per facial video segment. To alleviate overfitting in this context of limited individual training data, we propose an efficient bootstrapping technique, which strengthens the contribution of multiple similar source subjects. Specifically, we employ an ensemble classifier to construct pretrained weak generic classifiers from data of multiple source subjects, which is weighted according to the available data from the target user. The result is a model that does not require expensive computation, such as distribution dissimilarity calculation or model retraining. We evaluate our method with in-depth experimental evaluations on five publicly available facial datasets, with results that compare favorably with the state-of-the-art performance on classifying pain, arousal, and valence. Our findings show that fast-PADMA is effective at rapidly constructing a user-adaptive model that outperforms both its generic and user-specific counterparts. This efficient technique has the potential to significantly improve user-adaptive facial affect recognition for personal use and, therefore, enable comprehensive affect-aware applications.
Author Leong, Hong Va
Hua, Kien A.
Ngai, Grace
Huang, Michael Xuelin
Li, Jiajia
Author_xml – sequence: 1
  givenname: Michael Xuelin
  orcidid: 0000-0001-5695-2869
  surname: Huang
  fullname: Huang, Michael Xuelin
  email: mhuang@mpi-inf.mpg.de
  organization: Max Planck Institute for Informatics, Saarbrucken, Germany
– sequence: 2
  givenname: Jiajia
  surname: Li
  fullname: Li, Jiajia
  email: lijiajia.simg@gmail.com
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong
– sequence: 3
  givenname: Grace
  orcidid: 0000-0002-2027-168X
  surname: Ngai
  fullname: Ngai, Grace
  email: csgngai@comp.polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong
– sequence: 4
  givenname: Hong Va
  surname: Leong
  fullname: Leong, Hong Va
  email: cshleong@comp.polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong
– sequence: 5
  givenname: Kien A.
  surname: Hua
  fullname: Hua, Kien A.
  email: kienhua@cs.ucf.edu
  organization: School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA
BookMark eNp9kE1Lw0AQhhepYFu9C172D6TO7Ca7ibdQjRYaFK3nsNkPWUmTkkSh_94tLR48eJl3GOYZhmdGJm3XWkKuERaIkN1uynLBAOWCSZkwEGdkilmMEYCUk9CHWZQxhAsyG4ZPAIwTkFOyKtQwRi_5fZnf0Ve186bZ09yo3ejbD1oo7VVDc-esHmnZGdvQou-29M1vfaN6umqN__bmSzXDJTl3IezVKefkvXjYLJ-i9fPjapmvI40yHaNayNS6WlsbasoNjyFhKktrpQwmiQZhnWWCpxIRHQMQOhEsYaYGbmIJfE7E8a7uu2Horau0H9Xou3bslW8qhOogpApCqoOQ6iQkgPAH3PV-q_r9f8jNEfHh3d_1FINNLvkP0z5sPw
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_TAFFC_2020_2973158
Cites_doi 10.1109/CVPR.2016.140
10.1109/TPAMI.2006.248
10.1109/CVPR.2010.5539857
10.1080/00031305.1992.10475879
10.1109/TNN.2010.2091281
10.1109/CVPR.2013.75
10.1109/FG.2013.6553779
10.1109/TCYB.2013.2257749
10.1016/j.imavis.2011.12.003
10.1109/CVPR.2013.451
10.1145/1273496.1273521
10.1006/jcss.1997.1504
10.1109/ICCV.2015.430
10.1016/j.neucom.2015.03.020
10.1016/j.imavis.2014.02.008
10.1109/T-AFFC.2011.25
10.1109/TMM.2016.2523421
10.1109/TSMCB.2012.2200675
10.1109/CVPR.2016.602
10.1109/CVPR.2017.580
10.1145/2647868.2654916
10.1109/TPAMI.2010.155
10.1023/A:1010933404324
10.1109/TCYB.2016.2633306
10.1016/j.cviu.2015.09.015
10.1109/TAFFC.2016.2537327
10.1109/TKDE.2009.191
10.1109/CVPRW.2010.5543262
10.1109/TNNLS.2015.2424254
10.1111/j.1467-9280.2007.02024.x
10.1109/CVPRW.2016.184
10.1016/j.imavis.2009.05.007
10.1145/2020408.2020520
10.1109/TAFFC.2015.2495222
10.1109/TNNLS.2011.2178556
10.1016/j.patrec.2013.02.002
10.1109/TPAMI.2014.2366127
10.1109/ICCV.2015.463
10.1109/T-AFFC.2013.4
10.1162/089976601300014493
10.1109/MMUL.2012.26
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMM.2017.2775206
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 1915
ExternalDocumentID 10_1109_TMM_2017_2775206
8115237
Genre orig-research
GrantInformation_xml – fundername: The Hong Kong Polytechnic University
  grantid: PolyU 5222/13E
– fundername: Hong Kong Research Grant Council
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c178t-b678efbceeefb83d34052a98baad155c06efe26387111f2006c56252db03d4703
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Thu Apr 24 23:02:13 EDT 2025
Tue Jul 01 00:53:26 EDT 2025
Wed Aug 27 02:50:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c178t-b678efbceeefb83d34052a98baad155c06efe26387111f2006c56252db03d4703
ORCID 0000-0002-2027-168X
0000-0001-5695-2869
PageCount 15
ParticipantIDs ieee_primary_8115237
crossref_citationtrail_10_1109_TMM_2017_2775206
crossref_primary_10_1109_TMM_2017_2775206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-July
2018-7-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July
PublicationDecade 2010
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref15
ref36
ref31
wu (ref14) 0
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
al-stouhi (ref23) 2011; 6911
ref38
ref16
ref19
ref18
ruiz (ref12) 0
viola (ref5) 0
ref46
ref24
bernhardt (ref37) 0
altman (ref45) 1992; 46
ref26
ref25
ref20
ref42
fu (ref9) 2011; 33
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref40
References_xml – ident: ref24
  doi: 10.1109/CVPR.2016.140
– ident: ref8
  doi: 10.1109/TPAMI.2006.248
– ident: ref22
  doi: 10.1109/CVPR.2010.5539857
– volume: 46
  start-page: 175
  year: 1992
  ident: ref45
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Amer Stat
  doi: 10.1080/00031305.1992.10475879
– ident: ref25
  doi: 10.1109/TNN.2010.2091281
– ident: ref34
  doi: 10.1109/CVPR.2013.75
– ident: ref30
  doi: 10.1109/FG.2013.6553779
– ident: ref10
  doi: 10.1109/TCYB.2013.2257749
– ident: ref33
  doi: 10.1016/j.imavis.2011.12.003
– ident: ref3
  doi: 10.1109/CVPR.2013.451
– year: 0
  ident: ref5
  article-title: Multiple instance boosting for object detection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1145/1273496.1273521
– ident: ref21
  doi: 10.1006/jcss.1997.1504
– ident: ref31
  doi: 10.1109/ICCV.2015.430
– ident: ref35
  doi: 10.1016/j.neucom.2015.03.020
– ident: ref6
  doi: 10.1016/j.imavis.2014.02.008
– ident: ref39
  doi: 10.1109/T-AFFC.2011.25
– ident: ref4
  doi: 10.1109/TMM.2016.2523421
– ident: ref18
  doi: 10.1109/TSMCB.2012.2200675
– volume: 6911
  start-page: 60
  year: 2011
  ident: ref23
  publication-title: Adaptive Boosting for Transfer Learning Using Dynamic Updates
– start-page: 59
  year: 0
  ident: ref37
  article-title: Detecting affect from non-stylised body motions
  publication-title: Affective Computing and Intelligent Interaction
– ident: ref15
  doi: 10.1109/CVPR.2016.602
– ident: ref46
  doi: 10.1109/CVPR.2017.580
– ident: ref2
  doi: 10.1145/2647868.2654916
– volume: 33
  start-page: 958
  year: 2011
  ident: ref9
  article-title: MILIS: Multiple instance learning with instance selection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.155
– start-page: 1
  year: 0
  ident: ref14
  article-title: Multi-instance hidden markov model for facial expression recognition
  publication-title: Proc IEEE Automat Face Gesture Recogn Workshops Int Conf
– ident: ref44
  doi: 10.1023/A:1010933404324
– ident: ref26
  doi: 10.1109/TCYB.2016.2633306
– ident: ref13
  doi: 10.1016/j.cviu.2015.09.015
– ident: ref16
  doi: 10.1109/TAFFC.2016.2537327
– ident: ref19
  doi: 10.1109/TKDE.2009.191
– ident: ref38
  doi: 10.1109/CVPRW.2010.5543262
– ident: ref11
  doi: 10.1109/TNNLS.2015.2424254
– year: 0
  ident: ref12
  article-title: Regularized multi-concept MIL for weakly-supervised facial behavior categorization
  publication-title: Proc Brit Mach Vis Conf
– ident: ref43
  doi: 10.1111/j.1467-9280.2007.02024.x
– ident: ref29
  doi: 10.1109/CVPRW.2016.184
– ident: ref7
  doi: 10.1016/j.imavis.2009.05.007
– ident: ref36
  doi: 10.1145/2020408.2020520
– ident: ref17
  doi: 10.1109/TAFFC.2015.2495222
– ident: ref27
  doi: 10.1109/TNNLS.2011.2178556
– ident: ref32
  doi: 10.1016/j.patrec.2013.02.002
– ident: ref1
  doi: 10.1109/TPAMI.2014.2366127
– ident: ref28
  doi: 10.1109/ICCV.2015.463
– ident: ref41
  doi: 10.1109/T-AFFC.2013.4
– ident: ref40
  doi: 10.1162/089976601300014493
– ident: ref42
  doi: 10.1109/MMUL.2012.26
SSID ssj0014507
Score 2.2360172
Snippet A user-specific model generally performs better in facial affect recognition. Existing solutions, however, have usability issues since the annotation can be...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1901
SubjectTerms Adaptation models
Affective computing
Computational modeling
Data models
Face recognition
facial affect
Hidden Markov models
Prototypes
rapid modeling
Training
user-adaptive model
Title Fast-PADMA: Rapidly Adapting Facial Affect Model From Similar Individuals
URI https://ieeexplore.ieee.org/document/8115237
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NS8Mw9DE96cHpVJxf5OBFsF3tVxJvRS1OqIg62K0kTQrDuQ3XHfTX-9J2ZYqIl1LaFwjv5X3mfQCc5SygGWUaWTyT6KB43OJK5BYNeChDLmRedft8CO8G_v0wGLbgoqmF0VqXyWfaNq_lXb6aZgsTKusxNF9cj67BGjpuVa1Wc2PgB2VpNAI4Fkc_Znkl6fDeS5KYHC5qu5Ti7_CbClqZqVKqlLgNyXIzVSbJq70opJ19_ujT-N_dbsNWbVuSqDoMO9DSkw60l3MbSM3GHdhcaUK4C_1YzAvrMbpJoivyJGYjNf4gkRIzkxBNYmFi6iQq0z6ImZw2JvH79I08j95G6BWTflPRNd-DQXz7cn1n1QMWrOySssKSqKl0LlFP4pN5ykPrzRWcSSEU2hmZE-pcu8ihFCViboIPmfGXXCUdT_koK_ZhfTKd6AMgmkvmK-0L7eV-4FHpMd-ITp_mTHIZdqG3xHma1d3HzRCMcVp6IQ5PkUqpoVJaU6kL582KWdV54w_YXYP_Bq5G_eHvn49gAxezKun2GNaL94U-QdOikKflmfoCIk3JPA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LSsQwcFj1oB5cn_g2By-C3a19JfFW1LKrVkRX8FaSJoXFfaHdg369k7ZbVES8lNJOS5jJZN4zAMcZ82lKmUYWTyUaKC63uBKZRX0eyIALmZXdPu-CzpN3_ew_N-C0roXRWhfJZ7plbotYvhqnU-MqazNUXxyXzsGCb4pxy2qtOmbg-UVxNILYFkdLZhaUtHm7F8cmi4u2HErxdfBNCH2ZqlIIlagJ8Ww5ZS7JS2uay1b68aNT43_XuworlXZJwnI7rEFDj9ahOZvcQCpGXoflL20IN6Abibfcug8v4_CcPIhJXw3eSajExKREk0gYrzoJi8QPYmanDUj0Oh6Sx_6wj3Yx6dY1XW-b8BRd9S46VjViwUrPKMstibJKZxIlJV6Zq1zU3xzBmRRCoaaR2oHOtIM8SvFMzIz7ITUWk6Ok7SoPT4stmB-NR3obiOaSeUp7QruZ57tUuswzh6dHMya5DHagPcN5klb9x80YjEFS2CE2T5BKiaFSUlFpB07qLyZl740_YDcM_mu4CvW7vz8-gsVOL75Nbrt3N3uwhD9iZQruPsznr1N9gIpGLg-L_fUJzbrMhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast-PADMA%3A+Rapidly+Adapting+Facial+Affect+Model+From+Similar+Individuals&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Huang%2C+Michael+Xuelin&rft.au=Li%2C+Jiajia&rft.au=Ngai%2C+Grace&rft.au=Leong%2C+Hong+Va&rft.date=2018-07-01&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=20&rft.issue=7&rft.spage=1901&rft.epage=1915&rft_id=info:doi/10.1109%2FTMM.2017.2775206&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2017_2775206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon