Perturbation Theory for Solutions to Second Order Elliptic Operators with Complex Coefficients and the Lp Dirichlet Problem
We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L 0 = div A 0 ( x )∇ + B 0 ( x ). ∇ is a p -elliptic operator satisfying the assumptions of Theorem 1.1 then the...
Saved in:
Published in | Acta mathematica Sinica. English series Vol. 35; no. 6; pp. 749 - 770 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Beijing
Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If
L
0
= div
A
0
(
x
)∇ +
B
0
(
x
). ∇ is a
p
-elliptic operator satisfying the assumptions of Theorem 1.1 then the
L
p
Dirichlet problem for the operator
L
0
is solvable in the upper half-space ℝ
+
n
. In this paper we prove that the
L
p
solvability is stable under small perturbations of
L
0
. That is if
L
1
is another divergence form elliptic operator with complex coefficients and the coefficients of the operators
L
0
and
L
1
are sufficiently close in the sense of Carleson measures, then the
L
p
Dirichlet problem for the operator
L
1
is solvable for the same value of
p.
As a corollary we obtain a new result on
L
p
solvability of the Dirichlet problem for operators of the form
L =
div
A
(
x
)∇ +
B
(
x
)
·
∇ where the matrix
A
satisfies weaker Carleson condition (expressed in term of oscillation of coefficients). In particular the coefficients of
A
need no longer be differentiate and instead satisfy a Carleson condition that controls the oscillation of the matrix
A
over Whitney boxes. This result in the real case has been established by Dindoš, Petermichl and Pipher. |
---|---|
AbstractList | We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If
L
0
= div
A
0
(
x
)∇ +
B
0
(
x
). ∇ is a
p
-elliptic operator satisfying the assumptions of Theorem 1.1 then the
L
p
Dirichlet problem for the operator
L
0
is solvable in the upper half-space ℝ
+
n
. In this paper we prove that the
L
p
solvability is stable under small perturbations of
L
0
. That is if
L
1
is another divergence form elliptic operator with complex coefficients and the coefficients of the operators
L
0
and
L
1
are sufficiently close in the sense of Carleson measures, then the
L
p
Dirichlet problem for the operator
L
1
is solvable for the same value of
p.
As a corollary we obtain a new result on
L
p
solvability of the Dirichlet problem for operators of the form
L =
div
A
(
x
)∇ +
B
(
x
)
·
∇ where the matrix
A
satisfies weaker Carleson condition (expressed in term of oscillation of coefficients). In particular the coefficients of
A
need no longer be differentiate and instead satisfy a Carleson condition that controls the oscillation of the matrix
A
over Whitney boxes. This result in the real case has been established by Dindoš, Petermichl and Pipher. |
Author | Pipher, Jill Dindoš, Martin |
Author_xml | – sequence: 1 givenname: Martin surname: Dindoš fullname: Dindoš, Martin email: M.Dindos@ed.ac.uk organization: School of Mathematics, The University of Edinburgh and Maxwell Institute of Mathematical Sciences – sequence: 2 givenname: Jill surname: Pipher fullname: Pipher, Jill organization: Department of Mathematics, Brown University |
BookMark | eNp9kMtqwzAQRUVpoUnaD-hOP-BWsmwpXpY0fUAggaRrYcujWsGxzEihNf35OiTrru5lmDMMZ0quO98BIQ-cPXLG1FPgjPMsYbxI5ulYhisy4ZkoEiW5ur70ec7lLZmGsGcszwsmJ-R3AxiPWJXR-Y7uGvA4UOuRbn17PM0CjZ5uwfiupmusAemybV0fnaHrHrCMHgP9drGhC3_oW_gZE6x1xkEXAy1HLDZAVz19cehM00KkG_RVC4c7cmPLNsD9JWfk83W5W7wnq_Xbx-J5lRiu5JCIqlKKlXWuMmvrUqgszVLgRjJbQVFlRipRWKhBSVHPmRTGpIJBXYl5aa0oxIzw812DPgQEq3t0hxIHzZk-2dNne3q0p0_29DAy6ZkJ4273Baj3_ojd-OY_0B8RkXfm |
CitedBy_id | crossref_primary_10_1007_s10958_022_06201_3 crossref_primary_10_1007_s00205_024_01977_x crossref_primary_10_1142_S1664360722300031 crossref_primary_10_1016_j_na_2020_112215 crossref_primary_10_1080_03605302_2021_1892131 crossref_primary_10_2140_apde_2022_15_1215 crossref_primary_10_1007_s00526_020_01751_3 crossref_primary_10_1016_j_euromechsol_2022_104522 |
Cites_doi | 10.4153/CJM-2013-028-9 10.5565/PUBLMAT_50206_11 10.1016/j.aim.2010.12.014 10.5565/PUBLMAT_47203_12 10.1007/s11512-009-0108-2 10.1016/j.aim.2018.07.035 10.1007/BF02762711 10.2307/3597201 10.1007/s00208-014-1087-6 10.1007/BF01244315 10.1016/j.jfa.2011.05.013 10.1016/j.jfa.2006.11.012 10.2307/2374598 10.1016/j.jfa.2008.02.007 10.1016/j.matpur.2005.02.003 10.2307/2944333 10.1090/conm/612/12229 10.1007/s12220-012-9322-4 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10114-019-8214-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1439-7617 |
EndPage | 770 |
ExternalDocumentID | 10_1007_s10114_019_8214_y |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFMKY AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS R4E R89 R9I ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AGQEE AGRTI AIGIU CITATION H13 PQBZA |
ID | FETCH-LOGICAL-c176y-3bb770ad574ffda374242e1c60fbe9b4c6739fede763d8063cc230edb38aff393 |
IEDL.DBID | AGYKE |
ISSN | 1439-8516 |
IngestDate | Thu Sep 12 19:24:07 EDT 2024 Sat Dec 16 12:02:28 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Complex coefficients elliptic PDEs perturbation theory 35J25 35J57 boundary value problems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c176y-3bb770ad574ffda374242e1c60fbe9b4c6739fede763d8063cc230edb38aff393 |
OpenAccessLink | https://www.pure.ed.ac.uk/ws/files/81093182/Perturb_Acta_Sinica_003_.pdf |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1007_s10114_019_8214_y springer_journals_10_1007_s10114_019_8214_y |
PublicationCentury | 2000 |
PublicationDate | 2019-6-00 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-6-00 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Acta mathematica Sinica. English series |
PublicationTitleAbbrev | Acta. Math. Sin.-English Ser |
PublicationYear | 2019 |
Publisher | Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society |
Publisher_xml | – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society |
References | Auscher, Axelsson, Hofmann (CR2) 2008; 255 Auscher, Hofmann, Lacey (CR4) 2001; 156 Rios (CR19) 2006; 50 Auscher, Axelsson, Mcintosh (CR3) 2010; 48 CR5 CR8 CR18 Alfonseca, Auscher, Axelsson (CR1) 2011; 226 CR17 Dahlberg (CR7) 1986; 108 Kenig, Pipher (CR16) 1993; 113 Escauriaza (CR12) 1996; 94 Dindoš, Petermichl, Pipher (CR10) 2007; 249 Cialdea, Maz'ya (CR6) 2005; 84 Fefferman, Kenig, Pipher (CR13) 1991; 134 Riviera-Noriega (CR20) 2014; 66 Dindoš, Pipher (CR11) 2019; 341 Dindoš, Wall (CR9) 2001; 261 Hofmann, Kenig, Mayboroda (CR14) 2015; 361 Hofmann, Martell (CR15) 2003; 47 M Dindoš (8214_CR9) 2001; 261 8214_CR18 P Auscher (8214_CR2) 2008; 255 C Rios (8214_CR19) 2006; 50 P Auscher (8214_CR3) 2010; 48 8214_CR17 R Fefferman (8214_CR13) 1991; 134 J Riviera-Noriega (8214_CR20) 2014; 66 S Hofmann (8214_CR15) 2003; 47 M Dindoš (8214_CR11) 2019; 341 B Dahlberg (8214_CR7) 1986; 108 8214_CR8 P Auscher (8214_CR4) 2001; 156 A Cialdea (8214_CR6) 2005; 84 M Alfonseca (8214_CR1) 2011; 226 8214_CR5 L Escauriaza (8214_CR12) 1996; 94 S Hofmann (8214_CR14) 2015; 361 M Dindoš (8214_CR10) 2007; 249 C Kenig (8214_CR16) 1993; 113 |
References_xml | – volume: 66 start-page: 429 year: 2014 end-page: 452 ident: CR20 article-title: Perturbation and solvability of initial Dirichlet problems for parabolic equations over non-cylindrical domains publication-title: Can. J. Math. doi: 10.4153/CJM-2013-028-9 contributor: fullname: Riviera-Noriega – ident: CR18 – volume: 50 start-page: 475 year: 2006 end-page: 507 ident: CR19 article-title: regularity of the Dirichlet problem for elliptic equations with singular drift publication-title: Publ. Mat. doi: 10.5565/PUBLMAT_50206_11 contributor: fullname: Rios – volume: 226 start-page: 4533 issue: 5 year: 2011 end-page: 4606 ident: CR1 article-title: Analyticity of layer potentials and solvability of boundary value problems for divergence form elliptic equations with complex coefficients publication-title: Adv. Math. doi: 10.1016/j.aim.2010.12.014 contributor: fullname: Axelsson – volume: 47 start-page: 497 year: 2003 end-page: 515 ident: CR15 article-title: bounds for Riesz transforms and square roots associated to second order elliptic operators publication-title: Pub. Mat. doi: 10.5565/PUBLMAT_47203_12 contributor: fullname: Martell – volume: 48 start-page: 253 issue: 2 year: 2010 end-page: 287 ident: CR3 article-title: Solvability of elliptic systems with square integrable boundary data publication-title: Ark. Mat. doi: 10.1007/s11512-009-0108-2 contributor: fullname: Mcintosh – volume: 341 start-page: 255 year: 2019 end-page: 298 ident: CR11 article-title: Regularity theory for solutions to second order elliptic operators with complex coefficients and the Dirichlet problem publication-title: Adv. in Math. doi: 10.1016/j.aim.2018.07.035 contributor: fullname: Pipher – volume: 94 start-page: 353 year: 1996 end-page: 366 ident: CR12 article-title: The Lp Dirichlet problem for small perturbations of the Laplacian publication-title: Israel J. Math. doi: 10.1007/BF02762711 contributor: fullname: Escauriaza – ident: CR17 – volume: 156 start-page: 633 issue: 2 year: 2001 end-page: 654 ident: CR4 article-title: The solution of the Kato square root problem for second order elliptic operators on ℝ publication-title: Ann. Mat. doi: 10.2307/3597201 contributor: fullname: Lacey – volume: 361 start-page: 863 issue: 3-4 year: 2015 end-page: 907 ident: CR14 article-title: The regularity problem for second order elliptic operators with complex-valued bounded measurable coefficients publication-title: Math. Ann. doi: 10.1007/s00208-014-1087-6 contributor: fullname: Mayboroda – volume: 113 start-page: 447 issue: 3 year: 1993 end-page: 509 ident: CR16 article-title: The Neumann problem for elliptic equations with nonsmooth coefficients publication-title: Invent. Math. doi: 10.1007/BF01244315 contributor: fullname: Pipher – volume: 261 start-page: 1753 year: 2001 end-page: 1774 ident: CR9 article-title: The Dirichlet problem for second-order, non-divergence form operators: solvability and perturbation results publication-title: J. Fund. Anal. doi: 10.1016/j.jfa.2011.05.013 contributor: fullname: Wall – volume: 249 start-page: 372 issue: 2 year: 2007 end-page: 392 ident: CR10 article-title: The Dirichlet problem for second order elliptic operators and a -adapted square function publication-title: J. Fund. Anal. doi: 10.1016/j.jfa.2006.11.012 contributor: fullname: Pipher – ident: CR5 – ident: CR8 – volume: 108 start-page: 1119 year: 1986 end-page: 1138 ident: CR7 article-title: On the absolute continuity of elliptic measures publication-title: American Journal of Mathematics doi: 10.2307/2374598 contributor: fullname: Dahlberg – volume: 255 start-page: 374 issue: 2 year: 2008 end-page: 448 ident: CR2 article-title: Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems publication-title: J. Func. Anal. doi: 10.1016/j.jfa.2008.02.007 contributor: fullname: Hofmann – volume: 84 start-page: 1067 issue: 9 year: 2005 end-page: 1100 ident: CR6 article-title: Criterion for the -dissipativity of second order differential operators with complex coefficients publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2005.02.003 contributor: fullname: Maz'ya – volume: 134 start-page: 65 issue: 1 year: 1991 end-page: 124 ident: CR13 article-title: The theory of weights and the Dirichlet problem for elliptic equations publication-title: Ann. of Math. doi: 10.2307/2944333 contributor: fullname: Pipher – volume: 134 start-page: 65 issue: 1 year: 1991 ident: 8214_CR13 publication-title: Ann. of Math. doi: 10.2307/2944333 contributor: fullname: R Fefferman – volume: 84 start-page: 1067 issue: 9 year: 2005 ident: 8214_CR6 publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2005.02.003 contributor: fullname: A Cialdea – volume: 48 start-page: 253 issue: 2 year: 2010 ident: 8214_CR3 publication-title: Ark. Mat. doi: 10.1007/s11512-009-0108-2 contributor: fullname: P Auscher – ident: 8214_CR8 – ident: 8214_CR18 doi: 10.1090/conm/612/12229 – ident: 8214_CR17 doi: 10.1007/s12220-012-9322-4 – ident: 8214_CR5 – volume: 341 start-page: 255 year: 2019 ident: 8214_CR11 publication-title: Adv. in Math. doi: 10.1016/j.aim.2018.07.035 contributor: fullname: M Dindoš – volume: 50 start-page: 475 year: 2006 ident: 8214_CR19 publication-title: Publ. Mat. doi: 10.5565/PUBLMAT_50206_11 contributor: fullname: C Rios – volume: 113 start-page: 447 issue: 3 year: 1993 ident: 8214_CR16 publication-title: Invent. Math. doi: 10.1007/BF01244315 contributor: fullname: C Kenig – volume: 108 start-page: 1119 year: 1986 ident: 8214_CR7 publication-title: American Journal of Mathematics doi: 10.2307/2374598 contributor: fullname: B Dahlberg – volume: 249 start-page: 372 issue: 2 year: 2007 ident: 8214_CR10 publication-title: J. Fund. Anal. doi: 10.1016/j.jfa.2006.11.012 contributor: fullname: M Dindoš – volume: 156 start-page: 633 issue: 2 year: 2001 ident: 8214_CR4 publication-title: Ann. Mat. doi: 10.2307/3597201 contributor: fullname: P Auscher – volume: 94 start-page: 353 year: 1996 ident: 8214_CR12 publication-title: Israel J. Math. doi: 10.1007/BF02762711 contributor: fullname: L Escauriaza – volume: 66 start-page: 429 year: 2014 ident: 8214_CR20 publication-title: Can. J. Math. doi: 10.4153/CJM-2013-028-9 contributor: fullname: J Riviera-Noriega – volume: 261 start-page: 1753 year: 2001 ident: 8214_CR9 publication-title: J. Fund. Anal. doi: 10.1016/j.jfa.2011.05.013 contributor: fullname: M Dindoš – volume: 47 start-page: 497 year: 2003 ident: 8214_CR15 publication-title: Pub. Mat. doi: 10.5565/PUBLMAT_47203_12 contributor: fullname: S Hofmann – volume: 255 start-page: 374 issue: 2 year: 2008 ident: 8214_CR2 publication-title: J. Func. Anal. doi: 10.1016/j.jfa.2008.02.007 contributor: fullname: P Auscher – volume: 361 start-page: 863 issue: 3-4 year: 2015 ident: 8214_CR14 publication-title: Math. Ann. doi: 10.1007/s00208-014-1087-6 contributor: fullname: S Hofmann – volume: 226 start-page: 4533 issue: 5 year: 2011 ident: 8214_CR1 publication-title: Adv. Math. doi: 10.1016/j.aim.2010.12.014 contributor: fullname: M Alfonseca |
SSID | ssj0055906 |
Score | 2.1955304 |
Snippet | We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 749 |
SubjectTerms | Mathematics Mathematics and Statistics |
Title | Perturbation Theory for Solutions to Second Order Elliptic Operators with Complex Coefficients and the Lp Dirichlet Problem |
URI | https://link.springer.com/article/10.1007/s10114-019-8214-y |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF56vOiDt1iPsg8-KSlprs0-FumBWlvQQn0K2QulkpYmBat_3tkc1aI-9CkJbA5mJrPfzOx8i9CloJomnfqGRzg3HEdaBrN4aAjFTOkL6jXTzSb6D15v5NyO3XEJWavURTRpFBXJ1FH_6HUD6A6RLzV8C06WZVTN-06rre7zXbvwvwCRzaynyIahbtMrapl_PWR9NlovhaYzTGc36_qLU2JCvbBk0lgkrME_ftM2bvDxe2gnB5y4lVnIPirJ6ABt91dsrfEh-hzKOcw8LFUSzrr1MYBZvMqZ4WSKH3XoLPBAc3VivdQDnA3Hg5lMC_Ux1hldrN3Lm3yHo0y5KfQyDRzCbfA6fD_D4GFf-QvYCh5mO9kcoVGn_XTTM_JNGQzeJN7SsBkjxAyFSxylRGhDaO1Yssk9UzFJmcM9YlMlhQTHJXwAQJxDlCMFs_1QKZvax6gSTSN5grAfOlR5LuGEC007SE0BACiUxCUKkJmooatCOcEs494IvlmWtUQDkGigJRosa-i6EH2Q_4bx_6NPNxp9hrYsrbs0-XKOKsl8IS8AiySsjsp-p1vPTRCuRlbrC7g92ik |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDLVgOAAHdsRODpxAQV2T5ogQMMAsSAwSnKpmEwg0jJgiMfDzOF3YBAdO7cFtIyd1nmP7GWBHC0eTLhLKuFI0ikxAZaAyqq30TKIF84tmE-0Oa15FZ9fxdVXHPayz3euQZGGpvxS7IXZH11fQJMCb0ThMRIHPggZMHJzcnB_VBhgxslcWFYUoGvusDmb-9pLv29H3WGixxRzPQq8eXJlZcr__nMt99fqDt_Gfo5-DmQpykoNyjczDmOkvwHT7g691uAhvF-YJ9x5ZTBMp6_UJwlnycWpG8kdy6ZxnTbqOrZO4ZA80N4p0B6YI1Q-JO9MlzsA8mBe8moKdwiVqkAwfw8-R1oCgjb1Tt7hayEXZy2YJro6PeodNWrVloMrnbERDKTn3Mh3zyFqdhehcR4HxFfOsNEJGivFQWKMNmi6dIARSCv0co2WYZNaGIlyGRv-xb1aAJFkkLIu54ko74kHhaYRAmeExt4jN9Crs1rOTDkr2jfSTZ9lpNEWNpk6j6WgV9mrVp9WPOPxbeu1f0tsw2ey1W2nrtHO-DlOBm8fiKGYDGvnTs9lEZJLLrWolvgNSCdwu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oC6IHd7Guc_CkpKbZJnMs2lr3ghbqKWY2FKUtNoLVP--bLGpFD-IpOUy2eZM339u-B7AjmaFJZ6EVUCEsz1OOxR0RW1JzW4WSBbW02cT5RdDqeCddv5v3OR0W2e5FSDKraTAsTb1kfyD1_pfCN8TxaAYzK3TwZDQJZc8QI5WgXD-6OW0Uyhjxsp0VGLk41K8FRWDzp5uMb03jcdF0u2nOwW3xolmWyUP1OeFV8fqNw_EfXzIPszkUJfVs7SzAhOotwsz5B4_rcAne2uoJ9ySeio9kdfwEYS758KaRpE-ujFEtyaVh8SQmCQTVkCCXA5WG8IfE-HqJUTyP6gWPKmWtMAkcJMbL8HHkbEBQ996LO1xFpJ31uFmGTrNxfdCy8nYNlqjRYGS5nFNqx9KnntYydtHo9hxVE4GtuWLcEwF1mVZSoUqTIUIjIdD-UZK7Yay1y9wVKPX6PbUKJIw9pgOfCiqkISRktkRoFCvqU42YTVZgt5BUNMhYOaJP_mUzoxHOaGRmNBpVYK8QQ5T_oMPfR6_9afQ2TLUPm9HZ8cXpOkw7Royph2YDSsnTs9pEwJLwrXxRvgPIC-US |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perturbation+Theory+for+Solutions+to+Second+Order+Elliptic+Operators+with+Complex+Coefficients+and+the+Lp+Dirichlet+Problem&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Dindo%C5%A1%2C+Martin&rft.au=Pipher%2C+Jill&rft.date=2019-06-01&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=35&rft.issue=6&rft.spage=749&rft.epage=770&rft_id=info:doi/10.1007%2Fs10114-019-8214-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10114_019_8214_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon |