Regularization Semismooth Newton Method for P0-NCPs with Non-monotone Line Search
Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a p0 -function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-mono...
Saved in:
Published in | Transactions of Tianjin University Vol. 16; no. 2; pp. 138 - 141 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Tianjin University
01.04.2010
School of Sciences, Tianjin University, Tianjin 300072, China%Tianjin University Beiyang Science and Technology Development Co. Ltd., Tianjin 300072, China |
Subjects | |
Online Access | Get full text |
ISSN | 1006-4982 1995-8196 |
DOI | 10.1007/s12209-010-0025-2 |
Cover
Abstract | Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a p0 -function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard as- sumptions. |
---|---|
AbstractList | O224; Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P0-function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard as-sumptions. Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P 0 -function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard assumptions. Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a p0 -function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard as- sumptions. |
Author | 王萍 臧玉卫 张颖 |
AuthorAffiliation | School of Sciences, Tianjin University, Tianjin 300072, China Tianjin University Beiyang Science and Technology Development Co. Ltd., Yianjin 300072, China |
AuthorAffiliation_xml | – name: School of Sciences, Tianjin University, Tianjin 300072, China%Tianjin University Beiyang Science and Technology Development Co. Ltd., Tianjin 300072, China |
Author_xml | – sequence: 1 fullname: 王萍 臧玉卫 张颖 |
BookMark | eNpFUMtOwzAQtFCRaAsfwC3ijGHXeTg-ooqXVKBQOFtO7CQurQ1JqlZ8Pa6CxGV2tTuzj5mQkfPOEHKOcIUA_LpDxkBQQKAALKXsiIxRiJTmKLJRyAEymoicnZBJ160AEgEcx-T1zdTbtWrtj-qtd9HSbGy38b5vomez60PlyfSN11Hl22gB9Hm26KKdPbS9oxvvfOCYaG4DLI1qy-aUHFdq3ZmzvzglH3e377MHOn-5f5zdzGmJnCNlSueJAcwyTMo8U5gIjrpiugx_hEOTokg1zxOtRZWrzMRCKAZlrDlLKwQdT8nlMHenXKVcLVd-27qwUfZWuZXe7wtpWDAEAmCgs4HefbXW1ab95yPIg4dy8FAGiTx4KFkQXQyisvGu_g46Wajys7JrI-MYU0h5HP8CsppwqQ |
ClassificationCodes | O224 |
ContentType | Journal Article |
Copyright | Tianjin University and Springer Berlin Heidelberg 2010 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Tianjin University and Springer Berlin Heidelberg 2010 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s12209-010-0025-2 |
DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering |
DocumentTitleAlternate | Regularization Semismooth Newton Method for P0-NCPs with Non-monotone Line Search |
EISSN | 1995-8196 |
EndPage | 141 |
ExternalDocumentID | tianjdxxb_e201002011 10_1007_s12209_010_0025_2 33150573 |
GrantInformation_xml | – fundername: the Science Technology Development Plan of Tianjin funderid: (06YFGZGX05600) |
GroupedDBID | -03 -0C -5B -5G -BR -EM -SC -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 29Q 29~ 2B. 2C- 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 69O 6NX 8TC 92D 92I 92L 92M 93E 93N 95- 95. 95~ 96X 9D9 9DC AAAVM AABHQ AAFGU AAHNG AAHTB AAIAL AAJKR AANZL AAPBV AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABPEJ ABQBU ABSXP ABTEG ABTHY ABTMW ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF AMYQR ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CAJEC CAJUS CCEZO CDYEO CEKLB CHBEP COF CQIGP CS3 CSCUP CTIDA CW9 DNIVK EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IPNFZ IXC IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NQJWS NU0 O9- O9J P9P PF0 PT4 Q-- Q-2 QOS R-C R89 R9I RIG ROL RPX RSV RT3 S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T8S TCJ TGH TSG TSV TUC U1F U1G U2A U5C U5M UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R ZMTXR ~A9 ~WA AACDK AAJBT AASML AATNV AAXDM AAYZH ABAKF ABJNI ABTKH ABWNU ACAOD ACDTI ACPIV ACZOJ ADTPH AEFQL AEMSY AESKC AEVLU AFBBN AGQEE AIGIU AMXSW AOCGG DDRTE DPUIP IKXTQ IWAJR NPVJJ SJYHP SNPRN SOHCF 4A8 AAPKM ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA PSX |
ID | FETCH-LOGICAL-c1771-2ad84e016614c86a14971df2dc2094984bb5d784dd9f8a6e399a20c3d725f10d3 |
IEDL.DBID | U2A |
ISSN | 1006-4982 |
IngestDate | Thu May 29 04:11:18 EDT 2025 Fri Feb 21 02:33:40 EST 2025 Fri Nov 25 07:23:42 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Fischer-Burmeister function semismooth Newton method nonlinearity complementarity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1771-2ad84e016614c86a14971df2dc2094984bb5d784dd9f8a6e399a20c3d725f10d3 |
Notes | O221.2 12-1248/T nonlinearity complementarity semismooth Newton method nonlinearity; complementarity; semismooth Newton method; Fischer-Burrneister function Fischer-Burrneister function O242.23 |
PageCount | 4 |
ParticipantIDs | wanfang_journals_tianjdxxb_e201002011 springer_journals_10_1007_s12209_010_0025_2 chongqing_backfile_33150573 |
PublicationCentury | 2000 |
PublicationDate | 20100400 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 4 year: 2010 text: 20100400 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Transactions of Tianjin University |
PublicationTitleAbbrev | Trans. Tianjin Univ |
PublicationTitleAlternate | Transactions of Tianjin University |
PublicationTitle_FL | TRANSACTIONS OF TIANJIN UNIVERSITY |
PublicationYear | 2010 |
Publisher | Tianjin University School of Sciences, Tianjin University, Tianjin 300072, China%Tianjin University Beiyang Science and Technology Development Co. Ltd., Tianjin 300072, China |
Publisher_xml | – name: Tianjin University – name: School of Sciences, Tianjin University, Tianjin 300072, China%Tianjin University Beiyang Science and Technology Development Co. Ltd., Tianjin 300072, China |
References | FacchineiF.PangJ. S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M]2003New YorkSpringer Verlag ChenJ. S.PanS. H.A family of NCP functions and a descent method for the nonlinear complementarity problem[J]Computational Optimization and Applications20084033894041153.9054210.1007/s10589-007-9086-02411201 JiangH.QiL.A new nonsmooth equations approach to nonlinear complementarity problems[J]SIAM Journal on Control and Optimization19973511781930872.9009710.1137/S03630129942764941430288 ZhangH. C.HangerW. W.A nonmonotone line search technique and its application to unconstrained optimization[J]SIAM Journal on Optimization2004144104310561073.9002410.1137/S10526234034282082112963 FischerA.Solution of monotone complementarity problems with locally Lipschitzian functions[J]Mathematical Programming199776351353210.1007/BF026143961433969 SunD.A regularization Newton method for solving nonlinear complementarity problems[J]Applied Mathematics and Optimization19994033153390937.9011010.1007/s0024599001281709326 ChenJ. S.The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem[J]Journal of Global Optimization20063645655801144.9049310.1007/s10898-006-9027-y2269297 FacchineiF.KanzowC.Beyond monotonicity in regularization methods for nonlinear complementarity problems[J]SIAM Journal on Control and Optimization1999374115011610997.9008510.1137/S03630129973229351691935 FischerA.A special Newton-type optimization method[J]Optimization19922432692840814.6506310.1080/023319392088437951247636 ChenJ. S.PanS. H.A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P0-NCPs[J]Journal of Computational and Applied Mathematics20082201/24644791167.6503310.1016/j.cam.2007.08.0202444184 |
References_xml | – reference: FischerA.Solution of monotone complementarity problems with locally Lipschitzian functions[J]Mathematical Programming199776351353210.1007/BF026143961433969 – reference: ChenJ. S.PanS. H.A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P0-NCPs[J]Journal of Computational and Applied Mathematics20082201/24644791167.6503310.1016/j.cam.2007.08.0202444184 – reference: FacchineiF.PangJ. S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M]2003New YorkSpringer Verlag – reference: SunD.A regularization Newton method for solving nonlinear complementarity problems[J]Applied Mathematics and Optimization19994033153390937.9011010.1007/s0024599001281709326 – reference: FischerA.A special Newton-type optimization method[J]Optimization19922432692840814.6506310.1080/023319392088437951247636 – reference: ChenJ. S.PanS. H.A family of NCP functions and a descent method for the nonlinear complementarity problem[J]Computational Optimization and Applications20084033894041153.9054210.1007/s10589-007-9086-02411201 – reference: JiangH.QiL.A new nonsmooth equations approach to nonlinear complementarity problems[J]SIAM Journal on Control and Optimization19973511781930872.9009710.1137/S03630129942764941430288 – reference: FacchineiF.KanzowC.Beyond monotonicity in regularization methods for nonlinear complementarity problems[J]SIAM Journal on Control and Optimization1999374115011610997.9008510.1137/S03630129973229351691935 – reference: ZhangH. C.HangerW. W.A nonmonotone line search technique and its application to unconstrained optimization[J]SIAM Journal on Optimization2004144104310561073.9002410.1137/S10526234034282082112963 – reference: ChenJ. S.The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem[J]Journal of Global Optimization20063645655801144.9049310.1007/s10898-006-9027-y2269297 |
SSID | ssj0049071 |
Score | 1.7517983 |
Snippet | Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear... Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear... O224; Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear... |
SourceID | wanfang springer chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 138 |
SubjectTerms | Engineering Humanities and Social Sciences Mechanical Engineering multidisciplinary NCP Science 光滑牛顿法 线搜索算法 非单调算法 非单调线搜索 非线性互补问题 |
Title | Regularization Semismooth Newton Method for P0-NCPs with Non-monotone Line Search |
URI | http://lib.cqvip.com/qk/85460X/20102/33150573.html https://link.springer.com/article/10.1007/s12209-010-0025-2 https://d.wanfangdata.com.cn/periodical/tianjdxxb-e201002011 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kvehBbFWs1bIHBUUWkn3kcSylVRSLioV6CtlsUlFMtanQn-9MsrE9ePEeZtmZnZlvMi9CzvARJKmrmQHnzaRWGQt5YJgQCtw3QHKhsDn5fuzdTOTtVE1tH3dRV7vXKcnSUq-b3Tgva3uwE5orBna3qSB0R22c8H5tfiVEe2WUhaGyDANepzL_IoEDFV7n-ewLjttIhZYNPHkW57MNXzPaI7sWJNJ-JdUW2UrzNtnZGB3YJi2rlAW9sJOjL_fJ41O5WX5heytpgcvcPuYgDArGDFAerRZGU0Cq9NNh48FDQfFPLM3nOYMHOcfR3BSRJ61U4IBMRsPnwQ2zOxNY4vq-y3hsApkCjgO3mwReDNz2XZNxk8DNgR1Sa2X8QBoTZkHspYBPYu4kwvhcZa5jxCFpwJHpEaEyywCeAETTPIGgMQgdxTVQ5yI0nk69Dun-Mg98bvKOk6QiIVyMeUSHXNXsjKxaFNF6RjIKIgJBRCiIiHfIueX4-mO0cG9mtdJRiil7B6HK8b-odsl2lezHQpsT0lguvtNTwBBL3SPN_vXL3bBXvp0fjeq9pA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_UgtirW-shBQZHAbrLPYymWqm1RaaG3sNlkK4q72q3Qn-_MPmwPXrwvEzKTmflm50XIJT6C2NiKaXDezFFuwkIeaCaEC-4bILlwsTl5OPL6E-dh6k6rPu68rnavU5KFpV41u3Fe1PZgJzR3GdjdLcACAa4tmPBObX4diPaKKAtDZScMeJ3K_IsEDlR4zdLZFxy3lgotGnjSJEpna76mt0_2KpBIO6VUG2TDpE2yuzY6sEkalVLm9LqaHH1zQJ5fis3y86q3kua4zO0jA2FQMGaA8mi5MJoCUqWfFht1n3KKf2JpmqUMHmSGo7kpIk9aqsAhmfTuxt0-q3YmsNj2fZvxSAeOARwHbjcOvAi47ds64TqGmwM7HKVc7QeO1mESRJ4BfBJxKxba525iW1ockU040hwT6iQJwBOAaIrHEDQGoeVyBdS5CLWnjNci7V_mgc-N33GSlBTCxphHtMhtzU5ZqUUuVzOSURASBCFREJK3yFXF8dXHaOHe9HKppMGUvYVQ5eRfVC_Idn88HMjB_eixTXbKxD8W3ZySzcX825wBnlio8-L9_ACte78D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQfQgtirW-tiDgiJLk908j6Va6qtUsdDbks0mFcW0NhX6851JNrYHL97DhszMznyTmfmGkHM0gjixFdMQvJmj3JSFPNBMCBfCN0By4eJw8lPf6w2d-5E7MntO86rbvSpJljMNyNKUzVtTnbaWg2-cF30-OBXNXQY-eAO8sY2GPuTtyhU7kPkVGRemzU4Y8Kqs-dcRSK7wNsnGX_DqlbJoMcyTpVE2Xok73V2yYwAjbZcarpG1JKuT7RUawTqpmQua00vDIn21R55fii3zMzNnSXNc7PY5AcVQcGyA-Gi5PJoCaqVTi_U7g5ziX1maTTIGxjlBmm6KKJSW12GfDLu3r50eM_sTWGz7vs14pAMnAUwHITgOvAgk79s65TqGLwdxOEq52g8crcM0iLwEsErErVhon7upbWlxQNbhlckhoU6aAlQBuKZ4DAlkEFouV3A6F6H2VOI1SPNXeBB_4w9klZJC2Jj_iAa5rsQpzRXJ5ZIvGRUhQRESFSF5g1wYiS8fRm_3rhcLJRMs31sIW47-deoZ2RzcdOXjXf-hSbbKHgDsvzkm6_PZd3IC0GKuTgvz-QETnMM_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularization+semismooth+Newton+method+for+p0-NCPs+with+non-monotone+line+search&rft.jtitle=Transactions+of+Tianjin+University&rft.au=Wang%2C+Ping&rft.au=Zang%2C+Yuwei&rft.au=Zhang%2C+Ying&rft.date=2010-04-01&rft.pub=Tianjin+University&rft.issn=1006-4982&rft.eissn=1995-8196&rft.volume=16&rft.issue=2&rft.spage=138&rft.epage=141&rft_id=info:doi/10.1007%2Fs12209-010-0025-2&rft.externalDocID=10_1007_s12209_010_0025_2 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85460X%2F85460X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg |