Spectral super-resolution reconstruction of multispectral images based on low-rank coupled dictionary learning

•HSI reconstruction is regarded as a low-rank reconstruction problem.•Optimize the coupled spectral dictionary using the idea of low-rank decomposition.•Reconstruct spectral super-resolution products through transfer learning. Spectral super-resolution reconstruction uses auxiliary information and s...

Full description

Saved in:
Bibliographic Details
Published inInfrared physics & technology Vol. 150; p. 106016
Main Authors Lv, Xianlan, Zhao, Quanhua, Li, Yu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text
ISSN1350-4495
DOI10.1016/j.infrared.2025.106016

Cover

Loading…
Abstract •HSI reconstruction is regarded as a low-rank reconstruction problem.•Optimize the coupled spectral dictionary using the idea of low-rank decomposition.•Reconstruct spectral super-resolution products through transfer learning. Spectral super-resolution reconstruction uses auxiliary information and sample learning to mine the spectral mapping relationship from multispectral images to hyperspectral images. Estimating the regression matrix from pairs of multispectral and hyperspectral images is an underdetermined problem, and prior information is often beneficial for the model to seek a more accurate spectral mapping relationship. Therefore, based on the spectral low-rank of hyperspectral images, the spectral super-resolution reconstruction is regarded as the problem of image low-rank reconstruction, and a spectral super-resolution reconstruction method based on low-rank coupled dictionary learning is proposed. Firstly, the method creates a coupling dictionary for multispectral and hyperspectral images with different spectral resolutions in the overlapping region, integrates the minimization of dictionary rank into the sparse representation of dictionary learning, and derives and constructs the optimized learning process of spectral dictionary and sparse coefficient based on ADMM algorithm, thereby reducing sparse error propagation and redundant information in the images. The obtained low-rank coupled dictionary ensures stable reconstruction of the images. Subsequently, the sparse coefficient of the multispectral images of the reconstruction region are utilized, combined with the low-rank dictionary of the hyperspectral images, to achieve spectral super-resolution reconstruction. To investigate the accuracy of the proposed algorithm, experiments were conducted using two sets of real datasets, ZY1-02D and GF5. The experimental results indicate that, compared to the contrast methods, the reconstruction accuracy of the proposed method has improved from the perspectives of element reconstruction quality (RMSE and ERGAS), spatial reconstruction quality (PSNR), spectral reconstruction quality (SAM), and spatial structural reconstruction quality (SSIM). To explore the application value of the proposed method, multispectral images from environments similar to the dataset used in this paper were selected as experimental subjects. Using the optimized dictionary from this paper, high-quality spectral super-resolution products were reconstructed more conveniently through transfer learning. The experimental results confirm the feasibility of the proposed method in practical application environments, effectively reducing the cost of obtaining hyperspectral images.
AbstractList •HSI reconstruction is regarded as a low-rank reconstruction problem.•Optimize the coupled spectral dictionary using the idea of low-rank decomposition.•Reconstruct spectral super-resolution products through transfer learning. Spectral super-resolution reconstruction uses auxiliary information and sample learning to mine the spectral mapping relationship from multispectral images to hyperspectral images. Estimating the regression matrix from pairs of multispectral and hyperspectral images is an underdetermined problem, and prior information is often beneficial for the model to seek a more accurate spectral mapping relationship. Therefore, based on the spectral low-rank of hyperspectral images, the spectral super-resolution reconstruction is regarded as the problem of image low-rank reconstruction, and a spectral super-resolution reconstruction method based on low-rank coupled dictionary learning is proposed. Firstly, the method creates a coupling dictionary for multispectral and hyperspectral images with different spectral resolutions in the overlapping region, integrates the minimization of dictionary rank into the sparse representation of dictionary learning, and derives and constructs the optimized learning process of spectral dictionary and sparse coefficient based on ADMM algorithm, thereby reducing sparse error propagation and redundant information in the images. The obtained low-rank coupled dictionary ensures stable reconstruction of the images. Subsequently, the sparse coefficient of the multispectral images of the reconstruction region are utilized, combined with the low-rank dictionary of the hyperspectral images, to achieve spectral super-resolution reconstruction. To investigate the accuracy of the proposed algorithm, experiments were conducted using two sets of real datasets, ZY1-02D and GF5. The experimental results indicate that, compared to the contrast methods, the reconstruction accuracy of the proposed method has improved from the perspectives of element reconstruction quality (RMSE and ERGAS), spatial reconstruction quality (PSNR), spectral reconstruction quality (SAM), and spatial structural reconstruction quality (SSIM). To explore the application value of the proposed method, multispectral images from environments similar to the dataset used in this paper were selected as experimental subjects. Using the optimized dictionary from this paper, high-quality spectral super-resolution products were reconstructed more conveniently through transfer learning. The experimental results confirm the feasibility of the proposed method in practical application environments, effectively reducing the cost of obtaining hyperspectral images.
ArticleNumber 106016
Author Li, Yu
Zhao, Quanhua
Lv, Xianlan
Author_xml – sequence: 1
  givenname: Xianlan
  surname: Lv
  fullname: Lv, Xianlan
– sequence: 2
  givenname: Quanhua
  surname: Zhao
  fullname: Zhao, Quanhua
  email: zqhlby@163.com
– sequence: 3
  givenname: Yu
  surname: Li
  fullname: Li, Yu
BookMark eNqFkM1OwzAQhH0oEm3hFZBfIMVOYofcQBV_UiUOwNly7E3lktrROgH17XEbeua02tHOaPZbkJkPHgi54WzFGZe3u5XzLWoEu8pZLpIokzwjc14IlpVlLS7JIsYdS2rJ5Jz49x7MgLqjcewBM4QYunFwwVMEE3wccDSnNbR0P3aDi2eD2-stRNroCJamgy78ZKj9FzVh7LukWXdyajzQDjR657dX5KLVXYTrv7kkn0-PH-uXbPP2_Lp-2GSGV3LIpBDVndRQFUbkltsKiqJuuJQV500u8_RIbvPSNhWXTS0KLqwxVclLC20tGl0siZxyDYYYEVrVY-qLB8WZOpJSO3UmpY6k1EQqGe8nI6R23w5QRePAG7Au8RiUDe6_iF_soXv3
Cites_doi 10.1109/TGRS.2008.918089
10.3390/s23084155
10.11834/jrs.20210591
10.1007/s40304-015-0050-5
10.3390/rs11141648
10.1016/j.inffus.2023.101812
10.1109/TGRS.2018.2866054
10.5194/isprsarchives-XL-8-1221-2014
10.1109/JSTSP.2011.2149497
10.1016/j.neucom.2024.127753
10.1145/1276377.1276379
10.1109/TIP.2010.2050625
10.1109/TGRS.2018.2877124
10.1016/j.conb.2004.07.007
10.1109/TNNLS.2023.3238506
10.3390/rs11202416
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.infrared.2025.106016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_infrared_2025_106016
S1350449525003093
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
VH1
VOH
WUQ
ZMT
ZY4
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c176t-655786ae73c52d1d7e339b166711b2624492d24db716b95315dcc7414def95ba3
IEDL.DBID .~1
ISSN 1350-4495
IngestDate Wed Aug 27 16:30:34 EDT 2025
Sat Aug 30 17:13:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Spectral super-resolution reconstruction
Model optimization
Low-rank constraints
Transfer learning
Coupled dictionary learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c176t-655786ae73c52d1d7e339b166711b2624492d24db716b95315dcc7414def95ba3
ParticipantIDs crossref_primary_10_1016_j_infrared_2025_106016
elsevier_sciencedirect_doi_10_1016_j_infrared_2025_106016
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Infrared physics & technology
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Zheng, Lu (b0160) 2022; 19
Han, Yu, Luo (b0065) 2019; 57
Alvarez-Gila, Van De Weijer, Garrote (b0020) 2017
Yuan, Sun, Quan (b0115) 2007; 26
Olshausen, Field (b0145) 2004; 14
Zhao, Dong, Wang (b0030) 2024; 590
Aeschbacher, Wu, Timofte (b0075) 2017
Yang, Wright, Huang (b0110) 2010; 19
Bioucas-Dias, Nascimento (b0005) 2008; 46
Gewali, Monteiro, Saber (b0055) 2019; 11
Nguyen, Prasad, Brown (b0080) 2014
Robles-Kelly (b0100) 2015
Zhu, Liu, Hou (b0040) 2021
Han, Zhang, Sun (b0060) 2023; 27
Taunk, De, Verma (b0175) 2019
Huang, Chen, Chen (b0095) 2019; 11
C. Wu, J. Li, R. Song et al., Hprn: Holistic prior-embedded relation network for spectral super-resolution, 2021, arXiv preprint arXiv:2112.14608.
Singh, Kumar, Kadambi (b0165) 2014; 40
Yuhas, Goetz, Boardman (b0170) 1992
Arad, Ben-Shahar (b0070) 2016
Li, Xie, Yang (b0135) 2015; 3
Lin, Finlayson (b0125) 2023; 23
He, Li, Yuan (b0155) 2021
Zhao, Po, Yan (b0015) 2020
Cai, Lin, Hu (b0035) 2022
Fotiadou, Tsagkatakis, Tsakalides (b0120) 2014
Charles, Olshausen, Rozell (b0140) 2011; 5
Fotiadou, Tsagkatakis, Tsakalides (b0090) 2019; 57
Ma, Wang, Xiao (b0130) 2012
Meng, Chen (b0105) 2015
He, Yuan, Li (b0010) 2023; 97
Dian, Liu, Li (b0050) 2024
Li, Wu, Song (b0150) 2020
Dian, Shan, He (b0045) 2024; 35
Parmar, Lansel, Wandell (b0085) 2008
Arad (10.1016/j.infrared.2025.106016_b0070) 2016
Yuan (10.1016/j.infrared.2025.106016_b0115) 2007; 26
Fotiadou (10.1016/j.infrared.2025.106016_b0120) 2014
Zhao (10.1016/j.infrared.2025.106016_b0015) 2020
Fotiadou (10.1016/j.infrared.2025.106016_b0090) 2019; 57
Lin (10.1016/j.infrared.2025.106016_b0125) 2023; 23
Charles (10.1016/j.infrared.2025.106016_b0140) 2011; 5
Huang (10.1016/j.infrared.2025.106016_b0095) 2019; 11
Meng (10.1016/j.infrared.2025.106016_b0105) 2015
Bioucas-Dias (10.1016/j.infrared.2025.106016_b0005) 2008; 46
Zhao (10.1016/j.infrared.2025.106016_b0030) 2024; 590
He (10.1016/j.infrared.2025.106016_b0010) 2023; 97
Singh (10.1016/j.infrared.2025.106016_b0165) 2014; 40
Dian (10.1016/j.infrared.2025.106016_b0045) 2024; 35
Li (10.1016/j.infrared.2025.106016_b0150) 2020
Alvarez-Gila (10.1016/j.infrared.2025.106016_b0020) 2017
Li (10.1016/j.infrared.2025.106016_b0135) 2015; 3
Aeschbacher (10.1016/j.infrared.2025.106016_b0075) 2017
Taunk (10.1016/j.infrared.2025.106016_b0175) 2019
Yuhas (10.1016/j.infrared.2025.106016_b0170) 1992
Han (10.1016/j.infrared.2025.106016_b0065) 2019; 57
Cai (10.1016/j.infrared.2025.106016_b0035) 2022
Dian (10.1016/j.infrared.2025.106016_b0050) 2024
Gewali (10.1016/j.infrared.2025.106016_b0055) 2019; 11
Parmar (10.1016/j.infrared.2025.106016_b0085) 2008
Chen (10.1016/j.infrared.2025.106016_b0160) 2022; 19
Ma (10.1016/j.infrared.2025.106016_b0130) 2012
Olshausen (10.1016/j.infrared.2025.106016_b0145) 2004; 14
Han (10.1016/j.infrared.2025.106016_b0060) 2023; 27
He (10.1016/j.infrared.2025.106016_b0155) 2021
Zhu (10.1016/j.infrared.2025.106016_b0040) 2021
10.1016/j.infrared.2025.106016_b0025
Yang (10.1016/j.infrared.2025.106016_b0110) 2010; 19
Nguyen (10.1016/j.infrared.2025.106016_b0080) 2014
Robles-Kelly (10.1016/j.infrared.2025.106016_b0100) 2015
References_xml – start-page: 480
  year: 2017
  end-page: 490
  ident: b0020
  article-title: Adversarial networks for spatial context-aware spectral image reconstruction from RGB
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
– volume: 40
  start-page: 1221
  year: 2014
  end-page: 1226
  ident: b0165
  article-title: Quality metrics evaluation of hyperspectral images
  publication-title: Proc. Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci.
– volume: 19
  start-page: 2861
  year: 2010
  end-page: 2873
  ident: b0110
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
– start-page: 1255
  year: 2019
  end-page: 1260
  ident: b0175
  article-title: A brief review of Nearest neighbor algorithm for Learning and classification
  publication-title: 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India
– start-page: 99
  year: 2021
  ident: b0155
  article-title: Spectral response function-guided deep optimization-driven network for spectral super-resolution
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 590
  year: 2024
  ident: b0030
  article-title: A novel spectral super-resolution network with dominant information between spatial and spectral domains
  publication-title: Neurocomput.
– volume: 57
  start-page: 1325
  year: 2019
  end-page: 1335
  ident: b0065
  article-title: Reconstruction from multispectral to hyperspectral image using spectral library-based Dictionary Learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 963
  year: 2011
  end-page: 978
  ident: b0140
  article-title: Learning Sparse codes for hyperspectral imagery
  publication-title: IEEE J. Sel. Topics Signal Process.
– year: 1992
  ident: b0170
  article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
  publication-title: Summaries of the Third Annual JPL Airborne Geoscience Workshop
– start-page: 84
  year: 2014
  end-page: 93
  ident: b0120
  article-title: Low light image enhancement via sparse representations
  publication-title: International Conference Image Analysis & Recognition
– volume: 97
  year: 2023
  ident: b0010
  article-title: Spectral super-resolution meets deep learning: achievements and challenges
  publication-title: Inf. Fusion
– start-page: 473
  year: 2008
  end-page: 476
  ident: b0085
  article-title: Spatio-spectral reconstruction of the multispectral datacube using sparse recovery
  publication-title: 2008 15th IEEE International Conference on Image Processing
– volume: 11
  start-page: 2416
  year: 2019
  ident: b0095
  article-title: A novel hyperspectral image simulation method based on nonnegative matrix factorization
  publication-title: Remote Sens.
– start-page: 471
  year: 2017
  end-page: 479
  ident: b0075
  article-title: In defense of shallow learned spectral reconstruction from RGB images
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 26
  start-page: 1
  year: 2007
  ident: b0115
  article-title: Image deblurring with blurred/noisy image pairs
  publication-title: ACM Trans. Graph.
– start-page: 251
  year: 2015
  end-page: 260
  ident: b0100
  article-title: Single image spectral reconstruction for multimedia applications
  publication-title: Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, QLD, Australia
– start-page: 19
  year: 2016
  end-page: 34
  ident: b0070
  article-title: Sparse recovery of hyperspectral signal from natural RGB images
  publication-title: Proceedings of the European Conference on Computer Vision, Amsterdam, the Netherlands
– volume: 46
  start-page: 2435
  year: 2008
  end-page: 2445
  ident: b0005
  article-title: Hyperspectral subspace identification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 2279
  year: 2021
  end-page: 2288
  ident: b0040
  article-title: Semantic-embedded unsupervised spectral reconstruction from single RGB images in the wild
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 3
  start-page: 37
  year: 2015
  end-page: 55
  ident: b0135
  article-title: Alternating direction method of multipliers for solving dictionary learning models
  publication-title: Commun. Math. Statist.
– volume: 57
  start-page: 2777
  year: 2019
  end-page: 2797
  ident: b0090
  article-title: Spectral super resolution of hyperspectral images via coupled Dictionary Learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 2586
  year: 2012
  end-page: 2593
  ident: b0130
  article-title: Sparse representation for face recognition based on discriminative low-rank dictionary learning
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 186
  year: 2014
  end-page: 201
  ident: b0080
  article-title: Training-based spectral reconstruction from a single RGB image
  publication-title: Proceedings of the European Conference on Computer Vision, Zurich, Switzerland
– volume: 23
  start-page: 4155
  year: 2023
  ident: b0125
  article-title: A rehabilitation of pixel-based spectral reconstruction from RGB images
  publication-title: Sensors
– volume: 35
  start-page: 10059
  year: 2024
  end-page: 10070
  ident: b0045
  article-title: Spectral super-resolution via model-guided cross-fusion network
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: b0160
  article-title: Semisupervised spectral degradation constrained network for spectral super-resolution
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 11
  start-page: 1648
  year: 2019
  ident: b0055
  article-title: Spectral super-resolution with optimized bands
  publication-title: Remote Sens.
– start-page: 462
  year: 2020
  end-page: 463
  ident: b0150
  article-title: Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– reference: C. Wu, J. Li, R. Song et al., Hprn: Holistic prior-embedded relation network for spectral super-resolution, 2021, arXiv preprint arXiv:2112.14608.
– start-page: 2793
  year: 2015
  end-page: 2796
  ident: b0105
  article-title: Rank constraints on joint Dictionary Learning for image recognition
  publication-title: International Conference on Mechatronics, Materials and Computer Engineering (ICMMCCE 2015)
– start-page: 422
  year: 2020
  end-page: 423
  ident: b0015
  article-title: Hierarchical regression network for spectral reconstruction from RGB images
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– volume: 14
  start-page: 481
  year: 2004
  end-page: 487
  ident: b0145
  article-title: Sparse coding of sensory inputs
  publication-title: Curr. Opin. Neurobiol.
– start-page: 17502
  year: 2022
  end-page: 17511
  ident: b0035
  article-title: Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2024
  ident: b0050
  article-title: Spectral super-resolution via deep low-rank tensor representation
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 27
  start-page: 2530
  year: 2023
  end-page: 2540
  ident: b0060
  article-title: Spectral super-resolution using optimized dictionary learning via spectral library and its effects on classification
  publication-title: National Remote Sensing Bulletin
– volume: 46
  start-page: 2435
  year: 2008
  ident: 10.1016/j.infrared.2025.106016_b0005
  article-title: Hyperspectral subspace identification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.918089
– start-page: 462
  year: 2020
  ident: 10.1016/j.infrared.2025.106016_b0150
  article-title: Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images
– volume: 23
  start-page: 4155
  issue: 8
  year: 2023
  ident: 10.1016/j.infrared.2025.106016_b0125
  article-title: A rehabilitation of pixel-based spectral reconstruction from RGB images
  publication-title: Sensors
  doi: 10.3390/s23084155
– start-page: 471
  year: 2017
  ident: 10.1016/j.infrared.2025.106016_b0075
  article-title: In defense of shallow learned spectral reconstruction from RGB images
– start-page: 2279
  year: 2021
  ident: 10.1016/j.infrared.2025.106016_b0040
  article-title: Semantic-embedded unsupervised spectral reconstruction from single RGB images in the wild
– start-page: 19
  year: 2016
  ident: 10.1016/j.infrared.2025.106016_b0070
  article-title: Sparse recovery of hyperspectral signal from natural RGB images
– ident: 10.1016/j.infrared.2025.106016_b0025
– volume: 27
  start-page: 2530
  issue: 11
  year: 2023
  ident: 10.1016/j.infrared.2025.106016_b0060
  article-title: Spectral super-resolution using optimized dictionary learning via spectral library and its effects on classification
  publication-title: National Remote Sensing Bulletin
  doi: 10.11834/jrs.20210591
– volume: 3
  start-page: 37
  issue: 1
  year: 2015
  ident: 10.1016/j.infrared.2025.106016_b0135
  article-title: Alternating direction method of multipliers for solving dictionary learning models
  publication-title: Commun. Math. Statist.
  doi: 10.1007/s40304-015-0050-5
– volume: 11
  start-page: 1648
  issue: 14
  year: 2019
  ident: 10.1016/j.infrared.2025.106016_b0055
  article-title: Spectral super-resolution with optimized bands
  publication-title: Remote Sens.
  doi: 10.3390/rs11141648
– start-page: 17502
  year: 2022
  ident: 10.1016/j.infrared.2025.106016_b0035
  article-title: Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction
– start-page: 1255
  year: 2019
  ident: 10.1016/j.infrared.2025.106016_b0175
  article-title: A brief review of Nearest neighbor algorithm for Learning and classification
– volume: 97
  year: 2023
  ident: 10.1016/j.infrared.2025.106016_b0010
  article-title: Spectral super-resolution meets deep learning: achievements and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.101812
– start-page: 2586
  year: 2012
  ident: 10.1016/j.infrared.2025.106016_b0130
  article-title: Sparse representation for face recognition based on discriminative low-rank dictionary learning
– volume: 57
  start-page: 1325
  issue: 3
  year: 2019
  ident: 10.1016/j.infrared.2025.106016_b0065
  article-title: Reconstruction from multispectral to hyperspectral image using spectral library-based Dictionary Learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2866054
– volume: 40
  start-page: 1221
  issue: 8
  year: 2014
  ident: 10.1016/j.infrared.2025.106016_b0165
  article-title: Quality metrics evaluation of hyperspectral images
  publication-title: Proc. Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprsarchives-XL-8-1221-2014
– volume: 5
  start-page: 963
  issue: 5
  year: 2011
  ident: 10.1016/j.infrared.2025.106016_b0140
  article-title: Learning Sparse codes for hyperspectral imagery
  publication-title: IEEE J. Sel. Topics Signal Process.
  doi: 10.1109/JSTSP.2011.2149497
– volume: 590
  year: 2024
  ident: 10.1016/j.infrared.2025.106016_b0030
  article-title: A novel spectral super-resolution network with dominant information between spatial and spectral domains
  publication-title: Neurocomput.
  doi: 10.1016/j.neucom.2024.127753
– start-page: 186
  year: 2014
  ident: 10.1016/j.infrared.2025.106016_b0080
  article-title: Training-based spectral reconstruction from a single RGB image
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.infrared.2025.106016_b0160
  article-title: Semisupervised spectral degradation constrained network for spectral super-resolution
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 473
  year: 2008
  ident: 10.1016/j.infrared.2025.106016_b0085
  article-title: Spatio-spectral reconstruction of the multispectral datacube using sparse recovery
– volume: 26
  start-page: 1
  issue: 3
  year: 2007
  ident: 10.1016/j.infrared.2025.106016_b0115
  article-title: Image deblurring with blurred/noisy image pairs
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1276377.1276379
– start-page: 99
  year: 2021
  ident: 10.1016/j.infrared.2025.106016_b0155
  article-title: Spectral response function-guided deep optimization-driven network for spectral super-resolution
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  ident: 10.1016/j.infrared.2025.106016_b0110
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2050625
– year: 1992
  ident: 10.1016/j.infrared.2025.106016_b0170
  article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
– start-page: 480
  year: 2017
  ident: 10.1016/j.infrared.2025.106016_b0020
  article-title: Adversarial networks for spatial context-aware spectral image reconstruction from RGB
– volume: 57
  start-page: 2777
  issue: 5
  year: 2019
  ident: 10.1016/j.infrared.2025.106016_b0090
  article-title: Spectral super resolution of hyperspectral images via coupled Dictionary Learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2877124
– start-page: 422
  year: 2020
  ident: 10.1016/j.infrared.2025.106016_b0015
  article-title: Hierarchical regression network for spectral reconstruction from RGB images
– volume: 14
  start-page: 481
  year: 2004
  ident: 10.1016/j.infrared.2025.106016_b0145
  article-title: Sparse coding of sensory inputs
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.07.007
– start-page: 251
  year: 2015
  ident: 10.1016/j.infrared.2025.106016_b0100
  article-title: Single image spectral reconstruction for multimedia applications
– volume: 35
  start-page: 10059
  issue: 7
  year: 2024
  ident: 10.1016/j.infrared.2025.106016_b0045
  article-title: Spectral super-resolution via model-guided cross-fusion network
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2023.3238506
– start-page: 2793
  year: 2015
  ident: 10.1016/j.infrared.2025.106016_b0105
  article-title: Rank constraints on joint Dictionary Learning for image recognition
– volume: 11
  start-page: 2416
  year: 2019
  ident: 10.1016/j.infrared.2025.106016_b0095
  article-title: A novel hyperspectral image simulation method based on nonnegative matrix factorization
  publication-title: Remote Sens.
  doi: 10.3390/rs11202416
– start-page: 84
  year: 2014
  ident: 10.1016/j.infrared.2025.106016_b0120
  article-title: Low light image enhancement via sparse representations
– year: 2024
  ident: 10.1016/j.infrared.2025.106016_b0050
  article-title: Spectral super-resolution via deep low-rank tensor representation
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
SSID ssj0016406
Score 2.403397
Snippet •HSI reconstruction is regarded as a low-rank reconstruction problem.•Optimize the coupled spectral dictionary using the idea of low-rank...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106016
SubjectTerms Coupled dictionary learning
Low-rank constraints
Model optimization
Spectral super-resolution reconstruction
Transfer learning
Title Spectral super-resolution reconstruction of multispectral images based on low-rank coupled dictionary learning
URI https://dx.doi.org/10.1016/j.infrared.2025.106016
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRfAiPrE-yh68rulmd_M4lmKpCr1oobeQfURSahL6QLz4253dJEVB8OAxww6E2d1vZpJvZhC6DakwhqeWFJYpwnloSJSFKdG-jCgDmU4dy3caTGb8cS7mHTRqa2EsrbLB_hrTHVo3Eq-xplflufdMmRhwiO_Bibv_ebaCnYeW1nf3uaN5QDbg5mvaxcSu_lYlvLCx7cryvCFP9AUIbW-S3x3UN6czPkKHTbSIh_ULHaOOKU7QvmNtqvUpKuz0ePupAq-3lVkRSJ2bk4RdortrDovLDDvq4LpVyN8ASNbYOjGNYcGyfCd2fjtW5bZagkznTjNdfeBmssTrGZqN719GE9IMUCCKhsGGBALuY5CakCnha6pDw1gsaRCElEo_AM8e-9rnWkLSJGO4jUIrBSEG1yaLhUzZOeoWZWEuEGZxZAA45SCSjBsRxRYXJdOMZ8rPJOshr7VaUtV9MpKWQLZIWjsn1s5JbeceilvjJj92PAEw_0P38h-6V-jAPtX1hNeoCzthbiCw2Mi-Ozl9tDd8eJpMvwB--dB1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEB6sUtpL6ZPaZw69hnU3yT6OIhWt1ksVvC2bTbYodhVXKf33nexDLBR66HU2A2GSfDOz-TID8OTZQmseGVJYElPOPU39xIuocqRvM5SpKGf5jtzehL9MxbQGneotjKFVlthfYHqO1qXEKq1prWYz681mosUxvkcnnt_nHUDDVKfidWi0-4PeaHeZ4PK8xaYZT43C3kPhuQlv14bqjamiI1BoypP87qP2_E73FE7KgJG0izmdQU2n53CYEzfj7AJS00De_K0g2Xal1xSz53IzkTzX3dWHJcuE5OzBrFKYfSCWZMT4MUVwwGL5SU0LdxIvt6sFytQs14zWX6RsLvF-CZPu87jTo2UPBRrbnruhrsAj6UbaY7FwlK08zVggbdf1bFs6Ljr3wFEOVxLzJhnggRQqjjHK4EongZARu4J6ukz1NRAW-BqxU7Z8ybgWfmCgUTLFeBI7iWRNsCqrhauiVEZYccjmYWXn0Ng5LOzchKAybvhj0UPE8z90b_6h-whHvfHrMBz2R4NbODZfiueFd1DHVdH3GGds5EO5j74BrfnTJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+super-resolution+reconstruction+of+multispectral+images+based+on+low-rank+coupled+dictionary+learning&rft.jtitle=Infrared+physics+%26+technology&rft.au=Lv%2C+Xianlan&rft.au=Zhao%2C+Quanhua&rft.au=Li%2C+Yu&rft.date=2025-11-01&rft.issn=1350-4495&rft.volume=150&rft.spage=106016&rft_id=info:doi/10.1016%2Fj.infrared.2025.106016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2025_106016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon