A Sparse Sharing Multitask Framework for Building Footprint Extraction From Remote Sensing Imagery Following the Dual Lottery Ticket Hypothesis

Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other applications. Recently, researchers have found that the edge features of buildings are crucial in extracting building footprints, and multitas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 16
Main Authors Xing, Huaqiao, Xiang, Junwu, Xiong, Li, Wen, Qi, Liu, Qingjie, Wang, Yunhong
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other applications. Recently, researchers have found that the edge features of buildings are crucial in extracting building footprints, and multitask deep learning is used to share edge feature information. However, these multitask deep learning frameworks adopt a hard sharing approach, which cannot avoid the adverse effects caused by the differences between different tasks, resulting in the problem of blurred edges and building boundaries. To address this issue, this article proposes a dual lottery ticket hypothesis (DLTH) and sparse sharing-based multitask deep learning framework, dual sparse sharing architecture (DSSA), to transmit the edge information in the edge detection to the building footprint extraction by sharing partial parameters. First, the subnetworks of building footprint extraction and edge detection are constructed according to the sparse rate and parameter sharing rate to control the dependencies between the subnetworks. Second, given the difference in the importance of the two tasks, a cosine unequal-scaled alternating training strategy is proposed to strengthen and weaken the transmission of edge information periodically. Third, following the DLTH, the loss function with <inline-formula> <tex-math notation="LaTeX">{L}3 </tex-math></inline-formula>/2 regularization constraint is used to promote the information transmission and parameter conversion of the subnetwork by using the global information. Finally, aiming at the edge of building footprint extraction results, a pixel-based evaluation index, edge extraction accuracy (<inline-formula> <tex-math notation="LaTeX">{\mathrm {EEA}}^{(n)}) </tex-math></inline-formula>, is designed by morphological erosion to better evaluate the integrity of the edge of building footprint extraction results. The experiments conducted on a self-annotated dataset and two public datasets (i.e., WHU Aerial Imagery dataset and Massachusetts Building dataset) show that DSSA can achieve better edge effects than the baseline and show excellent generalization ability.
AbstractList Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other applications. Recently, researchers have found that the edge features of buildings are crucial in extracting building footprints, and multitask deep learning is used to share edge feature information. However, these multitask deep learning frameworks adopt a hard sharing approach, which cannot avoid the adverse effects caused by the differences between different tasks, resulting in the problem of blurred edges and building boundaries. To address this issue, this article proposes a dual lottery ticket hypothesis (DLTH) and sparse sharing-based multitask deep learning framework, dual sparse sharing architecture (DSSA), to transmit the edge information in the edge detection to the building footprint extraction by sharing partial parameters. First, the subnetworks of building footprint extraction and edge detection are constructed according to the sparse rate and parameter sharing rate to control the dependencies between the subnetworks. Second, given the difference in the importance of the two tasks, a cosine unequal-scaled alternating training strategy is proposed to strengthen and weaken the transmission of edge information periodically. Third, following the DLTH, the loss function with <inline-formula> <tex-math notation="LaTeX">{L}3 </tex-math></inline-formula>/2 regularization constraint is used to promote the information transmission and parameter conversion of the subnetwork by using the global information. Finally, aiming at the edge of building footprint extraction results, a pixel-based evaluation index, edge extraction accuracy (<inline-formula> <tex-math notation="LaTeX">{\mathrm {EEA}}^{(n)}) </tex-math></inline-formula>, is designed by morphological erosion to better evaluate the integrity of the edge of building footprint extraction results. The experiments conducted on a self-annotated dataset and two public datasets (i.e., WHU Aerial Imagery dataset and Massachusetts Building dataset) show that DSSA can achieve better edge effects than the baseline and show excellent generalization ability.
Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other applications. Recently, researchers have found that the edge features of buildings are crucial in extracting building footprints, and multitask deep learning is used to share edge feature information. However, these multitask deep learning frameworks adopt a hard sharing approach, which cannot avoid the adverse effects caused by the differences between different tasks, resulting in the problem of blurred edges and building boundaries. To address this issue, this article proposes a dual lottery ticket hypothesis (DLTH) and sparse sharing-based multitask deep learning framework, dual sparse sharing architecture (DSSA), to transmit the edge information in the edge detection to the building footprint extraction by sharing partial parameters. First, the subnetworks of building footprint extraction and edge detection are constructed according to the sparse rate and parameter sharing rate to control the dependencies between the subnetworks. Second, given the difference in the importance of the two tasks, a cosine unequal-scaled alternating training strategy is proposed to strengthen and weaken the transmission of edge information periodically. Third, following the DLTH, the loss function with [Formula Omitted]/2 regularization constraint is used to promote the information transmission and parameter conversion of the subnetwork by using the global information. Finally, aiming at the edge of building footprint extraction results, a pixel-based evaluation index, edge extraction accuracy ([Formula Omitted], is designed by morphological erosion to better evaluate the integrity of the edge of building footprint extraction results. The experiments conducted on a self-annotated dataset and two public datasets (i.e., WHU Aerial Imagery dataset and Massachusetts Building dataset) show that DSSA can achieve better edge effects than the baseline and show excellent generalization ability.
Author Xing, Huaqiao
Xiong, Li
Wang, Yunhong
Xiang, Junwu
Wen, Qi
Liu, Qingjie
Author_xml – sequence: 1
  givenname: Huaqiao
  orcidid: 0000-0002-8748-1729
  surname: Xing
  fullname: Xing, Huaqiao
  email: xinghuaqiao18@sdjzu.edu.cn
  organization: School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, Shandong, China
– sequence: 2
  givenname: Junwu
  orcidid: 0009-0000-7509-592X
  surname: Xiang
  fullname: Xiang, Junwu
  email: 2021165115@stu.sdjzu.edu.cn
  organization: School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, Shandong, China
– sequence: 3
  givenname: Li
  surname: Xiong
  fullname: Xiong, Li
  email: hsiunglee@163.com
  organization: Disaster Reduction and Preparedness Center of Jiangxi Province, Nanchang, China
– sequence: 4
  givenname: Qi
  orcidid: 0000-0002-6520-3584
  surname: Wen
  fullname: Wen, Qi
  email: whistlewen@aliyun.com
  organization: Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Qingjie
  orcidid: 0000-0002-5181-6451
  surname: Liu
  fullname: Liu, Qingjie
  email: qingjie.liu@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
– sequence: 6
  givenname: Yunhong
  orcidid: 0000-0001-8001-2703
  surname: Wang
  fullname: Wang, Yunhong
  email: yhwang@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
BookMark eNpNkEFOwzAQRS0EEi1wACQWllin2HEc20sobUEqQmrLOnKTSRuaxMV2VHoKroyjsmA10sz7M_P_EJ23pgWEbikZUUrUw2q2WI5iEicjllDJUnWGBpRzGZE0Sc7RgFCVRrFU8SUaOvdJCE04FQP084iXe20d4OVW26rd4Leu9pXXboenVjdwMHaHS2PxU1fVRQ9MjfH7gHo8-fZW574ybWBNgxfQGB82Qet68LXRG7DHIKhrc-g7fgv4udM1nhvv-9Gqynfg8ctxb8LMVe4aXZS6dnDzV6_Qx3SyGr9E8_fZ6_hxHuVUpD4qSib5WqSKSwqEaV6qMtYEEh4LSgpdForIIk-FUITxQq4lYVIEz4WEQnDFrtD9ae_emq8OnM8-TWfbcDJjRPCECsJ6ip6o3BrnLJRZMN5oe8woyfrcsz73rM89-8s9aO5OmgoA_vE8Da9Q9gtMq4Jn
CODEN IGRSD2
Cites_doi 10.1016/j.jvcir.2021.103109
10.1016/j.isprsjprs.2021.12.007
10.1109/TNNLS.2024.3392484
10.1080/22797254.2021.2018944
10.1016/j.eswa.2023.119508
10.1109/JSTARS.2021.3124491
10.1109/TGRS.2022.3215852
10.1007/978-3-319-24574-4_28
10.3390/rs13193826
10.1109/tgrs.2020.3026051
10.1109/CVPR.2016.90
10.1109/TGRS.2018.2858817
10.1109/IGARSS.2003.1293898
10.1109/ICIP.2019.8803050
10.1016/j.isprsjprs.2022.05.001
10.1109/CVPR.2015.7298965
10.1016/j.eswa.2023.119858
10.3390/rs14194744
10.1016/j.isprsjprs.2021.11.005
10.3390/en14237982
10.3390/rs10081195
10.1016/j.ijdrr.2020.101577
10.1109/TGRS.2022.3165204
10.1109/TGRS.2021.3064606
10.1109/CVPR.2019.00395
10.1109/CVPR.2017.690
10.1109/TGRS.2023.3348102
10.1109/TGRS.2020.2973720
10.1109/TPAMI.2016.2644615
10.3390/rs13163087
10.1109/TGRS.2023.3317080
10.1109/JSTARS.2020.3017934
10.1109/CVPR.2017.660
10.3390/rs14194889
10.1016/j.isprsjprs.2023.05.013
10.1080/15481603.2022.2101727
10.1109/ACCESS.2021.3087206
10.1109/igarss47720.2021.9554766
10.3390/ijgi8040191
10.1109/CVPR.2017.106
10.1080/01431161.2023.2258563
10.1080/07038992.2023.2298806
10.1609/aaai.v34i05.6424
10.1109/TGRS.2020.3014312
10.1109/lgrs.2023.3244131
10.48550/arXiv.1802.02611
10.1109/TGRS.2023.3287298
10.1109/TGRS.2023.3314465
10.48550/arXiv.1909.11065
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3418369
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2024_3418369
10569031
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41871283
  funderid: 10.13039/501100001809
– fundername: Shandong Provincial Natural Science Foundation
  grantid: ZR2022YQ36
– fundername: Program of China Scholarship Council
  grantid: 202209995003
– fundername: Youth Innovation Team Project of Higher School in Shandong Province
  grantid: 2022KJ201
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c176t-df385b769581e03a5f9f2a0e452710dafd908dc6779035d8b80387145d8ed7593
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Oct 10 23:00:16 EDT 2024
Wed Sep 11 13:52:56 EDT 2024
Wed Sep 11 06:09:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c176t-df385b769581e03a5f9f2a0e452710dafd908dc6779035d8b80387145d8ed7593
ORCID 0000-0002-5181-6451
0009-0000-7509-592X
0000-0002-8748-1729
0000-0002-6520-3584
0000-0001-8001-2703
PQID 3075417039
PQPubID 85465
PageCount 16
ParticipantIDs proquest_journals_3075417039
crossref_primary_10_1109_TGRS_2024_3418369
ieee_primary_10569031
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref11
ref55
ref10
ref54
ref16
ref19
ref18
Sun (ref43) 2019
ref51
ref50
ref46
ref45
Simonyan (ref20) 2014
ref48
ref47
ref42
ref41
ref44
ref49
Redmon (ref22) 2018
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Jiwani (ref32) 2021
ref40
ref35
ref34
ref37
ref36
Mnih (ref52) 2013
ref31
ref30
ref33
ref1
ref39
ref38
Chen (ref17) 2017
ref24
ref23
ref26
ref25
ref21
ref28
ref27
ref29
Jun (ref2) 2016; 31
References_xml – ident: ref37
  doi: 10.1016/j.jvcir.2021.103109
– ident: ref18
  doi: 10.1016/j.isprsjprs.2021.12.007
– ident: ref36
  doi: 10.1109/TNNLS.2024.3392484
– ident: ref15
  doi: 10.1080/22797254.2021.2018944
– ident: ref27
  doi: 10.1016/j.eswa.2023.119508
– volume-title: Machine Learning for Aerial Image Labeling
  year: 2013
  ident: ref52
  contributor:
    fullname: Mnih
– ident: ref6
  doi: 10.1109/JSTARS.2021.3124491
– ident: ref50
  doi: 10.1109/TGRS.2022.3215852
– ident: ref14
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref31
  doi: 10.3390/rs13193826
– ident: ref44
  doi: 10.1109/tgrs.2020.3026051
– ident: ref16
  doi: 10.1109/CVPR.2016.90
– ident: ref8
  doi: 10.1109/TGRS.2018.2858817
– ident: ref1
  doi: 10.1109/IGARSS.2003.1293898
– year: 2014
  ident: ref20
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
  contributor:
    fullname: Simonyan
– ident: ref38
  doi: 10.1109/ICIP.2019.8803050
– ident: ref48
  doi: 10.1016/j.isprsjprs.2022.05.001
– ident: ref54
  doi: 10.1109/CVPR.2015.7298965
– ident: ref26
  doi: 10.1016/j.eswa.2023.119858
– year: 2018
  ident: ref22
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
  contributor:
    fullname: Redmon
– ident: ref39
  doi: 10.3390/rs14194744
– ident: ref42
  doi: 10.1016/j.isprsjprs.2021.11.005
– ident: ref24
  doi: 10.3390/en14237982
– ident: ref28
  doi: 10.3390/rs10081195
– ident: ref5
  doi: 10.1016/j.ijdrr.2020.101577
– ident: ref45
  doi: 10.1109/TGRS.2022.3165204
– ident: ref53
  doi: 10.1109/TGRS.2021.3064606
– ident: ref30
  doi: 10.1109/CVPR.2019.00395
– ident: ref21
  doi: 10.1109/CVPR.2017.690
– ident: ref13
  doi: 10.1109/TGRS.2023.3348102
– ident: ref25
  doi: 10.1109/TGRS.2020.2973720
– ident: ref55
  doi: 10.1109/TPAMI.2016.2644615
– volume: 31
  start-page: 653
  issue: 4
  year: 2016
  ident: ref2
  article-title: A survey of building extraction methods from optical high resolution remote sensing imagery
  publication-title: Remote Sens. Technol. Appl.
  contributor:
    fullname: Jun
– ident: ref10
  doi: 10.3390/rs13163087
– ident: ref12
  doi: 10.1109/TGRS.2023.3317080
– ident: ref29
  doi: 10.1109/JSTARS.2020.3017934
– ident: ref56
  doi: 10.1109/CVPR.2017.660
– ident: ref11
  doi: 10.3390/rs14194889
– ident: ref19
  doi: 10.1016/j.isprsjprs.2023.05.013
– ident: ref7
  doi: 10.1080/15481603.2022.2101727
– year: 2021
  ident: ref32
  article-title: A semantic segmentation network for urban-scale building footprint extraction using RGB satellite imagery
  publication-title: arXiv:2104.01263
  contributor:
    fullname: Jiwani
– ident: ref3
  doi: 10.1109/ACCESS.2021.3087206
– ident: ref47
  doi: 10.1109/igarss47720.2021.9554766
– ident: ref9
  doi: 10.3390/ijgi8040191
– ident: ref23
  doi: 10.1109/TNNLS.2024.3392484
– ident: ref33
  doi: 10.1109/CVPR.2017.106
– ident: ref4
  doi: 10.1080/01431161.2023.2258563
– year: 2017
  ident: ref17
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv:1706.05587
  contributor:
    fullname: Chen
– ident: ref35
  doi: 10.1080/07038992.2023.2298806
– ident: ref41
  doi: 10.1609/aaai.v34i05.6424
– ident: ref49
  doi: 10.1109/TGRS.2020.3014312
– ident: ref40
  doi: 10.1109/lgrs.2023.3244131
– ident: ref34
  doi: 10.48550/arXiv.1802.02611
– year: 2019
  ident: ref43
  article-title: High-resolution representations for labeling pixels and regions
  publication-title: arXiv:1904.04514
  contributor:
    fullname: Sun
– ident: ref46
  doi: 10.1109/TGRS.2023.3287298
– ident: ref51
  doi: 10.1109/TGRS.2023.3314465
– ident: ref57
  doi: 10.48550/arXiv.1909.11065
SSID ssj0014517
Score 2.4762282
Snippet Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Architecture
Building footprint extraction
Buildings
Data mining
Datasets
Deep learning
Disaster management
dual lottery ticket hypothesis (DLTH)
Edge detection
Edge effect
Emergency preparedness
Feature extraction
Hypotheses
Image edge detection
Image resolution
Imagery
Information processing
multitask
Multitasking
Parameters
Regularization
Remote sensing
sparse sharing
Task analysis
Urban planning
Title A Sparse Sharing Multitask Framework for Building Footprint Extraction From Remote Sensing Imagery Following the Dual Lottery Ticket Hypothesis
URI https://ieeexplore.ieee.org/document/10569031
https://www.proquest.com/docview/3075417039
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5UEFTwURWrVfbgSUjNYzfJHqu2VlEPWsFb2GQ3IGpTTIrWP-FfdiZJpSiCt5DsLguzO_nm8c0AHArONcJkZUljC4u7KV4pXxlLBkqqNI21n5C_4_rG79_zywfxUJPVSy6MMaZMPjNteixj-TpLxuQqO6Yu8dIm1vR8IGVF1voOGXDh1Nxo30Irwq1DmI4tjwfnt3doCrq8jTo79Ci5eeYnVHZV-aWKy_9Lbw1upjur0kqe2uMibicfP4o2_nvr67BaI03WqY7GBsyZYQNWOjOBgwYsz5QjbMBimQ6a5Jvw2WF3IzR5DaOCzviRVURdlT-x3jSdiyHeZSd1W23Wy7KCnIQF674XrxVdAsdmL-zW4HHAlShVHgdevFDZjAlOeH7O3ugNYlB2Nsa9XmXELZqwwSPqloL1JyPih-WP-Rbc97qD075Vt26wEifwC0unXijiwJcidIztKZHK1FW24cJFSKNVqqUd6sSnaoee0GEcUhgdZahDowMhvW1YGGZDswMMFwko-EnQjxOg9Xmiw0BLKbRxtGrC0VSW0aiq0BGVlo0tIxJ8RIKPasE3YYtkMzOwEksTWlPxR_UlziNUf4I7qBLl7h_T9mCJVq9cMi1YKF7HZh9BShEflIfzC8q049Y
link.rule.ids 315,783,787,799,4032,27936,27937,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD6aQBMXaRuliA42_MATUkoudmI_lo2usNIHKBJvkRM7EgKaiqSC8if4yzsnSadqaBJvUWI7lo59_J3LdwxwKDg3CJO1o6wrHO5nuKVCbR0VaaWzLDFhSv6Oi1E4uObnN-KmIatXXBhrbZV8Zrv0WMXyTZ7OyFV2TLfEK5dY06sIrGVU07X-Bg248Bp2dOigHeE3QUzPVcfjX5dXaAz6vItaWwaU3rx0DFX3qrxRxtUJ0_8Mo8Xc6sSSu-6sTLrpyz9lG989-S_wqcGarFcvji34YCct2OwthQ5asLFUkLAFH6uE0LTYhtceu5qi0WsZlXTGj6ym6urijvUXCV0MES87aS7WZv08L8lNWLLT5_KxJkxg2_yBXVpcEDgSJctjw7MHKpwxxw739_kTvUEUyn7OcK7DnNhFcza-Re1SssF8Sgyx4rZow3X_dPxj4DSXNzipF4WlY7JAiiQKlZCedQMtMpX52rVc-AhqjM6McqVJQ6p3GAgjE0mBdJShkdZEQgU7sDLJJ3YXGA4SUfiTwB8nSBvy1MjIKCWM9YzuwNFClvG0rtERV7aNq2ISfEyCjxvBd6BNsllqWIulA_sL8cfNNi5iVICCe6gU1df_dDuAtcH4YhgPz0a_92Cd_lQ7aPZhpXyc2W8IWcrke7VQ_wDcIOci
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sparse+Sharing+Multitask+Framework+for+Building+Footprint+Extraction+From+Remote+Sensing+Imagery+Following+the+Dual+Lottery+Ticket+Hypothesis&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Xing%2C+Huaqiao&rft.au=Xiang%2C+Junwu&rft.au=Xiong%2C+Li&rft.au=Wen%2C+Qi&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2024.3418369&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3418369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon