Advancing RbGeBr3 perovskite solar cells with metal doped chalcogenide ETL: A leap towards higher efficiency
•The study achieved a remarkable PCE of 32.06 %, making RbGeBr3 a promising active material for perovskite solar cells.•Among various ETL materials tested (TiO2, PCBM, and Sn(S0.92Se0.08)2), the metal-doped Sn(S0.92Se0.08)2 ETL demonstrated superior performance.•The research utilized SCAPS-1D simula...
Saved in:
Published in | Electrochimica acta Vol. 538; p. 146950 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
20.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The study achieved a remarkable PCE of 32.06 %, making RbGeBr3 a promising active material for perovskite solar cells.•Among various ETL materials tested (TiO2, PCBM, and Sn(S0.92Se0.08)2), the metal-doped Sn(S0.92Se0.08)2 ETL demonstrated superior performance.•The research utilized SCAPS-1D simulations to optimize the device structure, considering critical parameters such as layer thickness, defect density, temperature, and resistances.•The optimized device exhibited VOC of 1.3885 V, JSC of 28.074 mA.cm−2 and FF of 82.24 %, emphasizing its high efficiency.•The study contributes to the development of lead-free and stable perovskite materials, reinforcing the potential of RbGeBr3 for sustainable solar energy applications.
Perovskite solar cells (PSCs) have emerged as promising contenders in the field of photovoltaic technology, gaining significant attention for their remarkable power conversion efficiency (PCE), scalability and versatility in manufacturing. Utilizing RbGeBr3 as the active material; the purpose is to enhance stability and efficiency. Critical factors such active layer thickness, electron and hole transport layer thicknesses, defect density, temperature (T(K)) effect, and series (RS) and shunt resistances(RSh) are analyzed in order to achieve the optimum device performance. This work extensively investigates the impact of different charge transport layers, revealing that TiO2, PCBM, and metal-doped Sn(S0.92Se0.08)2 serve as highly effective interfaces for boosting the performance of RbGeBr3 PSCs. The combination of Sn(S0.92Se0.08)2 as the electron transport layer (ETL) and CuI as the hole transport layer (HTL) yielded the best performance, achieving an optimized device configuration. In our investigation, the optimized device architecture was identified as (Au/CuI/RbGeBr3/Sn(S0.92Se0.08)2 /FTO). This configuration achieved remarkable performance metrics, including a PCE of 32.06 %, an open-circuit voltage (VOC) of 1.3885 V, a fill factor (FF) of 82.24 %, and a short-circuit current density (JSC) of 28.074 mA.cm−2. Notably, Sn(S0.92Se0.08)2 demonstrated superior performance, proving to be a more effective ETL for improving the efficiency of environmentally friendly Rb-based PSCs. |
---|---|
AbstractList | •The study achieved a remarkable PCE of 32.06 %, making RbGeBr3 a promising active material for perovskite solar cells.•Among various ETL materials tested (TiO2, PCBM, and Sn(S0.92Se0.08)2), the metal-doped Sn(S0.92Se0.08)2 ETL demonstrated superior performance.•The research utilized SCAPS-1D simulations to optimize the device structure, considering critical parameters such as layer thickness, defect density, temperature, and resistances.•The optimized device exhibited VOC of 1.3885 V, JSC of 28.074 mA.cm−2 and FF of 82.24 %, emphasizing its high efficiency.•The study contributes to the development of lead-free and stable perovskite materials, reinforcing the potential of RbGeBr3 for sustainable solar energy applications.
Perovskite solar cells (PSCs) have emerged as promising contenders in the field of photovoltaic technology, gaining significant attention for their remarkable power conversion efficiency (PCE), scalability and versatility in manufacturing. Utilizing RbGeBr3 as the active material; the purpose is to enhance stability and efficiency. Critical factors such active layer thickness, electron and hole transport layer thicknesses, defect density, temperature (T(K)) effect, and series (RS) and shunt resistances(RSh) are analyzed in order to achieve the optimum device performance. This work extensively investigates the impact of different charge transport layers, revealing that TiO2, PCBM, and metal-doped Sn(S0.92Se0.08)2 serve as highly effective interfaces for boosting the performance of RbGeBr3 PSCs. The combination of Sn(S0.92Se0.08)2 as the electron transport layer (ETL) and CuI as the hole transport layer (HTL) yielded the best performance, achieving an optimized device configuration. In our investigation, the optimized device architecture was identified as (Au/CuI/RbGeBr3/Sn(S0.92Se0.08)2 /FTO). This configuration achieved remarkable performance metrics, including a PCE of 32.06 %, an open-circuit voltage (VOC) of 1.3885 V, a fill factor (FF) of 82.24 %, and a short-circuit current density (JSC) of 28.074 mA.cm−2. Notably, Sn(S0.92Se0.08)2 demonstrated superior performance, proving to be a more effective ETL for improving the efficiency of environmentally friendly Rb-based PSCs. |
ArticleNumber | 146950 |
Author | Verma, Akash Anand Dwivedi, D.K. |
Author_xml | – sequence: 1 givenname: Akash Anand surname: Verma fullname: Verma, Akash Anand – sequence: 2 givenname: D.K. orcidid: 0000-0002-8334-5535 surname: Dwivedi fullname: Dwivedi, D.K. email: todkdwivedi@gmail.com |
BookMark | eNqFkNFKwzAYhXMxwW36DOYFWpM2TTvv6phTGAgyr0P65--ambUlKRt7ezsn3goHzs05h8M3I5O2a5GQB85izrh83MfoEAY9Kk5YksVcyEXGJmTKGE8jIQt5S2Yh7BljuczZlLjSHHULtt3Rj2qNzz6lPfruGL7sgDR0TnsK6FygJzs09ICDdtR0PRoKjXbQ7bC1Bulqu3miJXWoezp0J-1NoI3dNegp1rUFiy2c78hNrV3A-1-fk8-X1Xb5Gm3e12_LchMBz4sh4jxlohCVBCGhEpXJeKbTOllUIsvFQhssdIUSpE5TyCoDaZUDJCgyyBhnSTon-XUXfBeCx1r13h60PyvO1AWU2qs_UOoCSl1Bjc3y2sTx3tGiV-HnOhrrx7wynf134xsqI3rf |
Cites_doi | 10.1007/s10854-020-04084-1 10.1016/j.solener.2022.03.053 10.1016/j.jpcs.2024.112437 10.1063/5.0251323 10.1016/j.jpcs.2024.112324 10.3938/jkps.65.355 10.1002/adfm.202308457 10.1021/acsomega.3c06627 10.1016/j.joule.2023.08.002 10.1016/j.solener.2015.07.040 10.1002/adma.201401991 10.1039/D4YA00323C 10.1039/D2RA06734J 10.1002/aenm.201500477 10.1016/j.jpcs.2024.112401 10.1002/zaac.19895710106 10.1016/j.optcom.2025.131761 10.1038/s41598-023-42471-w 10.1126/science.aah5557 10.1002/pip.3895 10.1038/s41598-024-62487-0 10.1039/C5EE03380B 10.1016/j.solener.2023.112128 10.1016/j.micrna.2022.207403 10.1016/j.jallcom.2024.177882 10.1016/j.inoche.2024.113647 10.1021/nl500390f 10.1016/j.nanoen.2016.10.027 10.1016/j.optmat.2019.109631 10.1016/j.rinp.2024.107351 10.1016/j.jpcs.2021.110168 10.1039/C6TA04685A 10.1080/23311916.2023.2179467 10.1117/1.JPE.10.015502 10.1002/adfm.202001387 10.1007/s11664-021-09269-w 10.1016/j.tsf.2016.10.039 10.1038/nnano.2015.90 10.1021/acsenergylett.6b00697 10.1002/adts.202200856 10.1038/s41598-024-83600-3 10.1039/C6TA08332C |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.electacta.2025.146950 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_electacta_2025_146950 S0013468625013106 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABMAC ABNUV ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACVFH ADBBV ADCNI ADECG ADEWK ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFZHZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ADIYS ADMUD ADNMO AGQPQ AI. AIDUJ AJQLL ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH T9H VH1 WUQ XOL ZY4 |
ID | FETCH-LOGICAL-c178t-1130484b6c46cb4bd515a3f29b45749ade8abe6c6a33c5bdc3b7cc2e45c501023 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Thu Aug 21 00:30:44 EDT 2025 Sat Aug 30 17:16:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar cell HTL SCAPS-1D, ETL, HTL, RbGeBr3, Solar cell RbGeBr3 ETL SCAPS-1D |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c178t-1130484b6c46cb4bd515a3f29b45749ade8abe6c6a33c5bdc3b7cc2e45c501023 |
ORCID | 0000-0002-8334-5535 |
ParticipantIDs | crossref_primary_10_1016_j_electacta_2025_146950 elsevier_sciencedirect_doi_10_1016_j_electacta_2025_146950 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-20 |
PublicationDateYYYYMMDD | 2025-10-20 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hossain, Arnab, Das, Hossain, Rubel, Rahman, Bencherif, Emetere, Mohammed, Pandey, Combined (bib0015) 2022; 12 Lee, Seol, Cho, Park (bib0018) 2014; 26 Battaglia, Cuevas, De Wolf (bib0007) 2016; 9 Gupta, Ghoshal, Yoshimura, Basu, Chow, Lakhnot, Pandey, Warrender, Efstathiadis, Soni, Osei-Agyemang, Balasubramanian, Zhang, Shi, Lu, Meunier, Koratkar (bib0023) 2020; 30 Hossain, Chelvanathan, Aissa, Khandakar, Rahman, Mansour (bib0039) 2025; 15 Hossain, Aïssa, Zimmermann, Nazeeruddin, Belaidi (bib0031) 2020; 10 Zhang, Yun, Ma, Zheng, Lau, Deng, Kim, Kim, Seidel, Green, Huang, Ho-Baillie (bib0030) 2017; 2 Li, He, Liang, Qi (bib0038) 2023; 7 Sharma, Jain, Sharma (bib0009) 2015; 06 Chelvanathan, Rahman, Hossain, Rashid, Samsudin, Mustafa, Bais, Akhtaruzzaman, Amin (bib0006) 2017; 621 Islam Bhuiyan, Reza, Ghosh, Al-Dmour, Kumar, Ibn Rahim, Aktarujjaman, Yeasmin, Al-Lohedan, Ramalingam, Reza (bib0035) 2025; 583 Samaki, Tchangnwa Nya, Dzifack Kenfack, Laref (bib0049) 2023; 13 H. Bencherif, F. Meddour, M.H. Elshorbagy, M.K. Hossain, Micro and nanostructures performance enhancement of (FAPbI 3) 1-x (MAPbBr 3) x perovskite solar cell with an optimized design, 171 (2022) 1-16. Conings, Drijkoningen, Gauquelin, Babayigit, D’Haen, D’Olieslaeger, Ethirajan, Verbeeck, Manca, Mosconi, De Angelis, Boyen (bib0019) 2015; 5 Chaurasia, Lohia, Dwivedi, Pandey, Madan, Agarwal, Khalid Hossain, Kumar Yadav, Singh (bib0045) 2024; 170 Harun-Or-Rashid, Rahman, Amami, Ben Farhat, Islam, Benami (bib0027) 2025; 197 Duong, Mulmudi, Shen, Wu, Barugkin, Mayon, Nguyen, Macdonald, Peng, Lockrey, Li, Cheng, White, Weber, Catchpole (bib0025) 2016; 30 Xu, Chen, Ma, Shi, Zhang, Xiong, Fan, Si, Wu, Zhang, Liao, Yin, Kang, Zhang (bib0026) 2022; 34 Sakib, Ahammed, Tarekuzzaman, Al-Dmour, Rasheduzzaman, Sakib, Moazzam Hossen, Hasan (bib0032) 2025; 15 Hossain, Alharbi, Tabet (bib0043) 2015; 120 Pal (bib0017) 2023; 6 Vincent Mercy, Srinivasan, Marasamy (bib0051) 2024; 9 Ming, Shi, Du (bib0014) 2016; 4 Umar, Sadanand, Dwivedi, Algadi, Ibrahim, Alhammai, Baskoutas (bib0044) 2022; 13 Haque, Mahjabin, Abdullah, Akhtaruzzaman, Almohamadi, Islam, Hossain, Ibrahim, Chelvanathan (bib0041) 2025; 196 Thiele, Rotter, Schmidt (bib0029) 1989; 571 Srivastava, Sadanand, Lohia, Dwivedi, Qasem, Umar, Akbar, Algadi, Baskoutas (bib0013) 2022 Lee, Kim, Ifitiquar, Park, Yi (bib0008) 2014; 65 Hossain, Chelvanathan, Khandakar, Thomas, Rahman, Mansour (bib0034) 2024; 14 Reza, Ghosh, Gassoumi, Hasan, Shahjalal, Yahia, Reza, Prodhan, Islam, Talukder, Chaudhry, Akter (bib0046) 2025; 172 Rahman, Rahman, Hossain, Islam, Al Ahmed, Irfan (bib0052) 2024 Valizadeh, Shokri, Sabouri-Dodaran, Fough, Muhammad-Sukki (bib0048) 2024; 57 Rai, Pandey, Dwivedi (bib0001) 2021; 156 Pindolia, Shinde, Jha (bib0047) 2022; 236 Jassim, Bakr, Mustafa (bib0022) 2020; 31 Li, Li, Li, Fan, Mai, Wang (bib0016) 2016; 4 Verma, Dwivedi, Lohia, Singh, Yadav, Kumar, Agarwal, Kulshrestha (bib0011) 2025; 1010 Li, Li, Yang, Jin, Zhang, Wang, Deng, Zhan, Zhang (bib0042) 2024 Li, Zhang, He, Deng, Yang, Mo, Zhan, Liang (bib0036) 2023; 33 Ekwu, Danladi, Tasie, Haruna, Okoro, Gyuk, Jimoh, Obasi (bib0028) 2023 Hossain, Tong, Shetty, Mansour (bib0004) 2023; 265 Kumar, Dharani, Leong, Boix, Prabhakar, Baikie, Shi, Ding, Ramesh, Asta, Graetzel, Mhaisalkar, Mathews (bib0037) 2014; 26 Frost, Butler, Brivio, Hendon, van Schilfgaarde, Walsh (bib0020) 2014; 14 Hossain, Khandakar, Chowdhury, Ahmed, Nauman, Aïssa (bib0040) 2022; 51 Rai, Pandey, Dwivedi (bib0010) 2020; 100 Verma, Dwivedi, Lohia, Pandey, Madan, Agarwal, Kulshrestha (bib0002) 2025; 196 Stranks, Snaith (bib0003) 2015; 10 Rahman, Ali, Haque, Touhidul Islam (bib0033) 2024; 3 Hossain, Mansour (bib0005) 2023; 10 Reza, Rahman, Reza, Islam, Rehman, Chaudhry, Irfan (bib0050) 2024; 39 Saliba, Matsui, Domanski, Seo, Ummadisingu, Zakeeruddin, Correa-Baena, Tress, Abate, Hagfeldt, Grätzel (bib0024) 2016; 354 Verma, Dwivedi, Lohia, Agarwal, Kulshrestha, Kumar, Pandey (bib0012) 2025 Hossain (10.1016/j.electacta.2025.146950_bib0015) 2022; 12 Reza (10.1016/j.electacta.2025.146950_bib0046) 2025; 172 Samaki (10.1016/j.electacta.2025.146950_bib0049) 2023; 13 Jassim (10.1016/j.electacta.2025.146950_bib0022) 2020; 31 Kumar (10.1016/j.electacta.2025.146950_bib0037) 2014; 26 Harun-Or-Rashid (10.1016/j.electacta.2025.146950_bib0027) 2025; 197 Lee (10.1016/j.electacta.2025.146950_bib0008) 2014; 65 Hossain (10.1016/j.electacta.2025.146950_bib0031) 2020; 10 Rahman (10.1016/j.electacta.2025.146950_bib0033) 2024; 3 Haque (10.1016/j.electacta.2025.146950_bib0041) 2025; 196 Vincent Mercy (10.1016/j.electacta.2025.146950_bib0051) 2024; 9 Srivastava (10.1016/j.electacta.2025.146950_bib0013) 2022 Ekwu (10.1016/j.electacta.2025.146950_bib0028) 2023 Ming (10.1016/j.electacta.2025.146950_bib0014) 2016; 4 Umar (10.1016/j.electacta.2025.146950_bib0044) 2022; 13 Chaurasia (10.1016/j.electacta.2025.146950_bib0045) 2024; 170 Saliba (10.1016/j.electacta.2025.146950_bib0024) 2016; 354 Hossain (10.1016/j.electacta.2025.146950_bib0004) 2023; 265 Verma (10.1016/j.electacta.2025.146950_bib0002) 2025; 196 Hossain (10.1016/j.electacta.2025.146950_bib0043) 2015; 120 Li (10.1016/j.electacta.2025.146950_bib0036) 2023; 33 Hossain (10.1016/j.electacta.2025.146950_bib0039) 2025; 15 Battaglia (10.1016/j.electacta.2025.146950_bib0007) 2016; 9 Li (10.1016/j.electacta.2025.146950_bib0016) 2016; 4 Rai (10.1016/j.electacta.2025.146950_bib0010) 2020; 100 Sakib (10.1016/j.electacta.2025.146950_bib0032) 2025; 15 Rai (10.1016/j.electacta.2025.146950_bib0001) 2021; 156 Pal (10.1016/j.electacta.2025.146950_bib0017) 2023; 6 Stranks (10.1016/j.electacta.2025.146950_bib0003) 2015; 10 Sharma (10.1016/j.electacta.2025.146950_bib0009) 2015; 06 Verma (10.1016/j.electacta.2025.146950_bib0011) 2025; 1010 Thiele (10.1016/j.electacta.2025.146950_bib0029) 1989; 571 Duong (10.1016/j.electacta.2025.146950_bib0025) 2016; 30 Gupta (10.1016/j.electacta.2025.146950_bib0023) 2020; 30 Zhang (10.1016/j.electacta.2025.146950_bib0030) 2017; 2 Li (10.1016/j.electacta.2025.146950_bib0038) 2023; 7 Hossain (10.1016/j.electacta.2025.146950_bib0040) 2022; 51 Rahman (10.1016/j.electacta.2025.146950_bib0052) 2024 Islam Bhuiyan (10.1016/j.electacta.2025.146950_bib0035) 2025; 583 Lee (10.1016/j.electacta.2025.146950_bib0018) 2014; 26 Li (10.1016/j.electacta.2025.146950_bib0042) 2024 Hossain (10.1016/j.electacta.2025.146950_bib0005) 2023; 10 Valizadeh (10.1016/j.electacta.2025.146950_bib0048) 2024; 57 10.1016/j.electacta.2025.146950_bib0021 Xu (10.1016/j.electacta.2025.146950_bib0026) 2022; 34 Conings (10.1016/j.electacta.2025.146950_bib0019) 2015; 5 Pindolia (10.1016/j.electacta.2025.146950_bib0047) 2022; 236 Chelvanathan (10.1016/j.electacta.2025.146950_bib0006) 2017; 621 Frost (10.1016/j.electacta.2025.146950_bib0020) 2014; 14 Reza (10.1016/j.electacta.2025.146950_bib0050) 2024; 39 Verma (10.1016/j.electacta.2025.146950_bib0012) 2025 Hossain (10.1016/j.electacta.2025.146950_bib0034) 2024; 14 |
References_xml | – start-page: 1 year: 2024 end-page: 10 ident: bib0042 article-title: Metal chalcogenide electron extraction layers for nip -type tin-based perovskite solar cells publication-title: Nat. Commun. – volume: 571 start-page: 60 year: 1989 end-page: 68 ident: bib0029 article-title: Die kristallstrukturen und phasentransformationen des tetramorphen RbGel3, Zeitschrift Für Anorg publication-title: Und Allg. Chemie – volume: 30 start-page: 330 year: 2016 end-page: 340 ident: bib0025 article-title: Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites publication-title: Nano Energy – volume: 39 year: 2024 ident: bib0050 article-title: Rubidium based new lead free high performance perovskite solar cells with SnS2 as an electron transport layer publication-title: Mater. Today Commun. – volume: 196 year: 2025 ident: bib0002 article-title: Innovative design strategies for solar cells: theoretical examination of linearly graded perovskite solar cell with PTAA as HTL publication-title: J. Phys. Chem. Solids – volume: 10 start-page: 391 year: 2015 end-page: 402 ident: bib0003 article-title: Metal-halide perovskites for photovoltaic and light-emitting devices publication-title: Nat. Nanotechnol. – volume: 26 year: 2014 ident: bib0018 article-title: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2) (2)PbI3 publication-title: Adv. Mater. – volume: 13 year: 2023 ident: bib0049 article-title: Materials and interfaces properties optimization for high-efficient and more stable RbGeI3 perovskite solar cells: optoelectrical modelling publication-title: Sci. Rep. – volume: 57 year: 2024 ident: bib0048 article-title: Investigation of efficiency and temperature dependence in RbGeBr3-based perovskite solar cell structures publication-title: Results Phys – volume: 26 start-page: 7122 year: 2014 end-page: 7127 ident: bib0037 article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation publication-title: Adv. Mater. – volume: 33 year: 2023 ident: bib0036 article-title: Alleviating the crystallization dynamics and suppressing the oxidation process for tin-based perovskite solar cells with fill factors exceeding 80 percent publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1966 year: 2023 end-page: 1991 ident: bib0038 article-title: Functional layers in efficient and stable inverted tin-based perovskite solar cells publication-title: Joule – year: 2025 ident: bib0012 article-title: Enhancing efficiency of lead-free Cs2TiIxBr6-x perovskite solar cells through linear and parabolic grading strategies: toward 31.18% efficiency publication-title: Prog. Photovoltaics Res. Appl. – volume: 30 year: 2020 ident: bib0023 article-title: An environmentally stable and lead-free chalcogenide perovskite publication-title: Adv. Funct. Mater. – volume: 15 start-page: 7709 year: 2025 ident: bib0039 article-title: Enhanced perovskite solar cells performance with TiOx and SnOx thin films as electron transport layers publication-title: Sci. Rep. – volume: 51 start-page: 179 year: 2022 end-page: 189 ident: bib0040 article-title: Numerical and experimental investigation of infrared optical filter based on metal oxide thin films for temperature mitigation in photovoltaics publication-title: J. Electron. Mater. – volume: 120 start-page: 370 year: 2015 end-page: 380 ident: bib0043 article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells publication-title: Sol. Energy – volume: 6 year: 2023 ident: bib0017 article-title: A comprehensive analysis of eco-friendly Cs2SnI6 based tin halide perovskite solar cell through device modeling publication-title: Adv. Theory Simulations – volume: 06 start-page: 1145 year: 2015 end-page: 1155 ident: bib0009 article-title: Solar cells: in research and applications—A review publication-title: Mater. Sci. Appl. – volume: 10 year: 2020 ident: bib0031 article-title: Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device publication-title: J. Photonics Energy – volume: 1010 year: 2025 ident: bib0011 article-title: Achieving 31.16 % efficiency in perovskite solar cells via synergistic Dion-Jacobson 2D-3D layer design publication-title: J. Alloys Compd. – volume: 197 year: 2025 ident: bib0027 article-title: Exploring new lead-free halide perovskites RbSnM3 (M = I, Br, Cl) and achieving power conversion efficiency >32 % publication-title: J. Phys. Chem. Solids – volume: 100 year: 2020 ident: bib0010 article-title: Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation publication-title: Opt. Mater. (Amst). – volume: 4 start-page: 17104 year: 2016 end-page: 17110 ident: bib0016 article-title: Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K publication-title: J. Mater. Chem. A – volume: 170 year: 2024 ident: bib0045 article-title: Enhancing perovskite solar cell efficiency to 28.17% by integrating Dion-Jacobson 2D and 3D phase perovskite absorbers, Inorg publication-title: Chem. Commun. – volume: 31 start-page: 16199 year: 2020 end-page: 16207 ident: bib0022 article-title: Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell publication-title: J. Mater. Sci. Mater. Electron. – volume: 196 year: 2025 ident: bib0041 article-title: Exploring the theoretical potential of tungsten oxide (WOx) as a universal electron transport layer (ETL) for various perovskite solar cells through interfacial energy band alignment modulation publication-title: J. Phys. Chem. Solids – volume: 4 start-page: 13852 year: 2016 end-page: 13858 ident: bib0014 article-title: Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3 publication-title: J. Mater. Chem. A – volume: 65 start-page: 355 year: 2014 end-page: 361 ident: bib0008 article-title: Silicon solar cells: past, present and the future publication-title: J. Korean Phys. Soc. – volume: 621 start-page: 240 year: 2017 end-page: 246 ident: bib0006 article-title: Growth of MoOx nanobelts from molybdenum bi-layer thin films for thin film solar cell application publication-title: Thin. Solid. Films – volume: 34 year: 2022 ident: bib0026 article-title: Interpretation of rubidium-based perovskite recipes toward electronic passivation and ion-diffusion mitigation publication-title: Adv. Mater. – volume: 10 year: 2023 ident: bib0005 article-title: A critical overview of thin films coating technologies for energy applications publication-title: Cogent Eng – volume: 9 start-page: 4359 year: 2024 end-page: 4376 ident: bib0051 article-title: Emerging BaZrS3 and Ba(Zr,Ti)S3 chalcogenide perovskite solar cells: a numerical approach toward device engineering and unlocking efficiency publication-title: ACS Omega – year: 2024 ident: bib0052 article-title: A numerical strategy for achieving efficiency exceeding 32% with a novel lead-free dual-absorber solar cell using Ca3SbI3 and Sr3SbI3 perovskites publication-title: Adv. Photonics Res. n/a – volume: 172 year: 2025 ident: bib0046 article-title: A comprehensive investigation involving numerous HTL and ETL layers to design and simulate high-efficiency Ca3AsI3-based perovskite solar cells publication-title: Inorg. Chem. Commun. – volume: 354 start-page: 206 year: 2016 end-page: 209 ident: bib0024 article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance publication-title: Science – volume: 12 start-page: 34850 year: 2022 end-page: 34873 ident: bib0015 article-title: SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers publication-title: RSC Adv. – start-page: 118 year: 2023 end-page: 124 ident: bib0028 article-title: A qualitative theoretical study of inorganic HTM-free RbGeI3 based perovskite solar cells using SCAPS 1D as a pathway towards 3.601% efficiency, East Eur publication-title: J. Phys. – start-page: 97 year: 2022 ident: bib0013 article-title: Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D publication-title: Phys. Scr. – volume: 3 start-page: 2377 year: 2024 end-page: 2398 ident: bib0033 article-title: Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance publication-title: Energy Adv – volume: 13 year: 2022 ident: bib0044 article-title: High power-conversion efficiency of lead-free perovskite solar cells: a theoretical investigation publication-title: Micromachines (Basel) – volume: 5 year: 2015 ident: bib0019 article-title: Intrinsic thermal instability of methylammonium lead trihalide perovskite publication-title: Adv. Energy Mater. – volume: 265 year: 2023 ident: bib0004 article-title: Probing the degradation pathways in perovskite solar cells publication-title: Sol. Energy – volume: 14 year: 2024 ident: bib0034 article-title: Enhanced efficiency of bifacial perovskite solar cells using computational study publication-title: Sci. Rep. – volume: 9 start-page: 1552 year: 2016 end-page: 1576 ident: bib0007 article-title: High-efficiency crystalline silicon solar cells: status and perspectives publication-title: Energy Environ. Sci. – volume: 14 start-page: 2584 year: 2014 end-page: 2590 ident: bib0020 article-title: Atomistic origins of high-performance in hybrid halide perovskite solar cells publication-title: Nano Lett. – volume: 583 year: 2025 ident: bib0035 article-title: Optimized RbPbI3-based perovskite solar cells with SnS2 ETL and MoO3 HTL achieving simulated PCE of 32.72% publication-title: Opt. Commun. – volume: 15 year: 2025 ident: bib0032 article-title: Highly efficient (31%) of rubidium-based halide perovskite solar cell using SCAPS-1D simulation publication-title: AIP Adv – volume: 2 start-page: 438 year: 2017 end-page: 444 ident: bib0030 article-title: High-efficiency rubidium-incorporated perovskite solar cells by gas quenching publication-title: ACS Energy Lett – volume: 236 start-page: 802 year: 2022 end-page: 821 ident: bib0047 article-title: Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation publication-title: Sol. Energy – volume: 156 year: 2021 ident: bib0001 article-title: Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation publication-title: J. Phys. Chem. Solids – reference: H. Bencherif, F. Meddour, M.H. Elshorbagy, M.K. Hossain, Micro and nanostructures performance enhancement of (FAPbI 3) 1-x (MAPbBr 3) x perovskite solar cell with an optimized design, 171 (2022) 1-16. – volume: 31 start-page: 16199 year: 2020 ident: 10.1016/j.electacta.2025.146950_bib0022 article-title: Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-04084-1 – volume: 236 start-page: 802 year: 2022 ident: 10.1016/j.electacta.2025.146950_bib0047 article-title: Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation publication-title: Sol. Energy doi: 10.1016/j.solener.2022.03.053 – volume: 197 year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0027 article-title: Exploring new lead-free halide perovskites RbSnM3 (M = I, Br, Cl) and achieving power conversion efficiency >32 % publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2024.112437 – volume: 15 year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0032 article-title: Highly efficient (31%) of rubidium-based halide perovskite solar cell using SCAPS-1D simulation publication-title: AIP Adv doi: 10.1063/5.0251323 – volume: 196 year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0041 article-title: Exploring the theoretical potential of tungsten oxide (WOx) as a universal electron transport layer (ETL) for various perovskite solar cells through interfacial energy band alignment modulation publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2024.112324 – volume: 65 start-page: 355 year: 2014 ident: 10.1016/j.electacta.2025.146950_bib0008 article-title: Silicon solar cells: past, present and the future publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.65.355 – volume: 170 year: 2024 ident: 10.1016/j.electacta.2025.146950_bib0045 article-title: Enhancing perovskite solar cell efficiency to 28.17% by integrating Dion-Jacobson 2D and 3D phase perovskite absorbers, Inorg publication-title: Chem. Commun. – volume: 33 year: 2023 ident: 10.1016/j.electacta.2025.146950_bib0036 article-title: Alleviating the crystallization dynamics and suppressing the oxidation process for tin-based perovskite solar cells with fill factors exceeding 80 percent publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202308457 – volume: 9 start-page: 4359 year: 2024 ident: 10.1016/j.electacta.2025.146950_bib0051 article-title: Emerging BaZrS3 and Ba(Zr,Ti)S3 chalcogenide perovskite solar cells: a numerical approach toward device engineering and unlocking efficiency publication-title: ACS Omega doi: 10.1021/acsomega.3c06627 – volume: 7 start-page: 1966 year: 2023 ident: 10.1016/j.electacta.2025.146950_bib0038 article-title: Functional layers in efficient and stable inverted tin-based perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2023.08.002 – volume: 120 start-page: 370 year: 2015 ident: 10.1016/j.electacta.2025.146950_bib0043 article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2015.07.040 – volume: 26 start-page: 7122 year: 2014 ident: 10.1016/j.electacta.2025.146950_bib0037 article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation publication-title: Adv. Mater. doi: 10.1002/adma.201401991 – volume: 3 start-page: 2377 year: 2024 ident: 10.1016/j.electacta.2025.146950_bib0033 article-title: Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance publication-title: Energy Adv doi: 10.1039/D4YA00323C – volume: 12 start-page: 34850 year: 2022 ident: 10.1016/j.electacta.2025.146950_bib0015 article-title: SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers publication-title: RSC Adv. doi: 10.1039/D2RA06734J – start-page: 118 year: 2023 ident: 10.1016/j.electacta.2025.146950_bib0028 article-title: A qualitative theoretical study of inorganic HTM-free RbGeI3 based perovskite solar cells using SCAPS 1D as a pathway towards 3.601% efficiency, East Eur publication-title: J. Phys. – start-page: 97 year: 2022 ident: 10.1016/j.electacta.2025.146950_bib0013 article-title: Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D publication-title: Phys. Scr. – volume: 5 year: 2015 ident: 10.1016/j.electacta.2025.146950_bib0019 article-title: Intrinsic thermal instability of methylammonium lead trihalide perovskite publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500477 – volume: 196 year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0002 article-title: Innovative design strategies for solar cells: theoretical examination of linearly graded perovskite solar cell with PTAA as HTL publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2024.112401 – volume: 571 start-page: 60 year: 1989 ident: 10.1016/j.electacta.2025.146950_bib0029 article-title: Die kristallstrukturen und phasentransformationen des tetramorphen RbGel3, Zeitschrift Für Anorg publication-title: Und Allg. Chemie doi: 10.1002/zaac.19895710106 – volume: 34 year: 2022 ident: 10.1016/j.electacta.2025.146950_bib0026 article-title: Interpretation of rubidium-based perovskite recipes toward electronic passivation and ion-diffusion mitigation publication-title: Adv. Mater. – start-page: 1 year: 2024 ident: 10.1016/j.electacta.2025.146950_bib0042 article-title: Metal chalcogenide electron extraction layers for nip -type tin-based perovskite solar cells publication-title: Nat. Commun. – volume: 583 year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0035 article-title: Optimized RbPbI3-based perovskite solar cells with SnS2 ETL and MoO3 HTL achieving simulated PCE of 32.72% publication-title: Opt. Commun. doi: 10.1016/j.optcom.2025.131761 – volume: 13 year: 2023 ident: 10.1016/j.electacta.2025.146950_bib0049 article-title: Materials and interfaces properties optimization for high-efficient and more stable RbGeI3 perovskite solar cells: optoelectrical modelling publication-title: Sci. Rep. doi: 10.1038/s41598-023-42471-w – volume: 354 start-page: 206 issue: 80 year: 2016 ident: 10.1016/j.electacta.2025.146950_bib0024 article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance publication-title: Science doi: 10.1126/science.aah5557 – year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0012 article-title: Enhancing efficiency of lead-free Cs2TiIxBr6-x perovskite solar cells through linear and parabolic grading strategies: toward 31.18% efficiency publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.3895 – volume: 39 year: 2024 ident: 10.1016/j.electacta.2025.146950_bib0050 article-title: Rubidium based new lead free high performance perovskite solar cells with SnS2 as an electron transport layer publication-title: Mater. Today Commun. – volume: 14 year: 2024 ident: 10.1016/j.electacta.2025.146950_bib0034 article-title: Enhanced efficiency of bifacial perovskite solar cells using computational study publication-title: Sci. Rep. doi: 10.1038/s41598-024-62487-0 – volume: 9 start-page: 1552 year: 2016 ident: 10.1016/j.electacta.2025.146950_bib0007 article-title: High-efficiency crystalline silicon solar cells: status and perspectives publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03380B – volume: 265 year: 2023 ident: 10.1016/j.electacta.2025.146950_bib0004 article-title: Probing the degradation pathways in perovskite solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2023.112128 – volume: 13 year: 2022 ident: 10.1016/j.electacta.2025.146950_bib0044 article-title: High power-conversion efficiency of lead-free perovskite solar cells: a theoretical investigation publication-title: Micromachines (Basel) – ident: 10.1016/j.electacta.2025.146950_bib0021 doi: 10.1016/j.micrna.2022.207403 – volume: 1010 year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0011 article-title: Achieving 31.16 % efficiency in perovskite solar cells via synergistic Dion-Jacobson 2D-3D layer design publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2024.177882 – volume: 172 year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0046 article-title: A comprehensive investigation involving numerous HTL and ETL layers to design and simulate high-efficiency Ca3AsI3-based perovskite solar cells publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2024.113647 – volume: 14 start-page: 2584 year: 2014 ident: 10.1016/j.electacta.2025.146950_bib0020 article-title: Atomistic origins of high-performance in hybrid halide perovskite solar cells publication-title: Nano Lett. doi: 10.1021/nl500390f – volume: 06 start-page: 1145 year: 2015 ident: 10.1016/j.electacta.2025.146950_bib0009 article-title: Solar cells: in research and applications—A review publication-title: Mater. Sci. Appl. – volume: 30 start-page: 330 year: 2016 ident: 10.1016/j.electacta.2025.146950_bib0025 article-title: Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.027 – volume: 100 year: 2020 ident: 10.1016/j.electacta.2025.146950_bib0010 article-title: Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation publication-title: Opt. Mater. (Amst). doi: 10.1016/j.optmat.2019.109631 – volume: 57 year: 2024 ident: 10.1016/j.electacta.2025.146950_bib0048 article-title: Investigation of efficiency and temperature dependence in RbGeBr3-based perovskite solar cell structures publication-title: Results Phys doi: 10.1016/j.rinp.2024.107351 – volume: 156 year: 2021 ident: 10.1016/j.electacta.2025.146950_bib0001 article-title: Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2021.110168 – volume: 4 start-page: 13852 year: 2016 ident: 10.1016/j.electacta.2025.146950_bib0014 article-title: Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04685A – volume: 10 year: 2023 ident: 10.1016/j.electacta.2025.146950_bib0005 article-title: A critical overview of thin films coating technologies for energy applications publication-title: Cogent Eng doi: 10.1080/23311916.2023.2179467 – volume: 26 year: 2014 ident: 10.1016/j.electacta.2025.146950_bib0018 article-title: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2) (2)PbI3 publication-title: Adv. Mater. – volume: 10 year: 2020 ident: 10.1016/j.electacta.2025.146950_bib0031 article-title: Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device publication-title: J. Photonics Energy doi: 10.1117/1.JPE.10.015502 – volume: 30 year: 2020 ident: 10.1016/j.electacta.2025.146950_bib0023 article-title: An environmentally stable and lead-free chalcogenide perovskite publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001387 – volume: 51 start-page: 179 year: 2022 ident: 10.1016/j.electacta.2025.146950_bib0040 article-title: Numerical and experimental investigation of infrared optical filter based on metal oxide thin films for temperature mitigation in photovoltaics publication-title: J. Electron. Mater. doi: 10.1007/s11664-021-09269-w – volume: 621 start-page: 240 year: 2017 ident: 10.1016/j.electacta.2025.146950_bib0006 article-title: Growth of MoOx nanobelts from molybdenum bi-layer thin films for thin film solar cell application publication-title: Thin. Solid. Films doi: 10.1016/j.tsf.2016.10.039 – volume: 10 start-page: 391 year: 2015 ident: 10.1016/j.electacta.2025.146950_bib0003 article-title: Metal-halide perovskites for photovoltaic and light-emitting devices publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.90 – volume: 2 start-page: 438 year: 2017 ident: 10.1016/j.electacta.2025.146950_bib0030 article-title: High-efficiency rubidium-incorporated perovskite solar cells by gas quenching publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.6b00697 – volume: 6 year: 2023 ident: 10.1016/j.electacta.2025.146950_bib0017 article-title: A comprehensive analysis of eco-friendly Cs2SnI6 based tin halide perovskite solar cell through device modeling publication-title: Adv. Theory Simulations doi: 10.1002/adts.202200856 – year: 2024 ident: 10.1016/j.electacta.2025.146950_bib0052 article-title: A numerical strategy for achieving efficiency exceeding 32% with a novel lead-free dual-absorber solar cell using Ca3SbI3 and Sr3SbI3 perovskites publication-title: Adv. Photonics Res. n/a – volume: 15 start-page: 7709 year: 2025 ident: 10.1016/j.electacta.2025.146950_bib0039 article-title: Enhanced perovskite solar cells performance with TiOx and SnOx thin films as electron transport layers publication-title: Sci. Rep. doi: 10.1038/s41598-024-83600-3 – volume: 4 start-page: 17104 year: 2016 ident: 10.1016/j.electacta.2025.146950_bib0016 article-title: Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08332C |
SSID | ssj0007670 |
Score | 2.4850733 |
Snippet | •The study achieved a remarkable PCE of 32.06 %, making RbGeBr3 a promising active material for perovskite solar cells.•Among various ETL materials tested... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 146950 |
SubjectTerms | ETL HTL RbGeBr3 SCAPS-1D SCAPS-1D, ETL, HTL, RbGeBr3, Solar cell Solar cell |
Title | Advancing RbGeBr3 perovskite solar cells with metal doped chalcogenide ETL: A leap towards higher efficiency |
URI | https://dx.doi.org/10.1016/j.electacta.2025.146950 |
Volume | 538 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPagH0apYX-zBazTJbl7eammtrx5EobeQ2Z3QSm2DrR797e5sE21B8CDkkIRsCF-Gmdnhm28YO3NzN9aANIBYCEcm4DmJVuAoGWr0Ygi11S146Ie9Z3k7CAY11q56YYhWWfr-hU-33rq8c1GieVGMRtTj6wlJDQ4BacZY2W0pI7Ly888fmkcURm41xYCeXuF42VEzmTnMRtEPyGsk1ID_W4RaijrdbbZVpou8tfiiHVbDSYOtt6spbQ22uSQouMvGdkiyMuf8Ea7x6k1wEgL_mFGNls9oG8upVD_jVH_lr2hSb66nBWquhtlYTY05jTTyztP9JW_xMWYFn1ti7YwPLSOEo9WcoIbNPfbc7Ty1e045T8FRXhTPHc_EKxlLCM2PUCBBm1wmE7mfgAwimWQa4wwwVGEmhApAKwGRUj7KQAUkPSf2WX0yneAB45gIhFDk4EWZBIxjYRxBbF4YgfJUnjeZW2GYFgvZjLTik72k37CnBHu6gL3JLius0xULSI1z_2vx4X8WH7ENuqKI5LvHrD5_e8cTk2rM4dTa0ilba93c9fpfxO3U8Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KPagH0apYP_fgNTTpbr681WKt2vYgLfQWMrsTrNS22OrvdydNxILgQcghJEwIb4c3s8vMG4BrN3Mjg8QDiKV0VIyeExuNjlaBIS_CwOS6Bf1B0B2px7E_rkC77IXhssqC-9ecnrN18aRRoNlYTCbc4-tJxQ0OPmvGsOz2FqtT-VXYaj08dQffhBwGoVsOMmCDjTKvfNpMai-7V2z6TBwx9-D_FqR-BJ7OPuwVGaNorX_qACo0q8F2uxzUVoPdH5qChzDN5yRrey-e8Z5u36VgLfDPJR_TiiXvZAWf1i8FH8GKN7LZtzDzBRmhX9KpnluPmhgSd8PejWiJKaULscpra5fiJS8KEZTLTnDP5hGMOnfDdtcpRio42gujlePZkKUihYFdC40KjU1nUpk1Y1R-qOLUUJQiBTpIpdQ-Gi0x1LpJytc-q8_JY6jO5jM6AUGxJAxkhl6YKqQokpYLIvvBELWns6wObolhslgrZyRlSdlr8g17wrAna9jrcFNinWw4QWL5_S_j0_8YX8F2d9jvJb2HwdMZ7PAbDlBN9xyqq_cPurCZxwovC8_6Ahwe16I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+RbGeBr3+perovskite+solar+cells+with+metal+doped+chalcogenide+ETL%3A+A+leap+towards+higher+efficiency&rft.jtitle=Electrochimica+acta&rft.au=Verma%2C+Akash+Anand&rft.au=Dwivedi%2C+D.K.&rft.date=2025-10-20&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.volume=538&rft_id=info:doi/10.1016%2Fj.electacta.2025.146950&rft.externalDocID=S0013468625013106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |