A Sparse Sharing Multitask Framework for Building Footprint Extraction From Remote Sensing Imagery Following the Dual Lottery Ticket Hypothesis
Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other applications. Recently, researchers have found that the edge features of buildings are crucial in extracting building footprints, and multitas...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other applications. Recently, researchers have found that the edge features of buildings are crucial in extracting building footprints, and multitask deep learning is used to share edge feature information. However, these multitask deep learning frameworks adopt a hard sharing approach, which cannot avoid the adverse effects caused by the differences between different tasks, resulting in the problem of blurred edges and building boundaries. To address this issue, this article proposes a dual lottery ticket hypothesis (DLTH) and sparse sharing-based multitask deep learning framework, dual sparse sharing architecture (DSSA), to transmit the edge information in the edge detection to the building footprint extraction by sharing partial parameters. First, the subnetworks of building footprint extraction and edge detection are constructed according to the sparse rate and parameter sharing rate to control the dependencies between the subnetworks. Second, given the difference in the importance of the two tasks, a cosine unequal-scaled alternating training strategy is proposed to strengthen and weaken the transmission of edge information periodically. Third, following the DLTH, the loss function with <inline-formula> <tex-math notation="LaTeX">{L}3 </tex-math></inline-formula>/2 regularization constraint is used to promote the information transmission and parameter conversion of the subnetwork by using the global information. Finally, aiming at the edge of building footprint extraction results, a pixel-based evaluation index, edge extraction accuracy (<inline-formula> <tex-math notation="LaTeX">{\mathrm {EEA}}^{(n)}) </tex-math></inline-formula>, is designed by morphological erosion to better evaluate the integrity of the edge of building footprint extraction results. The experiments conducted on a self-annotated dataset and two public datasets (i.e., WHU Aerial Imagery dataset and Massachusetts Building dataset) show that DSSA can achieve better edge effects than the baseline and show excellent generalization ability. |
---|---|
AbstractList | Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other applications. Recently, researchers have found that the edge features of buildings are crucial in extracting building footprints, and multitask deep learning is used to share edge feature information. However, these multitask deep learning frameworks adopt a hard sharing approach, which cannot avoid the adverse effects caused by the differences between different tasks, resulting in the problem of blurred edges and building boundaries. To address this issue, this article proposes a dual lottery ticket hypothesis (DLTH) and sparse sharing-based multitask deep learning framework, dual sparse sharing architecture (DSSA), to transmit the edge information in the edge detection to the building footprint extraction by sharing partial parameters. First, the subnetworks of building footprint extraction and edge detection are constructed according to the sparse rate and parameter sharing rate to control the dependencies between the subnetworks. Second, given the difference in the importance of the two tasks, a cosine unequal-scaled alternating training strategy is proposed to strengthen and weaken the transmission of edge information periodically. Third, following the DLTH, the loss function with <inline-formula> <tex-math notation="LaTeX">{L}3 </tex-math></inline-formula>/2 regularization constraint is used to promote the information transmission and parameter conversion of the subnetwork by using the global information. Finally, aiming at the edge of building footprint extraction results, a pixel-based evaluation index, edge extraction accuracy (<inline-formula> <tex-math notation="LaTeX">{\mathrm {EEA}}^{(n)}) </tex-math></inline-formula>, is designed by morphological erosion to better evaluate the integrity of the edge of building footprint extraction results. The experiments conducted on a self-annotated dataset and two public datasets (i.e., WHU Aerial Imagery dataset and Massachusetts Building dataset) show that DSSA can achieve better edge effects than the baseline and show excellent generalization ability. Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other applications. Recently, researchers have found that the edge features of buildings are crucial in extracting building footprints, and multitask deep learning is used to share edge feature information. However, these multitask deep learning frameworks adopt a hard sharing approach, which cannot avoid the adverse effects caused by the differences between different tasks, resulting in the problem of blurred edges and building boundaries. To address this issue, this article proposes a dual lottery ticket hypothesis (DLTH) and sparse sharing-based multitask deep learning framework, dual sparse sharing architecture (DSSA), to transmit the edge information in the edge detection to the building footprint extraction by sharing partial parameters. First, the subnetworks of building footprint extraction and edge detection are constructed according to the sparse rate and parameter sharing rate to control the dependencies between the subnetworks. Second, given the difference in the importance of the two tasks, a cosine unequal-scaled alternating training strategy is proposed to strengthen and weaken the transmission of edge information periodically. Third, following the DLTH, the loss function with [Formula Omitted]/2 regularization constraint is used to promote the information transmission and parameter conversion of the subnetwork by using the global information. Finally, aiming at the edge of building footprint extraction results, a pixel-based evaluation index, edge extraction accuracy ([Formula Omitted], is designed by morphological erosion to better evaluate the integrity of the edge of building footprint extraction results. The experiments conducted on a self-annotated dataset and two public datasets (i.e., WHU Aerial Imagery dataset and Massachusetts Building dataset) show that DSSA can achieve better edge effects than the baseline and show excellent generalization ability. |
Author | Xing, Huaqiao Xiong, Li Wang, Yunhong Xiang, Junwu Wen, Qi Liu, Qingjie |
Author_xml | – sequence: 1 givenname: Huaqiao orcidid: 0000-0002-8748-1729 surname: Xing fullname: Xing, Huaqiao email: xinghuaqiao18@sdjzu.edu.cn organization: School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, Shandong, China – sequence: 2 givenname: Junwu orcidid: 0009-0000-7509-592X surname: Xiang fullname: Xiang, Junwu email: 2021165115@stu.sdjzu.edu.cn organization: School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, Shandong, China – sequence: 3 givenname: Li surname: Xiong fullname: Xiong, Li email: hsiunglee@163.com organization: Disaster Reduction and Preparedness Center of Jiangxi Province, Nanchang, China – sequence: 4 givenname: Qi orcidid: 0000-0002-6520-3584 surname: Wen fullname: Wen, Qi email: whistlewen@aliyun.com organization: Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Qingjie orcidid: 0000-0002-5181-6451 surname: Liu fullname: Liu, Qingjie email: qingjie.liu@buaa.edu.cn organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China – sequence: 6 givenname: Yunhong orcidid: 0000-0001-8001-2703 surname: Wang fullname: Wang, Yunhong email: yhwang@buaa.edu.cn organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China |
BookMark | eNpNkEFOwzAQRS0EEi1wACQWllin2HEc20sobUEqQmrLOnKTSRuaxMV2VHoKroyjsmA10sz7M_P_EJ23pgWEbikZUUrUw2q2WI5iEicjllDJUnWGBpRzGZE0Sc7RgFCVRrFU8SUaOvdJCE04FQP084iXe20d4OVW26rd4Leu9pXXboenVjdwMHaHS2PxU1fVRQ9MjfH7gHo8-fZW574ybWBNgxfQGB82Qet68LXRG7DHIKhrc-g7fgv4udM1nhvv-9Gqynfg8ctxb8LMVe4aXZS6dnDzV6_Qx3SyGr9E8_fZ6_hxHuVUpD4qSib5WqSKSwqEaV6qMtYEEh4LSgpdForIIk-FUITxQq4lYVIEz4WEQnDFrtD9ae_emq8OnM8-TWfbcDJjRPCECsJ6ip6o3BrnLJRZMN5oe8woyfrcsz73rM89-8s9aO5OmgoA_vE8Da9Q9gtMq4Jn |
CODEN | IGRSD2 |
Cites_doi | 10.1016/j.jvcir.2021.103109 10.1016/j.isprsjprs.2021.12.007 10.1109/TNNLS.2024.3392484 10.1080/22797254.2021.2018944 10.1016/j.eswa.2023.119508 10.1109/JSTARS.2021.3124491 10.1109/TGRS.2022.3215852 10.1007/978-3-319-24574-4_28 10.3390/rs13193826 10.1109/tgrs.2020.3026051 10.1109/CVPR.2016.90 10.1109/TGRS.2018.2858817 10.1109/IGARSS.2003.1293898 10.1109/ICIP.2019.8803050 10.1016/j.isprsjprs.2022.05.001 10.1109/CVPR.2015.7298965 10.1016/j.eswa.2023.119858 10.3390/rs14194744 10.1016/j.isprsjprs.2021.11.005 10.3390/en14237982 10.3390/rs10081195 10.1016/j.ijdrr.2020.101577 10.1109/TGRS.2022.3165204 10.1109/TGRS.2021.3064606 10.1109/CVPR.2019.00395 10.1109/CVPR.2017.690 10.1109/TGRS.2023.3348102 10.1109/TGRS.2020.2973720 10.1109/TPAMI.2016.2644615 10.3390/rs13163087 10.1109/TGRS.2023.3317080 10.1109/JSTARS.2020.3017934 10.1109/CVPR.2017.660 10.3390/rs14194889 10.1016/j.isprsjprs.2023.05.013 10.1080/15481603.2022.2101727 10.1109/ACCESS.2021.3087206 10.1109/igarss47720.2021.9554766 10.3390/ijgi8040191 10.1109/CVPR.2017.106 10.1080/01431161.2023.2258563 10.1080/07038992.2023.2298806 10.1609/aaai.v34i05.6424 10.1109/TGRS.2020.3014312 10.1109/lgrs.2023.3244131 10.48550/arXiv.1802.02611 10.1109/TGRS.2023.3287298 10.1109/TGRS.2023.3314465 10.48550/arXiv.1909.11065 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2024.3418369 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture Engineering Physics |
EISSN | 1558-0644 |
EndPage | 16 |
ExternalDocumentID | 10_1109_TGRS_2024_3418369 10569031 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41871283 funderid: 10.13039/501100001809 – fundername: Shandong Provincial Natural Science Foundation grantid: ZR2022YQ36 – fundername: Program of China Scholarship Council grantid: 202209995003 – fundername: Youth Innovation Team Project of Higher School in Shandong Province grantid: 2022KJ201 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c176t-df385b769581e03a5f9f2a0e452710dafd908dc6779035d8b80387145d8ed7593 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Oct 10 23:00:16 EDT 2024 Wed Sep 11 13:52:56 EDT 2024 Wed Sep 11 06:09:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c176t-df385b769581e03a5f9f2a0e452710dafd908dc6779035d8b80387145d8ed7593 |
ORCID | 0000-0002-5181-6451 0009-0000-7509-592X 0000-0002-8748-1729 0000-0002-6520-3584 0000-0001-8001-2703 |
PQID | 3075417039 |
PQPubID | 85465 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3075417039 crossref_primary_10_1109_TGRS_2024_3418369 ieee_primary_10569031 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref11 ref55 ref10 ref54 ref16 ref19 ref18 Sun (ref43) 2019 ref51 ref50 ref46 ref45 Simonyan (ref20) 2014 ref48 ref47 ref42 ref41 ref44 ref49 Redmon (ref22) 2018 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Jiwani (ref32) 2021 ref40 ref35 ref34 ref37 ref36 Mnih (ref52) 2013 ref31 ref30 ref33 ref1 ref39 ref38 Chen (ref17) 2017 ref24 ref23 ref26 ref25 ref21 ref28 ref27 ref29 Jun (ref2) 2016; 31 |
References_xml | – ident: ref37 doi: 10.1016/j.jvcir.2021.103109 – ident: ref18 doi: 10.1016/j.isprsjprs.2021.12.007 – ident: ref36 doi: 10.1109/TNNLS.2024.3392484 – ident: ref15 doi: 10.1080/22797254.2021.2018944 – ident: ref27 doi: 10.1016/j.eswa.2023.119508 – volume-title: Machine Learning for Aerial Image Labeling year: 2013 ident: ref52 contributor: fullname: Mnih – ident: ref6 doi: 10.1109/JSTARS.2021.3124491 – ident: ref50 doi: 10.1109/TGRS.2022.3215852 – ident: ref14 doi: 10.1007/978-3-319-24574-4_28 – ident: ref31 doi: 10.3390/rs13193826 – ident: ref44 doi: 10.1109/tgrs.2020.3026051 – ident: ref16 doi: 10.1109/CVPR.2016.90 – ident: ref8 doi: 10.1109/TGRS.2018.2858817 – ident: ref1 doi: 10.1109/IGARSS.2003.1293898 – year: 2014 ident: ref20 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 contributor: fullname: Simonyan – ident: ref38 doi: 10.1109/ICIP.2019.8803050 – ident: ref48 doi: 10.1016/j.isprsjprs.2022.05.001 – ident: ref54 doi: 10.1109/CVPR.2015.7298965 – ident: ref26 doi: 10.1016/j.eswa.2023.119858 – year: 2018 ident: ref22 article-title: YOLOv3: An incremental improvement publication-title: arXiv:1804.02767 contributor: fullname: Redmon – ident: ref39 doi: 10.3390/rs14194744 – ident: ref42 doi: 10.1016/j.isprsjprs.2021.11.005 – ident: ref24 doi: 10.3390/en14237982 – ident: ref28 doi: 10.3390/rs10081195 – ident: ref5 doi: 10.1016/j.ijdrr.2020.101577 – ident: ref45 doi: 10.1109/TGRS.2022.3165204 – ident: ref53 doi: 10.1109/TGRS.2021.3064606 – ident: ref30 doi: 10.1109/CVPR.2019.00395 – ident: ref21 doi: 10.1109/CVPR.2017.690 – ident: ref13 doi: 10.1109/TGRS.2023.3348102 – ident: ref25 doi: 10.1109/TGRS.2020.2973720 – ident: ref55 doi: 10.1109/TPAMI.2016.2644615 – volume: 31 start-page: 653 issue: 4 year: 2016 ident: ref2 article-title: A survey of building extraction methods from optical high resolution remote sensing imagery publication-title: Remote Sens. Technol. Appl. contributor: fullname: Jun – ident: ref10 doi: 10.3390/rs13163087 – ident: ref12 doi: 10.1109/TGRS.2023.3317080 – ident: ref29 doi: 10.1109/JSTARS.2020.3017934 – ident: ref56 doi: 10.1109/CVPR.2017.660 – ident: ref11 doi: 10.3390/rs14194889 – ident: ref19 doi: 10.1016/j.isprsjprs.2023.05.013 – ident: ref7 doi: 10.1080/15481603.2022.2101727 – year: 2021 ident: ref32 article-title: A semantic segmentation network for urban-scale building footprint extraction using RGB satellite imagery publication-title: arXiv:2104.01263 contributor: fullname: Jiwani – ident: ref3 doi: 10.1109/ACCESS.2021.3087206 – ident: ref47 doi: 10.1109/igarss47720.2021.9554766 – ident: ref9 doi: 10.3390/ijgi8040191 – ident: ref23 doi: 10.1109/TNNLS.2024.3392484 – ident: ref33 doi: 10.1109/CVPR.2017.106 – ident: ref4 doi: 10.1080/01431161.2023.2258563 – year: 2017 ident: ref17 article-title: Rethinking atrous convolution for semantic image segmentation publication-title: arXiv:1706.05587 contributor: fullname: Chen – ident: ref35 doi: 10.1080/07038992.2023.2298806 – ident: ref41 doi: 10.1609/aaai.v34i05.6424 – ident: ref49 doi: 10.1109/TGRS.2020.3014312 – ident: ref40 doi: 10.1109/lgrs.2023.3244131 – ident: ref34 doi: 10.48550/arXiv.1802.02611 – year: 2019 ident: ref43 article-title: High-resolution representations for labeling pixels and regions publication-title: arXiv:1904.04514 contributor: fullname: Sun – ident: ref46 doi: 10.1109/TGRS.2023.3287298 – ident: ref51 doi: 10.1109/TGRS.2023.3314465 – ident: ref57 doi: 10.48550/arXiv.1909.11065 |
SSID | ssj0014517 |
Score | 2.4762282 |
Snippet | Building footprint extraction from high-resolution remote sensing imagery is significant for urban planning, change detection, disaster management, and other... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Architecture Building footprint extraction Buildings Data mining Datasets Deep learning Disaster management dual lottery ticket hypothesis (DLTH) Edge detection Edge effect Emergency preparedness Feature extraction Hypotheses Image edge detection Image resolution Imagery Information processing multitask Multitasking Parameters Regularization Remote sensing sparse sharing Task analysis Urban planning |
Title | A Sparse Sharing Multitask Framework for Building Footprint Extraction From Remote Sensing Imagery Following the Dual Lottery Ticket Hypothesis |
URI | https://ieeexplore.ieee.org/document/10569031 https://www.proquest.com/docview/3075417039 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5UEFTwURWrVfbgSUjNYzfJHqu2VlEPWsFb2GQ3IGpTTIrWP-FfdiZJpSiCt5DsLguzO_nm8c0AHArONcJkZUljC4u7KV4pXxlLBkqqNI21n5C_4_rG79_zywfxUJPVSy6MMaZMPjNteixj-TpLxuQqO6Yu8dIm1vR8IGVF1voOGXDh1Nxo30Irwq1DmI4tjwfnt3doCrq8jTo79Ci5eeYnVHZV-aWKy_9Lbw1upjur0kqe2uMibicfP4o2_nvr67BaI03WqY7GBsyZYQNWOjOBgwYsz5QjbMBimQ6a5Jvw2WF3IzR5DaOCzviRVURdlT-x3jSdiyHeZSd1W23Wy7KCnIQF674XrxVdAsdmL-zW4HHAlShVHgdevFDZjAlOeH7O3ugNYlB2Nsa9XmXELZqwwSPqloL1JyPih-WP-Rbc97qD075Vt26wEifwC0unXijiwJcidIztKZHK1FW24cJFSKNVqqUd6sSnaoee0GEcUhgdZahDowMhvW1YGGZDswMMFwko-EnQjxOg9Xmiw0BLKbRxtGrC0VSW0aiq0BGVlo0tIxJ8RIKPasE3YYtkMzOwEksTWlPxR_UlziNUf4I7qBLl7h_T9mCJVq9cMi1YKF7HZh9BShEflIfzC8q049Y |
link.rule.ids | 315,783,787,799,4032,27936,27937,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD6aQBMXaRuliA42_MATUkoudmI_lo2usNIHKBJvkRM7EgKaiqSC8if4yzsnSadqaBJvUWI7lo59_J3LdwxwKDg3CJO1o6wrHO5nuKVCbR0VaaWzLDFhSv6Oi1E4uObnN-KmIatXXBhrbZV8Zrv0WMXyTZ7OyFV2TLfEK5dY06sIrGVU07X-Bg248Bp2dOigHeE3QUzPVcfjX5dXaAz6vItaWwaU3rx0DFX3qrxRxtUJ0_8Mo8Xc6sSSu-6sTLrpyz9lG989-S_wqcGarFcvji34YCct2OwthQ5asLFUkLAFH6uE0LTYhtceu5qi0WsZlXTGj6ym6urijvUXCV0MES87aS7WZv08L8lNWLLT5_KxJkxg2_yBXVpcEDgSJctjw7MHKpwxxw739_kTvUEUyn7OcK7DnNhFcza-Re1SssF8Sgyx4rZow3X_dPxj4DSXNzipF4WlY7JAiiQKlZCedQMtMpX52rVc-AhqjM6McqVJQ6p3GAgjE0mBdJShkdZEQgU7sDLJJ3YXGA4SUfiTwB8nSBvy1MjIKCWM9YzuwNFClvG0rtERV7aNq2ISfEyCjxvBd6BNsllqWIulA_sL8cfNNi5iVICCe6gU1df_dDuAtcH4YhgPz0a_92Cd_lQ7aPZhpXyc2W8IWcrke7VQ_wDcIOci |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sparse+Sharing+Multitask+Framework+for+Building+Footprint+Extraction+From+Remote+Sensing+Imagery+Following+the+Dual+Lottery+Ticket+Hypothesis&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Xing%2C+Huaqiao&rft.au=Xiang%2C+Junwu&rft.au=Xiong%2C+Li&rft.au=Wen%2C+Qi&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2024.3418369&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3418369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |