High Temperature Studies of Graphene Nanoplatelets-MOFs Membranes for PEM Fuel Cells Applications
The wide applicability of proton exchange membrane fuel cells (PEMFCs) is hindered by their dependency on the Nafion membrane as a state-of-the-art electrolyte. Nafion membranes can only operate at relatively low temperatures, up to 80°C. Therefore, any application of the fuel cell above this temper...
Saved in:
Published in | Key engineering materials Vol. 962; pp. 93 - 98 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Trans Tech Publications Ltd
12.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The wide applicability of proton exchange membrane fuel cells (PEMFCs) is hindered by their dependency on the Nafion membrane as a state-of-the-art electrolyte. Nafion membranes can only operate at relatively low temperatures, up to 80°C. Therefore, any application of the fuel cell above this temperature would cause the PEMFC to lose its proton conductivity and mechanical integrity. For this reason, the development of Nafion-free membranes for PEMFCs has been studied extensively through the corporation of several additives over polymer substrates. The charge transfer abilities of metal-organic frameworks (MOFs), among other properties, make them one of the possible additives. The objective of this work is to synthesize Nafion-free membranes based on graphene oxide, MOFs, ionic liquids, polyethylene glycol, and zirconium phosphate over PTTFE membrane as an alternative to Nafion membranes. The preliminary results gave proton conductivities in the range of 10-4 S/cm up to 150°C with graphene oxide MOF addition to all samples. |
---|---|
AbstractList | The wide applicability of proton exchange membrane fuel cells (PEMFCs) is hindered by their dependency on the Nafion membrane as a state-of-the-art electrolyte. Nafion membranes can only operate at relatively low temperatures, up to 80°C. Therefore, any application of the fuel cell above this temperature would cause the PEMFC to lose its proton conductivity and mechanical integrity. For this reason, the development of Nafion-free membranes for PEMFCs has been studied extensively through the corporation of several additives over polymer substrates. The charge transfer abilities of metal-organic frameworks (MOFs), among other properties, make them one of the possible additives. The objective of this work is to synthesize Nafion-free membranes based on graphene oxide, MOFs, ionic liquids, polyethylene glycol, and zirconium phosphate over PTTFE membrane as an alternative to Nafion membranes. The preliminary results gave proton conductivities in the range of 10-4 S/cm up to 150°C with graphene oxide MOF addition to all samples. The wide applicability of proton exchange membrane fuel cells (PEMFCs) is hindered by their dependency on the Nafion membrane as a state-of-the-art electrolyte. Nafion membranes can only operate at relatively low temperatures, up to 80°C. Therefore, any application of the fuel cell above this temperature would cause the PEMFC to lose its proton conductivity and mechanical integrity. For this reason, the development of Nafion-free membranes for PEMFCs has been studied extensively through the corporation of several additives over polymer substrates. The charge transfer abilities of metal-organic frameworks (MOFs), among other properties, make them one of the possible additives. The objective of this work is to synthesize Nafion-free membranes based on graphene oxide, MOFs, ionic liquids, polyethylene glycol, and zirconium phosphate over PTTFE membrane as an alternative to Nafion membranes. The preliminary results gave proton conductivities in the range of 10 -4 S/cm up to 150°C with graphene oxide MOF addition to all samples. |
Author | Tawalbeh, Muhammad Al-Othman, Amani Shirvanimoghaddam, Kamyar Unnikrishnan, Vishnu Li, Quanxiang Al-Jahran, Amer Zabihi, Omid Ka'ki, Ahmad Mohamad, Shima Naebe, Minoo |
Author_xml | – givenname: Minoo surname: Naebe fullname: Naebe, Minoo email: minoo.naebe@deakin.edu.au organization: Deakin University : Carbon Nexus, Institute for Frontier Materials – givenname: Ahmad surname: Ka'ki fullname: Ka'ki, Ahmad email: b00041179@alumni.aus.edu organization: American University of Sharjah : Department of Chemical Engineering – givenname: Omid surname: Zabihi fullname: Zabihi, Omid email: omid.zabihi@deakin.edu.au organization: Deakin University : Carbon Nexus, Institute for Frontier Materials – givenname: Shima surname: Mohamad fullname: Mohamad, Shima email: shima.mohammed2724@gmail.com organization: University of Sharjah : Sustainable and Renewable Energy Engineering Department – givenname: Muhammad surname: Tawalbeh fullname: Tawalbeh, Muhammad email: mtawalbeh@sharjah.ac.ae organization: University of Sharjah : Sustainable and Renewable Energy Engineering Department – givenname: Vishnu surname: Unnikrishnan fullname: Unnikrishnan, Vishnu email: vishnu.unnikrishnan@deakin.edu.au organization: Deakin University : Carbon Nexus, Institute for Frontier Materials – givenname: Kamyar surname: Shirvanimoghaddam fullname: Shirvanimoghaddam, Kamyar email: kamyar.shirvanimoghaddam@deakin.edu.au organization: Deakin University : Carbon Nexus, Institute for Frontier Materials – givenname: Amani surname: Al-Othman fullname: Al-Othman, Amani email: aalothman@aus.edu organization: American University of Sharjah : Department of Chemical Engineering – givenname: Quanxiang surname: Li fullname: Li, Quanxiang email: quanxiang.li@deakin.edu.au organization: Deakin University : Carbon Nexus, Institute for Frontier Materials – givenname: Amer surname: Al-Jahran fullname: Al-Jahran, Amer email: amr.aljahran@htu.edu.jo organization: Al Hussein Technical University : Engineering Technology Department |
BookMark | eNptkE9PAjEQxRuDiYAmfoQejcliyy7t7pEQ_hhATODiadPtzkpJ6TZt9-C3t4on9TSTmd-bvHkD1DOtAYTuKRllZJw_2SR920u1vkJ9ytg4KXgx6cWe0DQp8jG7QQPvT4SkNKeTPhIr9X7EBzhbcCJ0DvA-dLUCj9sGL52wRzCAX4RprRYBNASfbHcLj7dwrpwwEWxah1_nW7zoQOMZaO3x1FqtpAiqNf4WXTdCe7j7qUN0WMwPs1Wy2S2fZ9NNIinn6ySHtKKEUVlLXldEVBDNNgwYZxPC86wupMjyomBcTDJSxAXNMiHrlFc0DtIhGl3OStd676AppQrfDoITSpeUlF_5lLa85BMFD78E1qmzcB__oY8XNJ4yPoA8lqe2cya-8xf-BF3Gd84 |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_151711 crossref_primary_10_1016_j_psep_2024_06_130 |
Cites_doi | 10.1016/j.jpowsour.2011.09.104 10.1016/j.ijhydene.2019.09.118 10.1016/j.ijhydene.2021.01.013 10.1016/j.ijhydene.2021.03.033 10.1016/j.ijhydene.2020.02.112 10.1016/j.memsci.2021.119288 10.1149/1.2127757 10.3390/membranes12020178 10.1016/b978-0-12-815732-9.00030-9 10.1109/ASET53988.2022.9734834 10.3389/fchem.2020.00056 10.1039/c3cc46105j 10.1016/j.rser.2022.112836 10.1016/j.ijhydene.2022.05.009 10.1038/natrevmats.2015.5 10.3390/membranes7010013 10.1016/j.rser.2017.09.081 10.1007/s10965-008-9255-6 10.1109/ASET53988.2022.9735033 10.1016/j.energy.2022.125237 |
ContentType | Journal Article |
Copyright | 2023 Trans Tech Publications Ltd |
Copyright_xml | – notice: 2023 Trans Tech Publications Ltd |
DBID | AAYXX CITATION |
DOI | 10.4028/p-3YSciK |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1662-9795 |
EndPage | 98 |
ExternalDocumentID | 10_4028_p_3YSciK |
GroupedDBID | -~X .DC 4.4 8FE 8FG AAATW ABDNZ ABJNI ACGFS ACIWK ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ D1I DB1 DKFMR EBS F5P KB. L6V P2P RTP ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c177K-8e3b1061cdc7db0abe826f6e67650784d9ca489967a54096e6144acd37b15403 |
ISSN | 1013-9826 1662-9795 |
IngestDate | Tue Jul 01 02:16:05 EDT 2025 Thu Apr 24 23:16:21 EDT 2025 Fri Aug 01 16:46:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graphene Nanoplatelets PEM Fuel Cell MOFs Proton Conductivity Composite Membranes |
Language | English |
License | https://www.scientific.net/PolicyAndEthics/PublishingPolicies https://www.scientific.net/license/TDM_Licenser.pdf |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c177K-8e3b1061cdc7db0abe826f6e67650784d9ca489967a54096e6144acd37b15403 |
Notes | Special topic volume with invited peer-reviewed papers only |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_4028_p_3YSciK crossref_primary_10_4028_p_3YSciK transtech_journals_10_4028_p_3YSciK |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231012 |
PublicationDateYYYYMMDD | 2023-10-12 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231012 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Key engineering materials |
PublicationYear | 2023 |
Publisher | Trans Tech Publications Ltd |
Publisher_xml | – name: Trans Tech Publications Ltd |
References | Tawalbeh (5070149); 260 Shahkaramipour (5070168) 2017; 7 5070160 Katz (5070162); 49 Wu (5070155); 630 MacFarlane (5070157) 2016; 1 5070156 Farooqui (5070165); 82 Nauman Javed (5070153) Alashkar (5070158) 2022; 12 5070159 Yeager (5070150) 2019; 128 Mohammed (5070161); 46 Lin (5070163) 2008; 16 Al-Othman (5070164); 199 Al-Othman (5070154); 46 Nauman Javed (5070151); 168 Wang (5070166); 46 Zheng (5070167) 2020; 8 Ka'ki (5070152); 46 |
References_xml | – volume: 199 start-page: 14 ident: 5070164 article-title: The effect of glycerol on the conductivity of Nafion-free ZrP/PTFE composite membrane electrolytes for direct hydrocarbon fuel cells publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2011.09.104 – volume: 46 start-page: 4857 issue: 6 ident: 5070161 article-title: Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.118 – volume: 46 start-page: 30641 issue: 59 ident: 5070152 article-title: Proton conduction of novel calcium phosphate nanocomposite membranes for high temperature PEM fuel cells applications publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2021.01.013 – volume: 46 start-page: 19106 issue: 36 ident: 5070166 article-title: UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.033 – volume: 46 start-page: 6100 issue: 8 ident: 5070154 article-title: Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.112 – volume: 630 start-page: 119288 ident: 5070155 article-title: Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2021.119288 – volume: 128 start-page: 1880 issn: 1945-7111 issue: 9 year: 2019 ident: 5070150 article-title: Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure publication-title: Journal of The Electrochemical Society doi: 10.1149/1.2127757 – volume: 12 start-page: 178 issn: 2077-0375 issue: 2 year: 2022 ident: 5070158 article-title: A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells publication-title: Membranes doi: 10.3390/membranes12020178 – ident: 5070156 doi: 10.1016/b978-0-12-815732-9.00030-9 – ident: 5070159 doi: 10.1109/ASET53988.2022.9734834 – volume: 8 issn: 2296-2646 year: 2020 ident: 5070167 article-title: Preparation of Covalent-Ionically Cross-Linked UiO-66-NH2/Sulfonated Aromatic Composite Proton Exchange Membranes With Excellent Performance publication-title: Frontiers in Chemistry doi: 10.3389/fchem.2020.00056 – volume: 49 start-page: 9449 issn: 1364-548X issue: 82 ident: 5070162 article-title: A facile synthesis of UiO-66, UiO-67 and their derivatives publication-title: Chemical Communications doi: 10.1039/c3cc46105j – volume: 168 start-page: 112836 ident: 5070151 article-title: Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2022.112836 – ident: 5070153 article-title: Zirconium silicate-ionic liquid membranes for high-temperature hydrogen PEM fuel cells publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2022.05.009 – volume: 1 issn: 2058-8437 issue: 2 year: 2016 ident: 5070157 article-title: Ionic liquids and their solid-state analogues as materials for energy generation and storage publication-title: Nature Reviews Materials doi: 10.1038/natrevmats.2015.5 – volume: 7 start-page: 13 issn: 2077-0375 issue: 1 year: 2017 ident: 5070168 article-title: Membranes with Surface-Enhanced Antifouling Properties for Water Purification publication-title: Membranes doi: 10.3390/membranes7010013 – volume: 82 start-page: 714 ident: 5070165 article-title: Graphene oxide: A promising membrane material for fuel cells publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2017.09.081 – volume: 16 start-page: 519 issn: 1572-8935 issue: 5 year: 2008 ident: 5070163 article-title: Silicate and zirconium phosphate modified Nafion/PTFE composite membranes for high temperature PEMFC publication-title: Journal of Polymer Research doi: 10.1007/s10965-008-9255-6 – ident: 5070160 doi: 10.1109/ASET53988.2022.9735033 – volume: 260 start-page: 125237 ident: 5070149 article-title: Lignin/zirconium phosphate/ionic liquids-based proton conducting membranes for high-temperature PEM fuel cells applications publication-title: Energy doi: 10.1016/j.energy.2022.125237 |
SSID | ssj0031815 |
Score | 2.3573318 |
Snippet | The wide applicability of proton exchange membrane fuel cells (PEMFCs) is hindered by their dependency on the Nafion membrane as a state-of-the-art... |
SourceID | crossref transtech |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 93 |
Title | High Temperature Studies of Graphene Nanoplatelets-MOFs Membranes for PEM Fuel Cells Applications |
URI | https://www.scientific.net/KEM.962.93 |
Volume | 962 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcgAOiKdYXjICiUNkaJM0To6r1XZXVGGRKNJyiuzYViulTUXbCxf-OjO242Yfh4VLVLnTqM58nflmOp4h5IPWeQZQMcyYkWGp0QkTOqlZnI-lUHlhpG32XH7Nzn6kXy7GF4PBn17V0m4rP9W_bzxX8j9ahTXQK56S_QfNhpvCArwG_cIVNAzXW-kYizSimQbm6zojd1WByABPsRM1GDK0n-26AUoJGtqw8nyyiUq9hCAZjJwtMvx2UkaTnW6iY900G8dL-4k8T12nYD30vnthBFTX7THkkwWoypXir9o2WHJgp9zNxj6aL4UKmWohF3agcHS-XITVsp2LpUPd9_nC-wyflIhtedtoH8JaP2v_HLiUfexVKqGtxcESRR77TthuLctiVnA3d7Mz0IW3187EuoGK3lm7CdZX3QDExHi0Yc2Sn2Ahp3tXFwoQIfRBoWpdOZE75G4McQaOwMgnp50rBxDbERjhm7ruxfjJz93NL_GZe1vcOHbf7ZGU2SPy0EcX9MhB5TEZ6NUT8qDXc_IpEQga2gMN9aChraEdaOh10NAAGgqgoQAaiqChFjS0D5pnZDY5mR2fMT9ng9Ujzqcs14nEzECtaq7kUEgNWzWZzjjQd56nqsDW9xAYcwH8voA3IAoXtUq4BAI-TJ6Tg1W70i8INVxqjDiKVI5SCA0KodI4HiqpzDg2KT8kH7uHVdW-Bz2OQmmqqwo5JO-C5Nr1XblB5n143pX_WW6uSb28ldQrcn-P49fkYPtrp98A3dzKtxYSfwEXaIZk |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Temperature+Studies+of+Graphene+Nanoplatelets-MOFs+Membranes+for+PEM+Fuel+Cells+Applications&rft.jtitle=Key+engineering+materials&rft.au=Naebe%2C+Minoo&rft.au=Ka%27ki%2C+Ahmad&rft.au=Zabihi%2C+Omid&rft.au=Mohamad%2C+Shima&rft.date=2023-10-12&rft.pub=Trans+Tech+Publications+Ltd&rft.issn=1013-9826&rft.eissn=1662-9795&rft.volume=962&rft.spage=93&rft.epage=98&rft_id=info:doi/10.4028%2Fp-3YSciK&rft.externalDocID=10_4028_p_3YSciK |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.scientific.net%2FImage%2FTitleCover%2F6957%3Fwidth%3D600 |