Regularization Semismooth Newton Method for P0-NCPs with Non-monotone Line Search

Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a p0 -function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-mono...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Tianjin University Vol. 16; no. 2; pp. 138 - 141
Main Author 王萍 臧玉卫 张颖
Format Journal Article
LanguageEnglish
Published Heidelberg Tianjin University 01.04.2010
School of Sciences, Tianjin University, Tianjin 300072, China%Tianjin University Beiyang Science and Technology Development Co. Ltd., Tianjin 300072, China
Subjects
Online AccessGet full text
ISSN1006-4982
1995-8196
DOI10.1007/s12209-010-0025-2

Cover

Abstract Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a p0 -function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard as- sumptions.
AbstractList O224; Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P0-function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard as-sumptions.
Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P 0 -function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard assumptions.
Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a p0 -function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard as- sumptions.
Author 王萍 臧玉卫 张颖
AuthorAffiliation School of Sciences, Tianjin University, Tianjin 300072, China Tianjin University Beiyang Science and Technology Development Co. Ltd., Yianjin 300072, China
AuthorAffiliation_xml – name: School of Sciences, Tianjin University, Tianjin 300072, China%Tianjin University Beiyang Science and Technology Development Co. Ltd., Tianjin 300072, China
Author_xml – sequence: 1
  fullname: 王萍 臧玉卫 张颖
BookMark eNpFUMtOwzAQtFCRaAsfwC3ijGHXeTg-ooqXVKBQOFtO7CQurQ1JqlZ8Pa6CxGV2tTuzj5mQkfPOEHKOcIUA_LpDxkBQQKAALKXsiIxRiJTmKLJRyAEymoicnZBJ160AEgEcx-T1zdTbtWrtj-qtd9HSbGy38b5vomez60PlyfSN11Hl22gB9Hm26KKdPbS9oxvvfOCYaG4DLI1qy-aUHFdq3ZmzvzglH3e377MHOn-5f5zdzGmJnCNlSueJAcwyTMo8U5gIjrpiugx_hEOTokg1zxOtRZWrzMRCKAZlrDlLKwQdT8nlMHenXKVcLVd-27qwUfZWuZXe7wtpWDAEAmCgs4HefbXW1ab95yPIg4dy8FAGiTx4KFkQXQyisvGu_g46Wajys7JrI-MYU0h5HP8CsppwqQ
ClassificationCodes O224
ContentType Journal Article
Copyright Tianjin University and Springer Berlin Heidelberg 2010
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Tianjin University and Springer Berlin Heidelberg 2010
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12209-010-0025-2
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Regularization Semismooth Newton Method for P0-NCPs with Non-monotone Line Search
EISSN 1995-8196
EndPage 141
ExternalDocumentID tianjdxxb_e201002011
10_1007_s12209_010_0025_2
33150573
GrantInformation_xml – fundername: the Science Technology Development Plan of Tianjin
  funderid: (06YFGZGX05600)
GroupedDBID -03
-0C
-5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29Q
29~
2B.
2C-
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
69O
6NX
8TC
92D
92I
92L
92M
93E
93N
95-
95.
95~
96X
9D9
9DC
AAAVM
AABHQ
AAFGU
AAHNG
AAHTB
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
AMYQR
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEC
CAJUS
CCEZO
CDYEO
CEKLB
CHBEP
COF
CQIGP
CS3
CSCUP
CTIDA
CW9
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IPNFZ
IXC
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NQJWS
NU0
O9-
O9J
P9P
PF0
PT4
Q--
Q-2
QOS
R-C
R89
R9I
RIG
ROL
RPX
RSV
RT3
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8S
TCJ
TGH
TSG
TSV
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AATNV
AAXDM
AAYZH
ABAKF
ABJNI
ABTKH
ABWNU
ACAOD
ACDTI
ACPIV
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AGQEE
AIGIU
AMXSW
AOCGG
DDRTE
DPUIP
IKXTQ
IWAJR
NPVJJ
SJYHP
SNPRN
SOHCF
4A8
AAPKM
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
PSX
ID FETCH-LOGICAL-c1771-2ad84e016614c86a14971df2dc2094984bb5d784dd9f8a6e399a20c3d725f10d3
IEDL.DBID U2A
ISSN 1006-4982
IngestDate Thu May 29 04:11:18 EDT 2025
Fri Feb 21 02:33:40 EST 2025
Fri Nov 25 07:23:42 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fischer-Burmeister function
semismooth Newton method
nonlinearity
complementarity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1771-2ad84e016614c86a14971df2dc2094984bb5d784dd9f8a6e399a20c3d725f10d3
Notes O221.2
12-1248/T
nonlinearity
complementarity
semismooth Newton method
nonlinearity; complementarity; semismooth Newton method; Fischer-Burrneister function
Fischer-Burrneister function
O242.23
PageCount 4
ParticipantIDs wanfang_journals_tianjdxxb_e201002011
springer_journals_10_1007_s12209_010_0025_2
chongqing_backfile_33150573
PublicationCentury 2000
PublicationDate 20100400
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 4
  year: 2010
  text: 20100400
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Transactions of Tianjin University
PublicationTitleAbbrev Trans. Tianjin Univ
PublicationTitleAlternate Transactions of Tianjin University
PublicationTitle_FL TRANSACTIONS OF TIANJIN UNIVERSITY
PublicationYear 2010
Publisher Tianjin University
School of Sciences, Tianjin University, Tianjin 300072, China%Tianjin University Beiyang Science and Technology Development Co. Ltd., Tianjin 300072, China
Publisher_xml – name: Tianjin University
– name: School of Sciences, Tianjin University, Tianjin 300072, China%Tianjin University Beiyang Science and Technology Development Co. Ltd., Tianjin 300072, China
References FacchineiF.PangJ. S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M]2003New YorkSpringer Verlag
ChenJ. S.PanS. H.A family of NCP functions and a descent method for the nonlinear complementarity problem[J]Computational Optimization and Applications20084033894041153.9054210.1007/s10589-007-9086-02411201
JiangH.QiL.A new nonsmooth equations approach to nonlinear complementarity problems[J]SIAM Journal on Control and Optimization19973511781930872.9009710.1137/S03630129942764941430288
ZhangH. C.HangerW. W.A nonmonotone line search technique and its application to unconstrained optimization[J]SIAM Journal on Optimization2004144104310561073.9002410.1137/S10526234034282082112963
FischerA.Solution of monotone complementarity problems with locally Lipschitzian functions[J]Mathematical Programming199776351353210.1007/BF026143961433969
SunD.A regularization Newton method for solving nonlinear complementarity problems[J]Applied Mathematics and Optimization19994033153390937.9011010.1007/s0024599001281709326
ChenJ. S.The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem[J]Journal of Global Optimization20063645655801144.9049310.1007/s10898-006-9027-y2269297
FacchineiF.KanzowC.Beyond monotonicity in regularization methods for nonlinear complementarity problems[J]SIAM Journal on Control and Optimization1999374115011610997.9008510.1137/S03630129973229351691935
FischerA.A special Newton-type optimization method[J]Optimization19922432692840814.6506310.1080/023319392088437951247636
ChenJ. S.PanS. H.A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P0-NCPs[J]Journal of Computational and Applied Mathematics20082201/24644791167.6503310.1016/j.cam.2007.08.0202444184
References_xml – reference: FischerA.Solution of monotone complementarity problems with locally Lipschitzian functions[J]Mathematical Programming199776351353210.1007/BF026143961433969
– reference: ChenJ. S.PanS. H.A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P0-NCPs[J]Journal of Computational and Applied Mathematics20082201/24644791167.6503310.1016/j.cam.2007.08.0202444184
– reference: FacchineiF.PangJ. S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M]2003New YorkSpringer Verlag
– reference: SunD.A regularization Newton method for solving nonlinear complementarity problems[J]Applied Mathematics and Optimization19994033153390937.9011010.1007/s0024599001281709326
– reference: FischerA.A special Newton-type optimization method[J]Optimization19922432692840814.6506310.1080/023319392088437951247636
– reference: ChenJ. S.PanS. H.A family of NCP functions and a descent method for the nonlinear complementarity problem[J]Computational Optimization and Applications20084033894041153.9054210.1007/s10589-007-9086-02411201
– reference: JiangH.QiL.A new nonsmooth equations approach to nonlinear complementarity problems[J]SIAM Journal on Control and Optimization19973511781930872.9009710.1137/S03630129942764941430288
– reference: FacchineiF.KanzowC.Beyond monotonicity in regularization methods for nonlinear complementarity problems[J]SIAM Journal on Control and Optimization1999374115011610997.9008510.1137/S03630129973229351691935
– reference: ZhangH. C.HangerW. W.A nonmonotone line search technique and its application to unconstrained optimization[J]SIAM Journal on Optimization2004144104310561073.9002410.1137/S10526234034282082112963
– reference: ChenJ. S.The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem[J]Journal of Global Optimization20063645655801144.9049310.1007/s10898-006-9027-y2269297
SSID ssj0049071
Score 1.7517983
Snippet Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear...
Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear...
O224; Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear...
SourceID wanfang
springer
chongqing
SourceType Aggregation Database
Publisher
StartPage 138
SubjectTerms Engineering
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
NCP
Science
光滑牛顿法
线搜索算法
非单调算法
非单调线搜索
非线性互补问题
Title Regularization Semismooth Newton Method for P0-NCPs with Non-monotone Line Search
URI http://lib.cqvip.com/qk/85460X/20102/33150573.html
https://link.springer.com/article/10.1007/s12209-010-0025-2
https://d.wanfangdata.com.cn/periodical/tianjdxxb-e201002011
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kvehBbFWs1bIHBUUWkn3kcSylVRSLioV6CtlsUlFMtanQn-9MsrE9ePEeZtmZnZlvMi9CzvARJKmrmQHnzaRWGQt5YJgQCtw3QHKhsDn5fuzdTOTtVE1tH3dRV7vXKcnSUq-b3Tgva3uwE5orBna3qSB0R22c8H5tfiVEe2WUhaGyDANepzL_IoEDFV7n-ewLjttIhZYNPHkW57MNXzPaI7sWJNJ-JdUW2UrzNtnZGB3YJi2rlAW9sJOjL_fJ41O5WX5heytpgcvcPuYgDArGDFAerRZGU0Cq9NNh48FDQfFPLM3nOYMHOcfR3BSRJ61U4IBMRsPnwQ2zOxNY4vq-y3hsApkCjgO3mwReDNz2XZNxk8DNgR1Sa2X8QBoTZkHspYBPYu4kwvhcZa5jxCFpwJHpEaEyywCeAETTPIGgMQgdxTVQ5yI0nk69Dun-Mg98bvKOk6QiIVyMeUSHXNXsjKxaFNF6RjIKIgJBRCiIiHfIueX4-mO0cG9mtdJRiil7B6HK8b-odsl2lezHQpsT0lguvtNTwBBL3SPN_vXL3bBXvp0fjeq9pA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_UgtirW-shBQZHAbrLPYymWqm1RaaG3sNlkK4q72q3Qn-_MPmwPXrwvEzKTmflm50XIJT6C2NiKaXDezFFuwkIeaCaEC-4bILlwsTl5OPL6E-dh6k6rPu68rnavU5KFpV41u3Fe1PZgJzR3GdjdLcACAa4tmPBObX4diPaKKAtDZScMeJ3K_IsEDlR4zdLZFxy3lgotGnjSJEpna76mt0_2KpBIO6VUG2TDpE2yuzY6sEkalVLm9LqaHH1zQJ5fis3y86q3kua4zO0jA2FQMGaA8mi5MJoCUqWfFht1n3KKf2JpmqUMHmSGo7kpIk9aqsAhmfTuxt0-q3YmsNj2fZvxSAeOARwHbjcOvAi47ds64TqGmwM7HKVc7QeO1mESRJ4BfBJxKxba525iW1ockU040hwT6iQJwBOAaIrHEDQGoeVyBdS5CLWnjNci7V_mgc-N33GSlBTCxphHtMhtzU5ZqUUuVzOSURASBCFREJK3yFXF8dXHaOHe9HKppMGUvYVQ5eRfVC_Idn88HMjB_eixTXbKxD8W3ZySzcX825wBnlio8-L9_ACte78D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQfQgtirW-tiDgiJLk908j6Va6qtUsdDbks0mFcW0NhX6851JNrYHL97DhszMznyTmfmGkHM0gjixFdMQvJmj3JSFPNBMCBfCN0By4eJw8lPf6w2d-5E7MntO86rbvSpJljMNyNKUzVtTnbaWg2-cF30-OBXNXQY-eAO8sY2GPuTtyhU7kPkVGRemzU4Y8Kqs-dcRSK7wNsnGX_DqlbJoMcyTpVE2Xok73V2yYwAjbZcarpG1JKuT7RUawTqpmQua00vDIn21R55fii3zMzNnSXNc7PY5AcVQcGyA-Gi5PJoCaqVTi_U7g5ziX1maTTIGxjlBmm6KKJSW12GfDLu3r50eM_sTWGz7vs14pAMnAUwHITgOvAgk79s65TqGLwdxOEq52g8crcM0iLwEsErErVhon7upbWlxQNbhlckhoU6aAlQBuKZ4DAlkEFouV3A6F6H2VOI1SPNXeBB_4w9klZJC2Jj_iAa5rsQpzRXJ5ZIvGRUhQRESFSF5g1wYiS8fRm_3rhcLJRMs31sIW47-deoZ2RzcdOXjXf-hSbbKHgDsvzkm6_PZd3IC0GKuTgvz-QETnMM_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularization+semismooth+Newton+method+for+p0-NCPs+with+non-monotone+line+search&rft.jtitle=Transactions+of+Tianjin+University&rft.au=Wang%2C+Ping&rft.au=Zang%2C+Yuwei&rft.au=Zhang%2C+Ying&rft.date=2010-04-01&rft.pub=Tianjin+University&rft.issn=1006-4982&rft.eissn=1995-8196&rft.volume=16&rft.issue=2&rft.spage=138&rft.epage=141&rft_id=info:doi/10.1007%2Fs12209-010-0025-2&rft.externalDocID=10_1007_s12209_010_0025_2
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85460X%2F85460X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg