Advancing RbGeBr3 perovskite solar cells with metal doped chalcogenide ETL: A leap towards higher efficiency

•The study achieved a remarkable PCE of 32.06 %, making RbGeBr3 a promising active material for perovskite solar cells.•Among various ETL materials tested (TiO2, PCBM, and Sn(S0.92Se0.08)2), the metal-doped Sn(S0.92Se0.08)2 ETL demonstrated superior performance.•The research utilized SCAPS-1D simula...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 538; p. 146950
Main Authors Verma, Akash Anand, Dwivedi, D.K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The study achieved a remarkable PCE of 32.06 %, making RbGeBr3 a promising active material for perovskite solar cells.•Among various ETL materials tested (TiO2, PCBM, and Sn(S0.92Se0.08)2), the metal-doped Sn(S0.92Se0.08)2 ETL demonstrated superior performance.•The research utilized SCAPS-1D simulations to optimize the device structure, considering critical parameters such as layer thickness, defect density, temperature, and resistances.•The optimized device exhibited VOC of 1.3885 V, JSC of 28.074 mA.cm−2 and FF of 82.24 %, emphasizing its high efficiency.•The study contributes to the development of lead-free and stable perovskite materials, reinforcing the potential of RbGeBr3 for sustainable solar energy applications. Perovskite solar cells (PSCs) have emerged as promising contenders in the field of photovoltaic technology, gaining significant attention for their remarkable power conversion efficiency (PCE), scalability and versatility in manufacturing. Utilizing RbGeBr3 as the active material; the purpose is to enhance stability and efficiency. Critical factors such active layer thickness, electron and hole transport layer thicknesses, defect density, temperature (T(K)) effect, and series (RS) and shunt resistances(RSh) are analyzed in order to achieve the optimum device performance. This work extensively investigates the impact of different charge transport layers, revealing that TiO2, PCBM, and metal-doped Sn(S0.92Se0.08)2 serve as highly effective interfaces for boosting the performance of RbGeBr3 PSCs. The combination of Sn(S0.92Se0.08)2 as the electron transport layer (ETL) and CuI as the hole transport layer (HTL) yielded the best performance, achieving an optimized device configuration. In our investigation, the optimized device architecture was identified as (Au/CuI/RbGeBr3/Sn(S0.92Se0.08)2 /FTO). This configuration achieved remarkable performance metrics, including a PCE of 32.06 %, an open-circuit voltage (VOC) of 1.3885 V, a fill factor (FF) of 82.24 %, and a short-circuit current density (JSC) of 28.074 mA.cm−2. Notably, Sn(S0.92Se0.08)2 demonstrated superior performance, proving to be a more effective ETL for improving the efficiency of environmentally friendly Rb-based PSCs.
AbstractList •The study achieved a remarkable PCE of 32.06 %, making RbGeBr3 a promising active material for perovskite solar cells.•Among various ETL materials tested (TiO2, PCBM, and Sn(S0.92Se0.08)2), the metal-doped Sn(S0.92Se0.08)2 ETL demonstrated superior performance.•The research utilized SCAPS-1D simulations to optimize the device structure, considering critical parameters such as layer thickness, defect density, temperature, and resistances.•The optimized device exhibited VOC of 1.3885 V, JSC of 28.074 mA.cm−2 and FF of 82.24 %, emphasizing its high efficiency.•The study contributes to the development of lead-free and stable perovskite materials, reinforcing the potential of RbGeBr3 for sustainable solar energy applications. Perovskite solar cells (PSCs) have emerged as promising contenders in the field of photovoltaic technology, gaining significant attention for their remarkable power conversion efficiency (PCE), scalability and versatility in manufacturing. Utilizing RbGeBr3 as the active material; the purpose is to enhance stability and efficiency. Critical factors such active layer thickness, electron and hole transport layer thicknesses, defect density, temperature (T(K)) effect, and series (RS) and shunt resistances(RSh) are analyzed in order to achieve the optimum device performance. This work extensively investigates the impact of different charge transport layers, revealing that TiO2, PCBM, and metal-doped Sn(S0.92Se0.08)2 serve as highly effective interfaces for boosting the performance of RbGeBr3 PSCs. The combination of Sn(S0.92Se0.08)2 as the electron transport layer (ETL) and CuI as the hole transport layer (HTL) yielded the best performance, achieving an optimized device configuration. In our investigation, the optimized device architecture was identified as (Au/CuI/RbGeBr3/Sn(S0.92Se0.08)2 /FTO). This configuration achieved remarkable performance metrics, including a PCE of 32.06 %, an open-circuit voltage (VOC) of 1.3885 V, a fill factor (FF) of 82.24 %, and a short-circuit current density (JSC) of 28.074 mA.cm−2. Notably, Sn(S0.92Se0.08)2 demonstrated superior performance, proving to be a more effective ETL for improving the efficiency of environmentally friendly Rb-based PSCs.
ArticleNumber 146950
Author Verma, Akash Anand
Dwivedi, D.K.
Author_xml – sequence: 1
  givenname: Akash Anand
  surname: Verma
  fullname: Verma, Akash Anand
– sequence: 2
  givenname: D.K.
  orcidid: 0000-0002-8334-5535
  surname: Dwivedi
  fullname: Dwivedi, D.K.
  email: todkdwivedi@gmail.com
BookMark eNqFkNFKwzAYhXMxwW36DOYFWpM2TTvv6phTGAgyr0P65--ambUlKRt7ezsn3goHzs05h8M3I5O2a5GQB85izrh83MfoEAY9Kk5YksVcyEXGJmTKGE8jIQt5S2Yh7BljuczZlLjSHHULtt3Rj2qNzz6lPfruGL7sgDR0TnsK6FygJzs09ICDdtR0PRoKjXbQ7bC1Bulqu3miJXWoezp0J-1NoI3dNegp1rUFiy2c78hNrV3A-1-fk8-X1Xb5Gm3e12_LchMBz4sh4jxlohCVBCGhEpXJeKbTOllUIsvFQhssdIUSpE5TyCoDaZUDJCgyyBhnSTon-XUXfBeCx1r13h60PyvO1AWU2qs_UOoCSl1Bjc3y2sTx3tGiV-HnOhrrx7wynf134xsqI3rf
Cites_doi 10.1007/s10854-020-04084-1
10.1016/j.solener.2022.03.053
10.1016/j.jpcs.2024.112437
10.1063/5.0251323
10.1016/j.jpcs.2024.112324
10.3938/jkps.65.355
10.1002/adfm.202308457
10.1021/acsomega.3c06627
10.1016/j.joule.2023.08.002
10.1016/j.solener.2015.07.040
10.1002/adma.201401991
10.1039/D4YA00323C
10.1039/D2RA06734J
10.1002/aenm.201500477
10.1016/j.jpcs.2024.112401
10.1002/zaac.19895710106
10.1016/j.optcom.2025.131761
10.1038/s41598-023-42471-w
10.1126/science.aah5557
10.1002/pip.3895
10.1038/s41598-024-62487-0
10.1039/C5EE03380B
10.1016/j.solener.2023.112128
10.1016/j.micrna.2022.207403
10.1016/j.jallcom.2024.177882
10.1016/j.inoche.2024.113647
10.1021/nl500390f
10.1016/j.nanoen.2016.10.027
10.1016/j.optmat.2019.109631
10.1016/j.rinp.2024.107351
10.1016/j.jpcs.2021.110168
10.1039/C6TA04685A
10.1080/23311916.2023.2179467
10.1117/1.JPE.10.015502
10.1002/adfm.202001387
10.1007/s11664-021-09269-w
10.1016/j.tsf.2016.10.039
10.1038/nnano.2015.90
10.1021/acsenergylett.6b00697
10.1002/adts.202200856
10.1038/s41598-024-83600-3
10.1039/C6TA08332C
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.electacta.2025.146950
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_electacta_2025_146950
S0013468625013106
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFZHZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AGQPQ
AI.
AIDUJ
AJQLL
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
T9H
VH1
WUQ
XOL
ZY4
ID FETCH-LOGICAL-c178t-1130484b6c46cb4bd515a3f29b45749ade8abe6c6a33c5bdc3b7cc2e45c501023
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Thu Aug 21 00:30:44 EDT 2025
Sat Aug 30 17:16:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Solar cell
HTL
SCAPS-1D, ETL, HTL, RbGeBr3, Solar cell
RbGeBr3
ETL
SCAPS-1D
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c178t-1130484b6c46cb4bd515a3f29b45749ade8abe6c6a33c5bdc3b7cc2e45c501023
ORCID 0000-0002-8334-5535
ParticipantIDs crossref_primary_10_1016_j_electacta_2025_146950
elsevier_sciencedirect_doi_10_1016_j_electacta_2025_146950
PublicationCentury 2000
PublicationDate 2025-10-20
PublicationDateYYYYMMDD 2025-10-20
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-20
  day: 20
PublicationDecade 2020
PublicationTitle Electrochimica acta
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hossain, Arnab, Das, Hossain, Rubel, Rahman, Bencherif, Emetere, Mohammed, Pandey, Combined (bib0015) 2022; 12
Lee, Seol, Cho, Park (bib0018) 2014; 26
Battaglia, Cuevas, De Wolf (bib0007) 2016; 9
Gupta, Ghoshal, Yoshimura, Basu, Chow, Lakhnot, Pandey, Warrender, Efstathiadis, Soni, Osei-Agyemang, Balasubramanian, Zhang, Shi, Lu, Meunier, Koratkar (bib0023) 2020; 30
Hossain, Chelvanathan, Aissa, Khandakar, Rahman, Mansour (bib0039) 2025; 15
Hossain, Aïssa, Zimmermann, Nazeeruddin, Belaidi (bib0031) 2020; 10
Zhang, Yun, Ma, Zheng, Lau, Deng, Kim, Kim, Seidel, Green, Huang, Ho-Baillie (bib0030) 2017; 2
Li, He, Liang, Qi (bib0038) 2023; 7
Sharma, Jain, Sharma (bib0009) 2015; 06
Chelvanathan, Rahman, Hossain, Rashid, Samsudin, Mustafa, Bais, Akhtaruzzaman, Amin (bib0006) 2017; 621
Islam Bhuiyan, Reza, Ghosh, Al-Dmour, Kumar, Ibn Rahim, Aktarujjaman, Yeasmin, Al-Lohedan, Ramalingam, Reza (bib0035) 2025; 583
Samaki, Tchangnwa Nya, Dzifack Kenfack, Laref (bib0049) 2023; 13
H. Bencherif, F. Meddour, M.H. Elshorbagy, M.K. Hossain, Micro and nanostructures performance enhancement of (FAPbI 3) 1-x (MAPbBr 3) x perovskite solar cell with an optimized design, 171 (2022) 1-16.
Conings, Drijkoningen, Gauquelin, Babayigit, D’Haen, D’Olieslaeger, Ethirajan, Verbeeck, Manca, Mosconi, De Angelis, Boyen (bib0019) 2015; 5
Chaurasia, Lohia, Dwivedi, Pandey, Madan, Agarwal, Khalid Hossain, Kumar Yadav, Singh (bib0045) 2024; 170
Harun-Or-Rashid, Rahman, Amami, Ben Farhat, Islam, Benami (bib0027) 2025; 197
Duong, Mulmudi, Shen, Wu, Barugkin, Mayon, Nguyen, Macdonald, Peng, Lockrey, Li, Cheng, White, Weber, Catchpole (bib0025) 2016; 30
Xu, Chen, Ma, Shi, Zhang, Xiong, Fan, Si, Wu, Zhang, Liao, Yin, Kang, Zhang (bib0026) 2022; 34
Sakib, Ahammed, Tarekuzzaman, Al-Dmour, Rasheduzzaman, Sakib, Moazzam Hossen, Hasan (bib0032) 2025; 15
Hossain, Alharbi, Tabet (bib0043) 2015; 120
Pal (bib0017) 2023; 6
Vincent Mercy, Srinivasan, Marasamy (bib0051) 2024; 9
Ming, Shi, Du (bib0014) 2016; 4
Umar, Sadanand, Dwivedi, Algadi, Ibrahim, Alhammai, Baskoutas (bib0044) 2022; 13
Haque, Mahjabin, Abdullah, Akhtaruzzaman, Almohamadi, Islam, Hossain, Ibrahim, Chelvanathan (bib0041) 2025; 196
Thiele, Rotter, Schmidt (bib0029) 1989; 571
Srivastava, Sadanand, Lohia, Dwivedi, Qasem, Umar, Akbar, Algadi, Baskoutas (bib0013) 2022
Lee, Kim, Ifitiquar, Park, Yi (bib0008) 2014; 65
Hossain, Chelvanathan, Khandakar, Thomas, Rahman, Mansour (bib0034) 2024; 14
Reza, Ghosh, Gassoumi, Hasan, Shahjalal, Yahia, Reza, Prodhan, Islam, Talukder, Chaudhry, Akter (bib0046) 2025; 172
Rahman, Rahman, Hossain, Islam, Al Ahmed, Irfan (bib0052) 2024
Valizadeh, Shokri, Sabouri-Dodaran, Fough, Muhammad-Sukki (bib0048) 2024; 57
Rai, Pandey, Dwivedi (bib0001) 2021; 156
Pindolia, Shinde, Jha (bib0047) 2022; 236
Jassim, Bakr, Mustafa (bib0022) 2020; 31
Li, Li, Li, Fan, Mai, Wang (bib0016) 2016; 4
Verma, Dwivedi, Lohia, Singh, Yadav, Kumar, Agarwal, Kulshrestha (bib0011) 2025; 1010
Li, Li, Yang, Jin, Zhang, Wang, Deng, Zhan, Zhang (bib0042) 2024
Li, Zhang, He, Deng, Yang, Mo, Zhan, Liang (bib0036) 2023; 33
Ekwu, Danladi, Tasie, Haruna, Okoro, Gyuk, Jimoh, Obasi (bib0028) 2023
Hossain, Tong, Shetty, Mansour (bib0004) 2023; 265
Kumar, Dharani, Leong, Boix, Prabhakar, Baikie, Shi, Ding, Ramesh, Asta, Graetzel, Mhaisalkar, Mathews (bib0037) 2014; 26
Frost, Butler, Brivio, Hendon, van Schilfgaarde, Walsh (bib0020) 2014; 14
Hossain, Khandakar, Chowdhury, Ahmed, Nauman, Aïssa (bib0040) 2022; 51
Rai, Pandey, Dwivedi (bib0010) 2020; 100
Verma, Dwivedi, Lohia, Pandey, Madan, Agarwal, Kulshrestha (bib0002) 2025; 196
Stranks, Snaith (bib0003) 2015; 10
Rahman, Ali, Haque, Touhidul Islam (bib0033) 2024; 3
Hossain, Mansour (bib0005) 2023; 10
Reza, Rahman, Reza, Islam, Rehman, Chaudhry, Irfan (bib0050) 2024; 39
Saliba, Matsui, Domanski, Seo, Ummadisingu, Zakeeruddin, Correa-Baena, Tress, Abate, Hagfeldt, Grätzel (bib0024) 2016; 354
Verma, Dwivedi, Lohia, Agarwal, Kulshrestha, Kumar, Pandey (bib0012) 2025
Hossain (10.1016/j.electacta.2025.146950_bib0015) 2022; 12
Reza (10.1016/j.electacta.2025.146950_bib0046) 2025; 172
Samaki (10.1016/j.electacta.2025.146950_bib0049) 2023; 13
Jassim (10.1016/j.electacta.2025.146950_bib0022) 2020; 31
Kumar (10.1016/j.electacta.2025.146950_bib0037) 2014; 26
Harun-Or-Rashid (10.1016/j.electacta.2025.146950_bib0027) 2025; 197
Lee (10.1016/j.electacta.2025.146950_bib0008) 2014; 65
Hossain (10.1016/j.electacta.2025.146950_bib0031) 2020; 10
Rahman (10.1016/j.electacta.2025.146950_bib0033) 2024; 3
Haque (10.1016/j.electacta.2025.146950_bib0041) 2025; 196
Vincent Mercy (10.1016/j.electacta.2025.146950_bib0051) 2024; 9
Srivastava (10.1016/j.electacta.2025.146950_bib0013) 2022
Ekwu (10.1016/j.electacta.2025.146950_bib0028) 2023
Ming (10.1016/j.electacta.2025.146950_bib0014) 2016; 4
Umar (10.1016/j.electacta.2025.146950_bib0044) 2022; 13
Chaurasia (10.1016/j.electacta.2025.146950_bib0045) 2024; 170
Saliba (10.1016/j.electacta.2025.146950_bib0024) 2016; 354
Hossain (10.1016/j.electacta.2025.146950_bib0004) 2023; 265
Verma (10.1016/j.electacta.2025.146950_bib0002) 2025; 196
Hossain (10.1016/j.electacta.2025.146950_bib0043) 2015; 120
Li (10.1016/j.electacta.2025.146950_bib0036) 2023; 33
Hossain (10.1016/j.electacta.2025.146950_bib0039) 2025; 15
Battaglia (10.1016/j.electacta.2025.146950_bib0007) 2016; 9
Li (10.1016/j.electacta.2025.146950_bib0016) 2016; 4
Rai (10.1016/j.electacta.2025.146950_bib0010) 2020; 100
Sakib (10.1016/j.electacta.2025.146950_bib0032) 2025; 15
Rai (10.1016/j.electacta.2025.146950_bib0001) 2021; 156
Pal (10.1016/j.electacta.2025.146950_bib0017) 2023; 6
Stranks (10.1016/j.electacta.2025.146950_bib0003) 2015; 10
Sharma (10.1016/j.electacta.2025.146950_bib0009) 2015; 06
Verma (10.1016/j.electacta.2025.146950_bib0011) 2025; 1010
Thiele (10.1016/j.electacta.2025.146950_bib0029) 1989; 571
Duong (10.1016/j.electacta.2025.146950_bib0025) 2016; 30
Gupta (10.1016/j.electacta.2025.146950_bib0023) 2020; 30
Zhang (10.1016/j.electacta.2025.146950_bib0030) 2017; 2
Li (10.1016/j.electacta.2025.146950_bib0038) 2023; 7
Hossain (10.1016/j.electacta.2025.146950_bib0040) 2022; 51
Rahman (10.1016/j.electacta.2025.146950_bib0052) 2024
Islam Bhuiyan (10.1016/j.electacta.2025.146950_bib0035) 2025; 583
Lee (10.1016/j.electacta.2025.146950_bib0018) 2014; 26
Li (10.1016/j.electacta.2025.146950_bib0042) 2024
Hossain (10.1016/j.electacta.2025.146950_bib0005) 2023; 10
Valizadeh (10.1016/j.electacta.2025.146950_bib0048) 2024; 57
10.1016/j.electacta.2025.146950_bib0021
Xu (10.1016/j.electacta.2025.146950_bib0026) 2022; 34
Conings (10.1016/j.electacta.2025.146950_bib0019) 2015; 5
Pindolia (10.1016/j.electacta.2025.146950_bib0047) 2022; 236
Chelvanathan (10.1016/j.electacta.2025.146950_bib0006) 2017; 621
Frost (10.1016/j.electacta.2025.146950_bib0020) 2014; 14
Reza (10.1016/j.electacta.2025.146950_bib0050) 2024; 39
Verma (10.1016/j.electacta.2025.146950_bib0012) 2025
Hossain (10.1016/j.electacta.2025.146950_bib0034) 2024; 14
References_xml – start-page: 1
  year: 2024
  end-page: 10
  ident: bib0042
  article-title: Metal chalcogenide electron extraction layers for nip -type tin-based perovskite solar cells
  publication-title: Nat. Commun.
– volume: 571
  start-page: 60
  year: 1989
  end-page: 68
  ident: bib0029
  article-title: Die kristallstrukturen und phasentransformationen des tetramorphen RbGel3, Zeitschrift Für Anorg
  publication-title: Und Allg. Chemie
– volume: 30
  start-page: 330
  year: 2016
  end-page: 340
  ident: bib0025
  article-title: Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites
  publication-title: Nano Energy
– volume: 39
  year: 2024
  ident: bib0050
  article-title: Rubidium based new lead free high performance perovskite solar cells with SnS2 as an electron transport layer
  publication-title: Mater. Today Commun.
– volume: 196
  year: 2025
  ident: bib0002
  article-title: Innovative design strategies for solar cells: theoretical examination of linearly graded perovskite solar cell with PTAA as HTL
  publication-title: J. Phys. Chem. Solids
– volume: 10
  start-page: 391
  year: 2015
  end-page: 402
  ident: bib0003
  article-title: Metal-halide perovskites for photovoltaic and light-emitting devices
  publication-title: Nat. Nanotechnol.
– volume: 26
  year: 2014
  ident: bib0018
  article-title: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2) (2)PbI3
  publication-title: Adv. Mater.
– volume: 13
  year: 2023
  ident: bib0049
  article-title: Materials and interfaces properties optimization for high-efficient and more stable RbGeI3 perovskite solar cells: optoelectrical modelling
  publication-title: Sci. Rep.
– volume: 57
  year: 2024
  ident: bib0048
  article-title: Investigation of efficiency and temperature dependence in RbGeBr3-based perovskite solar cell structures
  publication-title: Results Phys
– volume: 26
  start-page: 7122
  year: 2014
  end-page: 7127
  ident: bib0037
  article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  ident: bib0036
  article-title: Alleviating the crystallization dynamics and suppressing the oxidation process for tin-based perovskite solar cells with fill factors exceeding 80 percent
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1966
  year: 2023
  end-page: 1991
  ident: bib0038
  article-title: Functional layers in efficient and stable inverted tin-based perovskite solar cells
  publication-title: Joule
– year: 2025
  ident: bib0012
  article-title: Enhancing efficiency of lead-free Cs2TiIxBr6-x perovskite solar cells through linear and parabolic grading strategies: toward 31.18% efficiency
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 30
  year: 2020
  ident: bib0023
  article-title: An environmentally stable and lead-free chalcogenide perovskite
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 7709
  year: 2025
  ident: bib0039
  article-title: Enhanced perovskite solar cells performance with TiOx and SnOx thin films as electron transport layers
  publication-title: Sci. Rep.
– volume: 51
  start-page: 179
  year: 2022
  end-page: 189
  ident: bib0040
  article-title: Numerical and experimental investigation of infrared optical filter based on metal oxide thin films for temperature mitigation in photovoltaics
  publication-title: J. Electron. Mater.
– volume: 120
  start-page: 370
  year: 2015
  end-page: 380
  ident: bib0043
  article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells
  publication-title: Sol. Energy
– volume: 6
  year: 2023
  ident: bib0017
  article-title: A comprehensive analysis of eco-friendly Cs2SnI6 based tin halide perovskite solar cell through device modeling
  publication-title: Adv. Theory Simulations
– volume: 06
  start-page: 1145
  year: 2015
  end-page: 1155
  ident: bib0009
  article-title: Solar cells: in research and applications—A review
  publication-title: Mater. Sci. Appl.
– volume: 10
  year: 2020
  ident: bib0031
  article-title: Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device
  publication-title: J. Photonics Energy
– volume: 1010
  year: 2025
  ident: bib0011
  article-title: Achieving 31.16 % efficiency in perovskite solar cells via synergistic Dion-Jacobson 2D-3D layer design
  publication-title: J. Alloys Compd.
– volume: 197
  year: 2025
  ident: bib0027
  article-title: Exploring new lead-free halide perovskites RbSnM3 (M = I, Br, Cl) and achieving power conversion efficiency >32 %
  publication-title: J. Phys. Chem. Solids
– volume: 100
  year: 2020
  ident: bib0010
  article-title: Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation
  publication-title: Opt. Mater. (Amst).
– volume: 4
  start-page: 17104
  year: 2016
  end-page: 17110
  ident: bib0016
  article-title: Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K
  publication-title: J. Mater. Chem. A
– volume: 170
  year: 2024
  ident: bib0045
  article-title: Enhancing perovskite solar cell efficiency to 28.17% by integrating Dion-Jacobson 2D and 3D phase perovskite absorbers, Inorg
  publication-title: Chem. Commun.
– volume: 31
  start-page: 16199
  year: 2020
  end-page: 16207
  ident: bib0022
  article-title: Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 196
  year: 2025
  ident: bib0041
  article-title: Exploring the theoretical potential of tungsten oxide (WOx) as a universal electron transport layer (ETL) for various perovskite solar cells through interfacial energy band alignment modulation
  publication-title: J. Phys. Chem. Solids
– volume: 4
  start-page: 13852
  year: 2016
  end-page: 13858
  ident: bib0014
  article-title: Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3
  publication-title: J. Mater. Chem. A
– volume: 65
  start-page: 355
  year: 2014
  end-page: 361
  ident: bib0008
  article-title: Silicon solar cells: past, present and the future
  publication-title: J. Korean Phys. Soc.
– volume: 621
  start-page: 240
  year: 2017
  end-page: 246
  ident: bib0006
  article-title: Growth of MoOx nanobelts from molybdenum bi-layer thin films for thin film solar cell application
  publication-title: Thin. Solid. Films
– volume: 34
  year: 2022
  ident: bib0026
  article-title: Interpretation of rubidium-based perovskite recipes toward electronic passivation and ion-diffusion mitigation
  publication-title: Adv. Mater.
– volume: 10
  year: 2023
  ident: bib0005
  article-title: A critical overview of thin films coating technologies for energy applications
  publication-title: Cogent Eng
– volume: 9
  start-page: 4359
  year: 2024
  end-page: 4376
  ident: bib0051
  article-title: Emerging BaZrS3 and Ba(Zr,Ti)S3 chalcogenide perovskite solar cells: a numerical approach toward device engineering and unlocking efficiency
  publication-title: ACS Omega
– year: 2024
  ident: bib0052
  article-title: A numerical strategy for achieving efficiency exceeding 32% with a novel lead-free dual-absorber solar cell using Ca3SbI3 and Sr3SbI3 perovskites
  publication-title: Adv. Photonics Res. n/a
– volume: 172
  year: 2025
  ident: bib0046
  article-title: A comprehensive investigation involving numerous HTL and ETL layers to design and simulate high-efficiency Ca3AsI3-based perovskite solar cells
  publication-title: Inorg. Chem. Commun.
– volume: 354
  start-page: 206
  year: 2016
  end-page: 209
  ident: bib0024
  article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
  publication-title: Science
– volume: 12
  start-page: 34850
  year: 2022
  end-page: 34873
  ident: bib0015
  article-title: SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers
  publication-title: RSC Adv.
– start-page: 118
  year: 2023
  end-page: 124
  ident: bib0028
  article-title: A qualitative theoretical study of inorganic HTM-free RbGeI3 based perovskite solar cells using SCAPS 1D as a pathway towards 3.601% efficiency, East Eur
  publication-title: J. Phys.
– start-page: 97
  year: 2022
  ident: bib0013
  article-title: Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D
  publication-title: Phys. Scr.
– volume: 3
  start-page: 2377
  year: 2024
  end-page: 2398
  ident: bib0033
  article-title: Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance
  publication-title: Energy Adv
– volume: 13
  year: 2022
  ident: bib0044
  article-title: High power-conversion efficiency of lead-free perovskite solar cells: a theoretical investigation
  publication-title: Micromachines (Basel)
– volume: 5
  year: 2015
  ident: bib0019
  article-title: Intrinsic thermal instability of methylammonium lead trihalide perovskite
  publication-title: Adv. Energy Mater.
– volume: 265
  year: 2023
  ident: bib0004
  article-title: Probing the degradation pathways in perovskite solar cells
  publication-title: Sol. Energy
– volume: 14
  year: 2024
  ident: bib0034
  article-title: Enhanced efficiency of bifacial perovskite solar cells using computational study
  publication-title: Sci. Rep.
– volume: 9
  start-page: 1552
  year: 2016
  end-page: 1576
  ident: bib0007
  article-title: High-efficiency crystalline silicon solar cells: status and perspectives
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 2584
  year: 2014
  end-page: 2590
  ident: bib0020
  article-title: Atomistic origins of high-performance in hybrid halide perovskite solar cells
  publication-title: Nano Lett.
– volume: 583
  year: 2025
  ident: bib0035
  article-title: Optimized RbPbI3-based perovskite solar cells with SnS2 ETL and MoO3 HTL achieving simulated PCE of 32.72%
  publication-title: Opt. Commun.
– volume: 15
  year: 2025
  ident: bib0032
  article-title: Highly efficient (31%) of rubidium-based halide perovskite solar cell using SCAPS-1D simulation
  publication-title: AIP Adv
– volume: 2
  start-page: 438
  year: 2017
  end-page: 444
  ident: bib0030
  article-title: High-efficiency rubidium-incorporated perovskite solar cells by gas quenching
  publication-title: ACS Energy Lett
– volume: 236
  start-page: 802
  year: 2022
  end-page: 821
  ident: bib0047
  article-title: Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation
  publication-title: Sol. Energy
– volume: 156
  year: 2021
  ident: bib0001
  article-title: Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation
  publication-title: J. Phys. Chem. Solids
– reference: H. Bencherif, F. Meddour, M.H. Elshorbagy, M.K. Hossain, Micro and nanostructures performance enhancement of (FAPbI 3) 1-x (MAPbBr 3) x perovskite solar cell with an optimized design, 171 (2022) 1-16.
– volume: 31
  start-page: 16199
  year: 2020
  ident: 10.1016/j.electacta.2025.146950_bib0022
  article-title: Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-04084-1
– volume: 236
  start-page: 802
  year: 2022
  ident: 10.1016/j.electacta.2025.146950_bib0047
  article-title: Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.03.053
– volume: 197
  year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0027
  article-title: Exploring new lead-free halide perovskites RbSnM3 (M = I, Br, Cl) and achieving power conversion efficiency >32 %
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2024.112437
– volume: 15
  year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0032
  article-title: Highly efficient (31%) of rubidium-based halide perovskite solar cell using SCAPS-1D simulation
  publication-title: AIP Adv
  doi: 10.1063/5.0251323
– volume: 196
  year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0041
  article-title: Exploring the theoretical potential of tungsten oxide (WOx) as a universal electron transport layer (ETL) for various perovskite solar cells through interfacial energy band alignment modulation
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2024.112324
– volume: 65
  start-page: 355
  year: 2014
  ident: 10.1016/j.electacta.2025.146950_bib0008
  article-title: Silicon solar cells: past, present and the future
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.65.355
– volume: 170
  year: 2024
  ident: 10.1016/j.electacta.2025.146950_bib0045
  article-title: Enhancing perovskite solar cell efficiency to 28.17% by integrating Dion-Jacobson 2D and 3D phase perovskite absorbers, Inorg
  publication-title: Chem. Commun.
– volume: 33
  year: 2023
  ident: 10.1016/j.electacta.2025.146950_bib0036
  article-title: Alleviating the crystallization dynamics and suppressing the oxidation process for tin-based perovskite solar cells with fill factors exceeding 80 percent
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202308457
– volume: 9
  start-page: 4359
  year: 2024
  ident: 10.1016/j.electacta.2025.146950_bib0051
  article-title: Emerging BaZrS3 and Ba(Zr,Ti)S3 chalcogenide perovskite solar cells: a numerical approach toward device engineering and unlocking efficiency
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c06627
– volume: 7
  start-page: 1966
  year: 2023
  ident: 10.1016/j.electacta.2025.146950_bib0038
  article-title: Functional layers in efficient and stable inverted tin-based perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2023.08.002
– volume: 120
  start-page: 370
  year: 2015
  ident: 10.1016/j.electacta.2025.146950_bib0043
  article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.07.040
– volume: 26
  start-page: 7122
  year: 2014
  ident: 10.1016/j.electacta.2025.146950_bib0037
  article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401991
– volume: 3
  start-page: 2377
  year: 2024
  ident: 10.1016/j.electacta.2025.146950_bib0033
  article-title: Numerical modeling and extensive analysis of an extremely efficient RbGeI3-based perovskite solar cell by incorporating a variety of ETL and HTL materials to enhance PV performance
  publication-title: Energy Adv
  doi: 10.1039/D4YA00323C
– volume: 12
  start-page: 34850
  year: 2022
  ident: 10.1016/j.electacta.2025.146950_bib0015
  article-title: SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06734J
– start-page: 118
  year: 2023
  ident: 10.1016/j.electacta.2025.146950_bib0028
  article-title: A qualitative theoretical study of inorganic HTM-free RbGeI3 based perovskite solar cells using SCAPS 1D as a pathway towards 3.601% efficiency, East Eur
  publication-title: J. Phys.
– start-page: 97
  year: 2022
  ident: 10.1016/j.electacta.2025.146950_bib0013
  article-title: Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D
  publication-title: Phys. Scr.
– volume: 5
  year: 2015
  ident: 10.1016/j.electacta.2025.146950_bib0019
  article-title: Intrinsic thermal instability of methylammonium lead trihalide perovskite
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500477
– volume: 196
  year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0002
  article-title: Innovative design strategies for solar cells: theoretical examination of linearly graded perovskite solar cell with PTAA as HTL
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2024.112401
– volume: 571
  start-page: 60
  year: 1989
  ident: 10.1016/j.electacta.2025.146950_bib0029
  article-title: Die kristallstrukturen und phasentransformationen des tetramorphen RbGel3, Zeitschrift Für Anorg
  publication-title: Und Allg. Chemie
  doi: 10.1002/zaac.19895710106
– volume: 34
  year: 2022
  ident: 10.1016/j.electacta.2025.146950_bib0026
  article-title: Interpretation of rubidium-based perovskite recipes toward electronic passivation and ion-diffusion mitigation
  publication-title: Adv. Mater.
– start-page: 1
  year: 2024
  ident: 10.1016/j.electacta.2025.146950_bib0042
  article-title: Metal chalcogenide electron extraction layers for nip -type tin-based perovskite solar cells
  publication-title: Nat. Commun.
– volume: 583
  year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0035
  article-title: Optimized RbPbI3-based perovskite solar cells with SnS2 ETL and MoO3 HTL achieving simulated PCE of 32.72%
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2025.131761
– volume: 13
  year: 2023
  ident: 10.1016/j.electacta.2025.146950_bib0049
  article-title: Materials and interfaces properties optimization for high-efficient and more stable RbGeI3 perovskite solar cells: optoelectrical modelling
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-42471-w
– volume: 354
  start-page: 206
  issue: 80
  year: 2016
  ident: 10.1016/j.electacta.2025.146950_bib0024
  article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
  publication-title: Science
  doi: 10.1126/science.aah5557
– year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0012
  article-title: Enhancing efficiency of lead-free Cs2TiIxBr6-x perovskite solar cells through linear and parabolic grading strategies: toward 31.18% efficiency
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.3895
– volume: 39
  year: 2024
  ident: 10.1016/j.electacta.2025.146950_bib0050
  article-title: Rubidium based new lead free high performance perovskite solar cells with SnS2 as an electron transport layer
  publication-title: Mater. Today Commun.
– volume: 14
  year: 2024
  ident: 10.1016/j.electacta.2025.146950_bib0034
  article-title: Enhanced efficiency of bifacial perovskite solar cells using computational study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-62487-0
– volume: 9
  start-page: 1552
  year: 2016
  ident: 10.1016/j.electacta.2025.146950_bib0007
  article-title: High-efficiency crystalline silicon solar cells: status and perspectives
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03380B
– volume: 265
  year: 2023
  ident: 10.1016/j.electacta.2025.146950_bib0004
  article-title: Probing the degradation pathways in perovskite solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2023.112128
– volume: 13
  year: 2022
  ident: 10.1016/j.electacta.2025.146950_bib0044
  article-title: High power-conversion efficiency of lead-free perovskite solar cells: a theoretical investigation
  publication-title: Micromachines (Basel)
– ident: 10.1016/j.electacta.2025.146950_bib0021
  doi: 10.1016/j.micrna.2022.207403
– volume: 1010
  year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0011
  article-title: Achieving 31.16 % efficiency in perovskite solar cells via synergistic Dion-Jacobson 2D-3D layer design
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2024.177882
– volume: 172
  year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0046
  article-title: A comprehensive investigation involving numerous HTL and ETL layers to design and simulate high-efficiency Ca3AsI3-based perovskite solar cells
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2024.113647
– volume: 14
  start-page: 2584
  year: 2014
  ident: 10.1016/j.electacta.2025.146950_bib0020
  article-title: Atomistic origins of high-performance in hybrid halide perovskite solar cells
  publication-title: Nano Lett.
  doi: 10.1021/nl500390f
– volume: 06
  start-page: 1145
  year: 2015
  ident: 10.1016/j.electacta.2025.146950_bib0009
  article-title: Solar cells: in research and applications—A review
  publication-title: Mater. Sci. Appl.
– volume: 30
  start-page: 330
  year: 2016
  ident: 10.1016/j.electacta.2025.146950_bib0025
  article-title: Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.027
– volume: 100
  year: 2020
  ident: 10.1016/j.electacta.2025.146950_bib0010
  article-title: Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation
  publication-title: Opt. Mater. (Amst).
  doi: 10.1016/j.optmat.2019.109631
– volume: 57
  year: 2024
  ident: 10.1016/j.electacta.2025.146950_bib0048
  article-title: Investigation of efficiency and temperature dependence in RbGeBr3-based perovskite solar cell structures
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2024.107351
– volume: 156
  year: 2021
  ident: 10.1016/j.electacta.2025.146950_bib0001
  article-title: Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2021.110168
– volume: 4
  start-page: 13852
  year: 2016
  ident: 10.1016/j.electacta.2025.146950_bib0014
  article-title: Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04685A
– volume: 10
  year: 2023
  ident: 10.1016/j.electacta.2025.146950_bib0005
  article-title: A critical overview of thin films coating technologies for energy applications
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2023.2179467
– volume: 26
  year: 2014
  ident: 10.1016/j.electacta.2025.146950_bib0018
  article-title: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2) (2)PbI3
  publication-title: Adv. Mater.
– volume: 10
  year: 2020
  ident: 10.1016/j.electacta.2025.146950_bib0031
  article-title: Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device
  publication-title: J. Photonics Energy
  doi: 10.1117/1.JPE.10.015502
– volume: 30
  year: 2020
  ident: 10.1016/j.electacta.2025.146950_bib0023
  article-title: An environmentally stable and lead-free chalcogenide perovskite
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001387
– volume: 51
  start-page: 179
  year: 2022
  ident: 10.1016/j.electacta.2025.146950_bib0040
  article-title: Numerical and experimental investigation of infrared optical filter based on metal oxide thin films for temperature mitigation in photovoltaics
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-021-09269-w
– volume: 621
  start-page: 240
  year: 2017
  ident: 10.1016/j.electacta.2025.146950_bib0006
  article-title: Growth of MoOx nanobelts from molybdenum bi-layer thin films for thin film solar cell application
  publication-title: Thin. Solid. Films
  doi: 10.1016/j.tsf.2016.10.039
– volume: 10
  start-page: 391
  year: 2015
  ident: 10.1016/j.electacta.2025.146950_bib0003
  article-title: Metal-halide perovskites for photovoltaic and light-emitting devices
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.90
– volume: 2
  start-page: 438
  year: 2017
  ident: 10.1016/j.electacta.2025.146950_bib0030
  article-title: High-efficiency rubidium-incorporated perovskite solar cells by gas quenching
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.6b00697
– volume: 6
  year: 2023
  ident: 10.1016/j.electacta.2025.146950_bib0017
  article-title: A comprehensive analysis of eco-friendly Cs2SnI6 based tin halide perovskite solar cell through device modeling
  publication-title: Adv. Theory Simulations
  doi: 10.1002/adts.202200856
– year: 2024
  ident: 10.1016/j.electacta.2025.146950_bib0052
  article-title: A numerical strategy for achieving efficiency exceeding 32% with a novel lead-free dual-absorber solar cell using Ca3SbI3 and Sr3SbI3 perovskites
  publication-title: Adv. Photonics Res. n/a
– volume: 15
  start-page: 7709
  year: 2025
  ident: 10.1016/j.electacta.2025.146950_bib0039
  article-title: Enhanced perovskite solar cells performance with TiOx and SnOx thin films as electron transport layers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-83600-3
– volume: 4
  start-page: 17104
  year: 2016
  ident: 10.1016/j.electacta.2025.146950_bib0016
  article-title: Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08332C
SSID ssj0007670
Score 2.4850733
Snippet •The study achieved a remarkable PCE of 32.06 %, making RbGeBr3 a promising active material for perovskite solar cells.•Among various ETL materials tested...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 146950
SubjectTerms ETL
HTL
RbGeBr3
SCAPS-1D
SCAPS-1D, ETL, HTL, RbGeBr3, Solar cell
Solar cell
Title Advancing RbGeBr3 perovskite solar cells with metal doped chalcogenide ETL: A leap towards higher efficiency
URI https://dx.doi.org/10.1016/j.electacta.2025.146950
Volume 538
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPagH0apYX-zBazTJbl7eammtrx5EobeQ2Z3QSm2DrR797e5sE21B8CDkkIRsCF-Gmdnhm28YO3NzN9aANIBYCEcm4DmJVuAoGWr0Ygi11S146Ie9Z3k7CAY11q56YYhWWfr-hU-33rq8c1GieVGMRtTj6wlJDQ4BacZY2W0pI7Ly888fmkcURm41xYCeXuF42VEzmTnMRtEPyGsk1ID_W4RaijrdbbZVpou8tfiiHVbDSYOtt6spbQ22uSQouMvGdkiyMuf8Ea7x6k1wEgL_mFGNls9oG8upVD_jVH_lr2hSb66nBWquhtlYTY05jTTyztP9JW_xMWYFn1ti7YwPLSOEo9WcoIbNPfbc7Ty1e045T8FRXhTPHc_EKxlLCM2PUCBBm1wmE7mfgAwimWQa4wwwVGEmhApAKwGRUj7KQAUkPSf2WX0yneAB45gIhFDk4EWZBIxjYRxBbF4YgfJUnjeZW2GYFgvZjLTik72k37CnBHu6gL3JLius0xULSI1z_2vx4X8WH7ENuqKI5LvHrD5_e8cTk2rM4dTa0ilba93c9fpfxO3U8Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KPagH0apYP_fgNTTpbr681WKt2vYgLfQWMrsTrNS22OrvdydNxILgQcghJEwIb4c3s8vMG4BrN3Mjg8QDiKV0VIyeExuNjlaBIS_CwOS6Bf1B0B2px7E_rkC77IXhssqC-9ecnrN18aRRoNlYTCbc4-tJxQ0OPmvGsOz2FqtT-VXYaj08dQffhBwGoVsOMmCDjTKvfNpMai-7V2z6TBwx9-D_FqR-BJ7OPuwVGaNorX_qACo0q8F2uxzUVoPdH5qChzDN5yRrey-e8Z5u36VgLfDPJR_TiiXvZAWf1i8FH8GKN7LZtzDzBRmhX9KpnluPmhgSd8PejWiJKaULscpra5fiJS8KEZTLTnDP5hGMOnfDdtcpRio42gujlePZkKUihYFdC40KjU1nUpk1Y1R-qOLUUJQiBTpIpdQ-Gi0x1LpJytc-q8_JY6jO5jM6AUGxJAxkhl6YKqQokpYLIvvBELWns6wObolhslgrZyRlSdlr8g17wrAna9jrcFNinWw4QWL5_S_j0_8YX8F2d9jvJb2HwdMZ7PAbDlBN9xyqq_cPurCZxwovC8_6Ahwe16I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+RbGeBr3+perovskite+solar+cells+with+metal+doped+chalcogenide+ETL%3A+A+leap+towards+higher+efficiency&rft.jtitle=Electrochimica+acta&rft.au=Verma%2C+Akash+Anand&rft.au=Dwivedi%2C+D.K.&rft.date=2025-10-20&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.volume=538&rft_id=info:doi/10.1016%2Fj.electacta.2025.146950&rft.externalDocID=S0013468625013106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon