Perturbation Theory for Solutions to Second Order Elliptic Operators with Complex Coefficients and the Lp Dirichlet Problem

We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L 0 = div A 0 ( x )∇ + B 0 ( x ). ∇ is a p -elliptic operator satisfying the assumptions of Theorem 1.1 then the...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica Sinica. English series Vol. 35; no. 6; pp. 749 - 770
Main Authors Dindoš, Martin, Pipher, Jill
Format Journal Article
LanguageEnglish
Published Beijing Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L 0 = div A 0 ( x )∇ + B 0 ( x ). ∇ is a p -elliptic operator satisfying the assumptions of Theorem 1.1 then the L p Dirichlet problem for the operator L 0 is solvable in the upper half-space ℝ + n . In this paper we prove that the L p solvability is stable under small perturbations of L 0 . That is if L 1 is another divergence form elliptic operator with complex coefficients and the coefficients of the operators L 0 and L 1 are sufficiently close in the sense of Carleson measures, then the L p Dirichlet problem for the operator L 1 is solvable for the same value of p. As a corollary we obtain a new result on L p solvability of the Dirichlet problem for operators of the form L = div A ( x )∇ + B ( x ) · ∇ where the matrix A satisfies weaker Carleson condition (expressed in term of oscillation of coefficients). In particular the coefficients of A need no longer be differentiate and instead satisfy a Carleson condition that controls the oscillation of the matrix A over Whitney boxes. This result in the real case has been established by Dindoš, Petermichl and Pipher.
AbstractList We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L 0 = div A 0 ( x )∇ + B 0 ( x ). ∇ is a p -elliptic operator satisfying the assumptions of Theorem 1.1 then the L p Dirichlet problem for the operator L 0 is solvable in the upper half-space ℝ + n . In this paper we prove that the L p solvability is stable under small perturbations of L 0 . That is if L 1 is another divergence form elliptic operator with complex coefficients and the coefficients of the operators L 0 and L 1 are sufficiently close in the sense of Carleson measures, then the L p Dirichlet problem for the operator L 1 is solvable for the same value of p. As a corollary we obtain a new result on L p solvability of the Dirichlet problem for operators of the form L = div A ( x )∇ + B ( x ) · ∇ where the matrix A satisfies weaker Carleson condition (expressed in term of oscillation of coefficients). In particular the coefficients of A need no longer be differentiate and instead satisfy a Carleson condition that controls the oscillation of the matrix A over Whitney boxes. This result in the real case has been established by Dindoš, Petermichl and Pipher.
Author Pipher, Jill
Dindoš, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Dindoš
  fullname: Dindoš, Martin
  email: M.Dindos@ed.ac.uk
  organization: School of Mathematics, The University of Edinburgh and Maxwell Institute of Mathematical Sciences
– sequence: 2
  givenname: Jill
  surname: Pipher
  fullname: Pipher, Jill
  organization: Department of Mathematics, Brown University
BookMark eNp9kMtqwzAQRUVpoUnaD-hOP-BWsmwpXpY0fUAggaRrYcujWsGxzEihNf35OiTrru5lmDMMZ0quO98BIQ-cPXLG1FPgjPMsYbxI5ulYhisy4ZkoEiW5ur70ec7lLZmGsGcszwsmJ-R3AxiPWJXR-Y7uGvA4UOuRbn17PM0CjZ5uwfiupmusAemybV0fnaHrHrCMHgP9drGhC3_oW_gZE6x1xkEXAy1HLDZAVz19cehM00KkG_RVC4c7cmPLNsD9JWfk83W5W7wnq_Xbx-J5lRiu5JCIqlKKlXWuMmvrUqgszVLgRjJbQVFlRipRWKhBSVHPmRTGpIJBXYl5aa0oxIzw812DPgQEq3t0hxIHzZk-2dNne3q0p0_29DAy6ZkJ4273Baj3_ojd-OY_0B8RkXfm
CitedBy_id crossref_primary_10_1007_s10958_022_06201_3
crossref_primary_10_1007_s00205_024_01977_x
crossref_primary_10_1142_S1664360722300031
crossref_primary_10_1016_j_na_2020_112215
crossref_primary_10_1080_03605302_2021_1892131
crossref_primary_10_2140_apde_2022_15_1215
crossref_primary_10_1007_s00526_020_01751_3
crossref_primary_10_1016_j_euromechsol_2022_104522
Cites_doi 10.4153/CJM-2013-028-9
10.5565/PUBLMAT_50206_11
10.1016/j.aim.2010.12.014
10.5565/PUBLMAT_47203_12
10.1007/s11512-009-0108-2
10.1016/j.aim.2018.07.035
10.1007/BF02762711
10.2307/3597201
10.1007/s00208-014-1087-6
10.1007/BF01244315
10.1016/j.jfa.2011.05.013
10.1016/j.jfa.2006.11.012
10.2307/2374598
10.1016/j.jfa.2008.02.007
10.1016/j.matpur.2005.02.003
10.2307/2944333
10.1090/conm/612/12229
10.1007/s12220-012-9322-4
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019
DBID AAYXX
CITATION
DOI 10.1007/s10114-019-8214-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1439-7617
EndPage 770
ExternalDocumentID 10_1007_s10114_019_8214_y
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFMKY
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R4E
R89
R9I
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~8M
~A9
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
ID FETCH-LOGICAL-c176y-3bb770ad574ffda374242e1c60fbe9b4c6739fede763d8063cc230edb38aff393
IEDL.DBID AGYKE
ISSN 1439-8516
IngestDate Thu Sep 12 19:24:07 EDT 2024
Sat Dec 16 12:02:28 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Complex coefficients elliptic PDEs
perturbation theory
35J25
35J57
boundary value problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c176y-3bb770ad574ffda374242e1c60fbe9b4c6739fede763d8063cc230edb38aff393
OpenAccessLink https://www.pure.ed.ac.uk/ws/files/81093182/Perturb_Acta_Sinica_003_.pdf
PageCount 22
ParticipantIDs crossref_primary_10_1007_s10114_019_8214_y
springer_journals_10_1007_s10114_019_8214_y
PublicationCentury 2000
PublicationDate 2019-6-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-6-00
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Acta mathematica Sinica. English series
PublicationTitleAbbrev Acta. Math. Sin.-English Ser
PublicationYear 2019
Publisher Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
Publisher_xml – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
References Auscher, Axelsson, Hofmann (CR2) 2008; 255
Auscher, Hofmann, Lacey (CR4) 2001; 156
Rios (CR19) 2006; 50
Auscher, Axelsson, Mcintosh (CR3) 2010; 48
CR5
CR8
CR18
Alfonseca, Auscher, Axelsson (CR1) 2011; 226
CR17
Dahlberg (CR7) 1986; 108
Kenig, Pipher (CR16) 1993; 113
Escauriaza (CR12) 1996; 94
Dindoš, Petermichl, Pipher (CR10) 2007; 249
Cialdea, Maz'ya (CR6) 2005; 84
Fefferman, Kenig, Pipher (CR13) 1991; 134
Riviera-Noriega (CR20) 2014; 66
Dindoš, Pipher (CR11) 2019; 341
Dindoš, Wall (CR9) 2001; 261
Hofmann, Kenig, Mayboroda (CR14) 2015; 361
Hofmann, Martell (CR15) 2003; 47
M Dindoš (8214_CR9) 2001; 261
8214_CR18
P Auscher (8214_CR2) 2008; 255
C Rios (8214_CR19) 2006; 50
P Auscher (8214_CR3) 2010; 48
8214_CR17
R Fefferman (8214_CR13) 1991; 134
J Riviera-Noriega (8214_CR20) 2014; 66
S Hofmann (8214_CR15) 2003; 47
M Dindoš (8214_CR11) 2019; 341
B Dahlberg (8214_CR7) 1986; 108
8214_CR8
P Auscher (8214_CR4) 2001; 156
A Cialdea (8214_CR6) 2005; 84
M Alfonseca (8214_CR1) 2011; 226
8214_CR5
L Escauriaza (8214_CR12) 1996; 94
S Hofmann (8214_CR14) 2015; 361
M Dindoš (8214_CR10) 2007; 249
C Kenig (8214_CR16) 1993; 113
References_xml – volume: 66
  start-page: 429
  year: 2014
  end-page: 452
  ident: CR20
  article-title: Perturbation and solvability of initial Dirichlet problems for parabolic equations over non-cylindrical domains
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2013-028-9
  contributor:
    fullname: Riviera-Noriega
– ident: CR18
– volume: 50
  start-page: 475
  year: 2006
  end-page: 507
  ident: CR19
  article-title: regularity of the Dirichlet problem for elliptic equations with singular drift
  publication-title: Publ. Mat.
  doi: 10.5565/PUBLMAT_50206_11
  contributor:
    fullname: Rios
– volume: 226
  start-page: 4533
  issue: 5
  year: 2011
  end-page: 4606
  ident: CR1
  article-title: Analyticity of layer potentials and solvability of boundary value problems for divergence form elliptic equations with complex coefficients
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2010.12.014
  contributor:
    fullname: Axelsson
– volume: 47
  start-page: 497
  year: 2003
  end-page: 515
  ident: CR15
  article-title: bounds for Riesz transforms and square roots associated to second order elliptic operators
  publication-title: Pub. Mat.
  doi: 10.5565/PUBLMAT_47203_12
  contributor:
    fullname: Martell
– volume: 48
  start-page: 253
  issue: 2
  year: 2010
  end-page: 287
  ident: CR3
  article-title: Solvability of elliptic systems with square integrable boundary data
  publication-title: Ark. Mat.
  doi: 10.1007/s11512-009-0108-2
  contributor:
    fullname: Mcintosh
– volume: 341
  start-page: 255
  year: 2019
  end-page: 298
  ident: CR11
  article-title: Regularity theory for solutions to second order elliptic operators with complex coefficients and the Dirichlet problem
  publication-title: Adv. in Math.
  doi: 10.1016/j.aim.2018.07.035
  contributor:
    fullname: Pipher
– volume: 94
  start-page: 353
  year: 1996
  end-page: 366
  ident: CR12
  article-title: The Lp Dirichlet problem for small perturbations of the Laplacian
  publication-title: Israel J. Math.
  doi: 10.1007/BF02762711
  contributor:
    fullname: Escauriaza
– ident: CR17
– volume: 156
  start-page: 633
  issue: 2
  year: 2001
  end-page: 654
  ident: CR4
  article-title: The solution of the Kato square root problem for second order elliptic operators on ℝ
  publication-title: Ann. Mat.
  doi: 10.2307/3597201
  contributor:
    fullname: Lacey
– volume: 361
  start-page: 863
  issue: 3-4
  year: 2015
  end-page: 907
  ident: CR14
  article-title: The regularity problem for second order elliptic operators with complex-valued bounded measurable coefficients
  publication-title: Math. Ann.
  doi: 10.1007/s00208-014-1087-6
  contributor:
    fullname: Mayboroda
– volume: 113
  start-page: 447
  issue: 3
  year: 1993
  end-page: 509
  ident: CR16
  article-title: The Neumann problem for elliptic equations with nonsmooth coefficients
  publication-title: Invent. Math.
  doi: 10.1007/BF01244315
  contributor:
    fullname: Pipher
– volume: 261
  start-page: 1753
  year: 2001
  end-page: 1774
  ident: CR9
  article-title: The Dirichlet problem for second-order, non-divergence form operators: solvability and perturbation results
  publication-title: J. Fund. Anal.
  doi: 10.1016/j.jfa.2011.05.013
  contributor:
    fullname: Wall
– volume: 249
  start-page: 372
  issue: 2
  year: 2007
  end-page: 392
  ident: CR10
  article-title: The Dirichlet problem for second order elliptic operators and a -adapted square function
  publication-title: J. Fund. Anal.
  doi: 10.1016/j.jfa.2006.11.012
  contributor:
    fullname: Pipher
– ident: CR5
– ident: CR8
– volume: 108
  start-page: 1119
  year: 1986
  end-page: 1138
  ident: CR7
  article-title: On the absolute continuity of elliptic measures
  publication-title: American Journal of Mathematics
  doi: 10.2307/2374598
  contributor:
    fullname: Dahlberg
– volume: 255
  start-page: 374
  issue: 2
  year: 2008
  end-page: 448
  ident: CR2
  article-title: Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems
  publication-title: J. Func. Anal.
  doi: 10.1016/j.jfa.2008.02.007
  contributor:
    fullname: Hofmann
– volume: 84
  start-page: 1067
  issue: 9
  year: 2005
  end-page: 1100
  ident: CR6
  article-title: Criterion for the -dissipativity of second order differential operators with complex coefficients
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2005.02.003
  contributor:
    fullname: Maz'ya
– volume: 134
  start-page: 65
  issue: 1
  year: 1991
  end-page: 124
  ident: CR13
  article-title: The theory of weights and the Dirichlet problem for elliptic equations
  publication-title: Ann. of Math.
  doi: 10.2307/2944333
  contributor:
    fullname: Pipher
– volume: 134
  start-page: 65
  issue: 1
  year: 1991
  ident: 8214_CR13
  publication-title: Ann. of Math.
  doi: 10.2307/2944333
  contributor:
    fullname: R Fefferman
– volume: 84
  start-page: 1067
  issue: 9
  year: 2005
  ident: 8214_CR6
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2005.02.003
  contributor:
    fullname: A Cialdea
– volume: 48
  start-page: 253
  issue: 2
  year: 2010
  ident: 8214_CR3
  publication-title: Ark. Mat.
  doi: 10.1007/s11512-009-0108-2
  contributor:
    fullname: P Auscher
– ident: 8214_CR8
– ident: 8214_CR18
  doi: 10.1090/conm/612/12229
– ident: 8214_CR17
  doi: 10.1007/s12220-012-9322-4
– ident: 8214_CR5
– volume: 341
  start-page: 255
  year: 2019
  ident: 8214_CR11
  publication-title: Adv. in Math.
  doi: 10.1016/j.aim.2018.07.035
  contributor:
    fullname: M Dindoš
– volume: 50
  start-page: 475
  year: 2006
  ident: 8214_CR19
  publication-title: Publ. Mat.
  doi: 10.5565/PUBLMAT_50206_11
  contributor:
    fullname: C Rios
– volume: 113
  start-page: 447
  issue: 3
  year: 1993
  ident: 8214_CR16
  publication-title: Invent. Math.
  doi: 10.1007/BF01244315
  contributor:
    fullname: C Kenig
– volume: 108
  start-page: 1119
  year: 1986
  ident: 8214_CR7
  publication-title: American Journal of Mathematics
  doi: 10.2307/2374598
  contributor:
    fullname: B Dahlberg
– volume: 249
  start-page: 372
  issue: 2
  year: 2007
  ident: 8214_CR10
  publication-title: J. Fund. Anal.
  doi: 10.1016/j.jfa.2006.11.012
  contributor:
    fullname: M Dindoš
– volume: 156
  start-page: 633
  issue: 2
  year: 2001
  ident: 8214_CR4
  publication-title: Ann. Mat.
  doi: 10.2307/3597201
  contributor:
    fullname: P Auscher
– volume: 94
  start-page: 353
  year: 1996
  ident: 8214_CR12
  publication-title: Israel J. Math.
  doi: 10.1007/BF02762711
  contributor:
    fullname: L Escauriaza
– volume: 66
  start-page: 429
  year: 2014
  ident: 8214_CR20
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-2013-028-9
  contributor:
    fullname: J Riviera-Noriega
– volume: 261
  start-page: 1753
  year: 2001
  ident: 8214_CR9
  publication-title: J. Fund. Anal.
  doi: 10.1016/j.jfa.2011.05.013
  contributor:
    fullname: M Dindoš
– volume: 47
  start-page: 497
  year: 2003
  ident: 8214_CR15
  publication-title: Pub. Mat.
  doi: 10.5565/PUBLMAT_47203_12
  contributor:
    fullname: S Hofmann
– volume: 255
  start-page: 374
  issue: 2
  year: 2008
  ident: 8214_CR2
  publication-title: J. Func. Anal.
  doi: 10.1016/j.jfa.2008.02.007
  contributor:
    fullname: P Auscher
– volume: 361
  start-page: 863
  issue: 3-4
  year: 2015
  ident: 8214_CR14
  publication-title: Math. Ann.
  doi: 10.1007/s00208-014-1087-6
  contributor:
    fullname: S Hofmann
– volume: 226
  start-page: 4533
  issue: 5
  year: 2011
  ident: 8214_CR1
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2010.12.014
  contributor:
    fullname: M Alfonseca
SSID ssj0055906
Score 2.1955304
Snippet We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 749
SubjectTerms Mathematics
Mathematics and Statistics
Title Perturbation Theory for Solutions to Second Order Elliptic Operators with Complex Coefficients and the Lp Dirichlet Problem
URI https://link.springer.com/article/10.1007/s10114-019-8214-y
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF56vOiDt1iPsg8-KSlprs0-FumBWlvQQn0K2QulkpYmBat_3tkc1aI-9CkJbA5mJrPfzOx8i9CloJomnfqGRzg3HEdaBrN4aAjFTOkL6jXTzSb6D15v5NyO3XEJWavURTRpFBXJ1FH_6HUD6A6RLzV8C06WZVTN-06rre7zXbvwvwCRzaynyIahbtMrapl_PWR9NlovhaYzTGc36_qLU2JCvbBk0lgkrME_ftM2bvDxe2gnB5y4lVnIPirJ6ABt91dsrfEh-hzKOcw8LFUSzrr1MYBZvMqZ4WSKH3XoLPBAc3VivdQDnA3Hg5lMC_Ux1hldrN3Lm3yHo0y5KfQyDRzCbfA6fD_D4GFf-QvYCh5mO9kcoVGn_XTTM_JNGQzeJN7SsBkjxAyFSxylRGhDaO1Yssk9UzFJmcM9YlMlhQTHJXwAQJxDlCMFs_1QKZvax6gSTSN5grAfOlR5LuGEC007SE0BACiUxCUKkJmooatCOcEs494IvlmWtUQDkGigJRosa-i6EH2Q_4bx_6NPNxp9hrYsrbs0-XKOKsl8IS8AiySsjsp-p1vPTRCuRlbrC7g92ik
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDLVgOAAHdsRODpxAQV2T5ogQMMAsSAwSnKpmEwg0jJgiMfDzOF3YBAdO7cFtIyd1nmP7GWBHC0eTLhLKuFI0ikxAZaAyqq30TKIF84tmE-0Oa15FZ9fxdVXHPayz3euQZGGpvxS7IXZH11fQJMCb0ThMRIHPggZMHJzcnB_VBhgxslcWFYUoGvusDmb-9pLv29H3WGixxRzPQq8eXJlZcr__nMt99fqDt_Gfo5-DmQpykoNyjczDmOkvwHT7g691uAhvF-YJ9x5ZTBMp6_UJwlnycWpG8kdy6ZxnTbqOrZO4ZA80N4p0B6YI1Q-JO9MlzsA8mBe8moKdwiVqkAwfw8-R1oCgjb1Tt7hayEXZy2YJro6PeodNWrVloMrnbERDKTn3Mh3zyFqdhehcR4HxFfOsNEJGivFQWKMNmi6dIARSCv0co2WYZNaGIlyGRv-xb1aAJFkkLIu54ko74kHhaYRAmeExt4jN9Crs1rOTDkr2jfSTZ9lpNEWNpk6j6WgV9mrVp9WPOPxbeu1f0tsw2ey1W2nrtHO-DlOBm8fiKGYDGvnTs9lEZJLLrWolvgNSCdwu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oC6IHd7Guc_CkpKbZJnMs2lr3ghbqKWY2FKUtNoLVP--bLGpFD-IpOUy2eZM339u-B7AjmaFJZ6EVUCEsz1OOxR0RW1JzW4WSBbW02cT5RdDqeCddv5v3OR0W2e5FSDKraTAsTb1kfyD1_pfCN8TxaAYzK3TwZDQJZc8QI5WgXD-6OW0Uyhjxsp0VGLk41K8FRWDzp5uMb03jcdF0u2nOwW3xolmWyUP1OeFV8fqNw_EfXzIPszkUJfVs7SzAhOotwsz5B4_rcAne2uoJ9ySeio9kdfwEYS758KaRpE-ujFEtyaVh8SQmCQTVkCCXA5WG8IfE-HqJUTyP6gWPKmWtMAkcJMbL8HHkbEBQ996LO1xFpJ31uFmGTrNxfdCy8nYNlqjRYGS5nFNqx9KnntYydtHo9hxVE4GtuWLcEwF1mVZSoUqTIUIjIdD-UZK7Yay1y9wVKPX6PbUKJIw9pgOfCiqkISRktkRoFCvqU42YTVZgt5BUNMhYOaJP_mUzoxHOaGRmNBpVYK8QQ5T_oMPfR6_9afQ2TLUPm9HZ8cXpOkw7Royph2YDSsnTs9pEwJLwrXxRvgPIC-US
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perturbation+Theory+for+Solutions+to+Second+Order+Elliptic+Operators+with+Complex+Coefficients+and+the+Lp+Dirichlet+Problem&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Dindo%C5%A1%2C+Martin&rft.au=Pipher%2C+Jill&rft.date=2019-06-01&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=35&rft.issue=6&rft.spage=749&rft.epage=770&rft_id=info:doi/10.1007%2Fs10114-019-8214-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10114_019_8214_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon