Spectral super-resolution reconstruction of multispectral images based on low-rank coupled dictionary learning
•HSI reconstruction is regarded as a low-rank reconstruction problem.•Optimize the coupled spectral dictionary using the idea of low-rank decomposition.•Reconstruct spectral super-resolution products through transfer learning. Spectral super-resolution reconstruction uses auxiliary information and s...
Saved in:
Published in | Infrared physics & technology Vol. 150; p. 106016 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1350-4495 |
DOI | 10.1016/j.infrared.2025.106016 |
Cover
Loading…
Abstract | •HSI reconstruction is regarded as a low-rank reconstruction problem.•Optimize the coupled spectral dictionary using the idea of low-rank decomposition.•Reconstruct spectral super-resolution products through transfer learning.
Spectral super-resolution reconstruction uses auxiliary information and sample learning to mine the spectral mapping relationship from multispectral images to hyperspectral images. Estimating the regression matrix from pairs of multispectral and hyperspectral images is an underdetermined problem, and prior information is often beneficial for the model to seek a more accurate spectral mapping relationship. Therefore, based on the spectral low-rank of hyperspectral images, the spectral super-resolution reconstruction is regarded as the problem of image low-rank reconstruction, and a spectral super-resolution reconstruction method based on low-rank coupled dictionary learning is proposed. Firstly, the method creates a coupling dictionary for multispectral and hyperspectral images with different spectral resolutions in the overlapping region, integrates the minimization of dictionary rank into the sparse representation of dictionary learning, and derives and constructs the optimized learning process of spectral dictionary and sparse coefficient based on ADMM algorithm, thereby reducing sparse error propagation and redundant information in the images. The obtained low-rank coupled dictionary ensures stable reconstruction of the images. Subsequently, the sparse coefficient of the multispectral images of the reconstruction region are utilized, combined with the low-rank dictionary of the hyperspectral images, to achieve spectral super-resolution reconstruction. To investigate the accuracy of the proposed algorithm, experiments were conducted using two sets of real datasets, ZY1-02D and GF5. The experimental results indicate that, compared to the contrast methods, the reconstruction accuracy of the proposed method has improved from the perspectives of element reconstruction quality (RMSE and ERGAS), spatial reconstruction quality (PSNR), spectral reconstruction quality (SAM), and spatial structural reconstruction quality (SSIM). To explore the application value of the proposed method, multispectral images from environments similar to the dataset used in this paper were selected as experimental subjects. Using the optimized dictionary from this paper, high-quality spectral super-resolution products were reconstructed more conveniently through transfer learning. The experimental results confirm the feasibility of the proposed method in practical application environments, effectively reducing the cost of obtaining hyperspectral images. |
---|---|
AbstractList | •HSI reconstruction is regarded as a low-rank reconstruction problem.•Optimize the coupled spectral dictionary using the idea of low-rank decomposition.•Reconstruct spectral super-resolution products through transfer learning.
Spectral super-resolution reconstruction uses auxiliary information and sample learning to mine the spectral mapping relationship from multispectral images to hyperspectral images. Estimating the regression matrix from pairs of multispectral and hyperspectral images is an underdetermined problem, and prior information is often beneficial for the model to seek a more accurate spectral mapping relationship. Therefore, based on the spectral low-rank of hyperspectral images, the spectral super-resolution reconstruction is regarded as the problem of image low-rank reconstruction, and a spectral super-resolution reconstruction method based on low-rank coupled dictionary learning is proposed. Firstly, the method creates a coupling dictionary for multispectral and hyperspectral images with different spectral resolutions in the overlapping region, integrates the minimization of dictionary rank into the sparse representation of dictionary learning, and derives and constructs the optimized learning process of spectral dictionary and sparse coefficient based on ADMM algorithm, thereby reducing sparse error propagation and redundant information in the images. The obtained low-rank coupled dictionary ensures stable reconstruction of the images. Subsequently, the sparse coefficient of the multispectral images of the reconstruction region are utilized, combined with the low-rank dictionary of the hyperspectral images, to achieve spectral super-resolution reconstruction. To investigate the accuracy of the proposed algorithm, experiments were conducted using two sets of real datasets, ZY1-02D and GF5. The experimental results indicate that, compared to the contrast methods, the reconstruction accuracy of the proposed method has improved from the perspectives of element reconstruction quality (RMSE and ERGAS), spatial reconstruction quality (PSNR), spectral reconstruction quality (SAM), and spatial structural reconstruction quality (SSIM). To explore the application value of the proposed method, multispectral images from environments similar to the dataset used in this paper were selected as experimental subjects. Using the optimized dictionary from this paper, high-quality spectral super-resolution products were reconstructed more conveniently through transfer learning. The experimental results confirm the feasibility of the proposed method in practical application environments, effectively reducing the cost of obtaining hyperspectral images. |
ArticleNumber | 106016 |
Author | Li, Yu Zhao, Quanhua Lv, Xianlan |
Author_xml | – sequence: 1 givenname: Xianlan surname: Lv fullname: Lv, Xianlan – sequence: 2 givenname: Quanhua surname: Zhao fullname: Zhao, Quanhua email: zqhlby@163.com – sequence: 3 givenname: Yu surname: Li fullname: Li, Yu |
BookMark | eNqFkM1OwzAQhH0oEm3hFZBfIMVOYofcQBV_UiUOwNly7E3lktrROgH17XEbeua02tHOaPZbkJkPHgi54WzFGZe3u5XzLWoEu8pZLpIokzwjc14IlpVlLS7JIsYdS2rJ5Jz49x7MgLqjcewBM4QYunFwwVMEE3wccDSnNbR0P3aDi2eD2-stRNroCJamgy78ZKj9FzVh7LukWXdyajzQDjR657dX5KLVXYTrv7kkn0-PH-uXbPP2_Lp-2GSGV3LIpBDVndRQFUbkltsKiqJuuJQV500u8_RIbvPSNhWXTS0KLqwxVclLC20tGl0siZxyDYYYEVrVY-qLB8WZOpJSO3UmpY6k1EQqGe8nI6R23w5QRePAG7Au8RiUDe6_iF_soXv3 |
Cites_doi | 10.1109/TGRS.2008.918089 10.3390/s23084155 10.11834/jrs.20210591 10.1007/s40304-015-0050-5 10.3390/rs11141648 10.1016/j.inffus.2023.101812 10.1109/TGRS.2018.2866054 10.5194/isprsarchives-XL-8-1221-2014 10.1109/JSTSP.2011.2149497 10.1016/j.neucom.2024.127753 10.1145/1276377.1276379 10.1109/TIP.2010.2050625 10.1109/TGRS.2018.2877124 10.1016/j.conb.2004.07.007 10.1109/TNNLS.2023.3238506 10.3390/rs11202416 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.infrared.2025.106016 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_infrared_2025_106016 S1350449525003093 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K VH1 VOH WUQ ZMT ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c176t-655786ae73c52d1d7e339b166711b2624492d24db716b95315dcc7414def95ba3 |
IEDL.DBID | .~1 |
ISSN | 1350-4495 |
IngestDate | Wed Aug 27 16:30:34 EDT 2025 Sat Aug 30 17:13:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spectral super-resolution reconstruction Model optimization Low-rank constraints Transfer learning Coupled dictionary learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c176t-655786ae73c52d1d7e339b166711b2624492d24db716b95315dcc7414def95ba3 |
ParticipantIDs | crossref_primary_10_1016_j_infrared_2025_106016 elsevier_sciencedirect_doi_10_1016_j_infrared_2025_106016 |
PublicationCentury | 2000 |
PublicationDate | November 2025 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
PublicationDecade | 2020 |
PublicationTitle | Infrared physics & technology |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Zheng, Lu (b0160) 2022; 19 Han, Yu, Luo (b0065) 2019; 57 Alvarez-Gila, Van De Weijer, Garrote (b0020) 2017 Yuan, Sun, Quan (b0115) 2007; 26 Olshausen, Field (b0145) 2004; 14 Zhao, Dong, Wang (b0030) 2024; 590 Aeschbacher, Wu, Timofte (b0075) 2017 Yang, Wright, Huang (b0110) 2010; 19 Bioucas-Dias, Nascimento (b0005) 2008; 46 Gewali, Monteiro, Saber (b0055) 2019; 11 Nguyen, Prasad, Brown (b0080) 2014 Robles-Kelly (b0100) 2015 Zhu, Liu, Hou (b0040) 2021 Han, Zhang, Sun (b0060) 2023; 27 Taunk, De, Verma (b0175) 2019 Huang, Chen, Chen (b0095) 2019; 11 C. Wu, J. Li, R. Song et al., Hprn: Holistic prior-embedded relation network for spectral super-resolution, 2021, arXiv preprint arXiv:2112.14608. Singh, Kumar, Kadambi (b0165) 2014; 40 Yuhas, Goetz, Boardman (b0170) 1992 Arad, Ben-Shahar (b0070) 2016 Li, Xie, Yang (b0135) 2015; 3 Lin, Finlayson (b0125) 2023; 23 He, Li, Yuan (b0155) 2021 Zhao, Po, Yan (b0015) 2020 Cai, Lin, Hu (b0035) 2022 Fotiadou, Tsagkatakis, Tsakalides (b0120) 2014 Charles, Olshausen, Rozell (b0140) 2011; 5 Fotiadou, Tsagkatakis, Tsakalides (b0090) 2019; 57 Ma, Wang, Xiao (b0130) 2012 Meng, Chen (b0105) 2015 He, Yuan, Li (b0010) 2023; 97 Dian, Liu, Li (b0050) 2024 Li, Wu, Song (b0150) 2020 Dian, Shan, He (b0045) 2024; 35 Parmar, Lansel, Wandell (b0085) 2008 Arad (10.1016/j.infrared.2025.106016_b0070) 2016 Yuan (10.1016/j.infrared.2025.106016_b0115) 2007; 26 Fotiadou (10.1016/j.infrared.2025.106016_b0120) 2014 Zhao (10.1016/j.infrared.2025.106016_b0015) 2020 Fotiadou (10.1016/j.infrared.2025.106016_b0090) 2019; 57 Lin (10.1016/j.infrared.2025.106016_b0125) 2023; 23 Charles (10.1016/j.infrared.2025.106016_b0140) 2011; 5 Huang (10.1016/j.infrared.2025.106016_b0095) 2019; 11 Meng (10.1016/j.infrared.2025.106016_b0105) 2015 Bioucas-Dias (10.1016/j.infrared.2025.106016_b0005) 2008; 46 Zhao (10.1016/j.infrared.2025.106016_b0030) 2024; 590 He (10.1016/j.infrared.2025.106016_b0010) 2023; 97 Singh (10.1016/j.infrared.2025.106016_b0165) 2014; 40 Dian (10.1016/j.infrared.2025.106016_b0045) 2024; 35 Li (10.1016/j.infrared.2025.106016_b0150) 2020 Alvarez-Gila (10.1016/j.infrared.2025.106016_b0020) 2017 Li (10.1016/j.infrared.2025.106016_b0135) 2015; 3 Aeschbacher (10.1016/j.infrared.2025.106016_b0075) 2017 Taunk (10.1016/j.infrared.2025.106016_b0175) 2019 Yuhas (10.1016/j.infrared.2025.106016_b0170) 1992 Han (10.1016/j.infrared.2025.106016_b0065) 2019; 57 Cai (10.1016/j.infrared.2025.106016_b0035) 2022 Dian (10.1016/j.infrared.2025.106016_b0050) 2024 Gewali (10.1016/j.infrared.2025.106016_b0055) 2019; 11 Parmar (10.1016/j.infrared.2025.106016_b0085) 2008 Chen (10.1016/j.infrared.2025.106016_b0160) 2022; 19 Ma (10.1016/j.infrared.2025.106016_b0130) 2012 Olshausen (10.1016/j.infrared.2025.106016_b0145) 2004; 14 Han (10.1016/j.infrared.2025.106016_b0060) 2023; 27 He (10.1016/j.infrared.2025.106016_b0155) 2021 Zhu (10.1016/j.infrared.2025.106016_b0040) 2021 10.1016/j.infrared.2025.106016_b0025 Yang (10.1016/j.infrared.2025.106016_b0110) 2010; 19 Nguyen (10.1016/j.infrared.2025.106016_b0080) 2014 Robles-Kelly (10.1016/j.infrared.2025.106016_b0100) 2015 |
References_xml | – start-page: 480 year: 2017 end-page: 490 ident: b0020 article-title: Adversarial networks for spatial context-aware spectral image reconstruction from RGB publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – volume: 40 start-page: 1221 year: 2014 end-page: 1226 ident: b0165 article-title: Quality metrics evaluation of hyperspectral images publication-title: Proc. Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci. – volume: 19 start-page: 2861 year: 2010 end-page: 2873 ident: b0110 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. – start-page: 1255 year: 2019 end-page: 1260 ident: b0175 article-title: A brief review of Nearest neighbor algorithm for Learning and classification publication-title: 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India – start-page: 99 year: 2021 ident: b0155 article-title: Spectral response function-guided deep optimization-driven network for spectral super-resolution publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 590 year: 2024 ident: b0030 article-title: A novel spectral super-resolution network with dominant information between spatial and spectral domains publication-title: Neurocomput. – volume: 57 start-page: 1325 year: 2019 end-page: 1335 ident: b0065 article-title: Reconstruction from multispectral to hyperspectral image using spectral library-based Dictionary Learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 5 start-page: 963 year: 2011 end-page: 978 ident: b0140 article-title: Learning Sparse codes for hyperspectral imagery publication-title: IEEE J. Sel. Topics Signal Process. – year: 1992 ident: b0170 article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm publication-title: Summaries of the Third Annual JPL Airborne Geoscience Workshop – start-page: 84 year: 2014 end-page: 93 ident: b0120 article-title: Low light image enhancement via sparse representations publication-title: International Conference Image Analysis & Recognition – volume: 97 year: 2023 ident: b0010 article-title: Spectral super-resolution meets deep learning: achievements and challenges publication-title: Inf. Fusion – start-page: 473 year: 2008 end-page: 476 ident: b0085 article-title: Spatio-spectral reconstruction of the multispectral datacube using sparse recovery publication-title: 2008 15th IEEE International Conference on Image Processing – volume: 11 start-page: 2416 year: 2019 ident: b0095 article-title: A novel hyperspectral image simulation method based on nonnegative matrix factorization publication-title: Remote Sens. – start-page: 471 year: 2017 end-page: 479 ident: b0075 article-title: In defense of shallow learned spectral reconstruction from RGB images publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 26 start-page: 1 year: 2007 ident: b0115 article-title: Image deblurring with blurred/noisy image pairs publication-title: ACM Trans. Graph. – start-page: 251 year: 2015 end-page: 260 ident: b0100 article-title: Single image spectral reconstruction for multimedia applications publication-title: Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, QLD, Australia – start-page: 19 year: 2016 end-page: 34 ident: b0070 article-title: Sparse recovery of hyperspectral signal from natural RGB images publication-title: Proceedings of the European Conference on Computer Vision, Amsterdam, the Netherlands – volume: 46 start-page: 2435 year: 2008 end-page: 2445 ident: b0005 article-title: Hyperspectral subspace identification publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 2279 year: 2021 end-page: 2288 ident: b0040 article-title: Semantic-embedded unsupervised spectral reconstruction from single RGB images in the wild publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 3 start-page: 37 year: 2015 end-page: 55 ident: b0135 article-title: Alternating direction method of multipliers for solving dictionary learning models publication-title: Commun. Math. Statist. – volume: 57 start-page: 2777 year: 2019 end-page: 2797 ident: b0090 article-title: Spectral super resolution of hyperspectral images via coupled Dictionary Learning publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 2586 year: 2012 end-page: 2593 ident: b0130 article-title: Sparse representation for face recognition based on discriminative low-rank dictionary learning publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition – start-page: 186 year: 2014 end-page: 201 ident: b0080 article-title: Training-based spectral reconstruction from a single RGB image publication-title: Proceedings of the European Conference on Computer Vision, Zurich, Switzerland – volume: 23 start-page: 4155 year: 2023 ident: b0125 article-title: A rehabilitation of pixel-based spectral reconstruction from RGB images publication-title: Sensors – volume: 35 start-page: 10059 year: 2024 end-page: 10070 ident: b0045 article-title: Spectral super-resolution via model-guided cross-fusion network publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: b0160 article-title: Semisupervised spectral degradation constrained network for spectral super-resolution publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 11 start-page: 1648 year: 2019 ident: b0055 article-title: Spectral super-resolution with optimized bands publication-title: Remote Sens. – start-page: 462 year: 2020 end-page: 463 ident: b0150 article-title: Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops – reference: C. Wu, J. Li, R. Song et al., Hprn: Holistic prior-embedded relation network for spectral super-resolution, 2021, arXiv preprint arXiv:2112.14608. – start-page: 2793 year: 2015 end-page: 2796 ident: b0105 article-title: Rank constraints on joint Dictionary Learning for image recognition publication-title: International Conference on Mechatronics, Materials and Computer Engineering (ICMMCCE 2015) – start-page: 422 year: 2020 end-page: 423 ident: b0015 article-title: Hierarchical regression network for spectral reconstruction from RGB images publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops – volume: 14 start-page: 481 year: 2004 end-page: 487 ident: b0145 article-title: Sparse coding of sensory inputs publication-title: Curr. Opin. Neurobiol. – start-page: 17502 year: 2022 end-page: 17511 ident: b0035 article-title: Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2024 ident: b0050 article-title: Spectral super-resolution via deep low-rank tensor representation publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 27 start-page: 2530 year: 2023 end-page: 2540 ident: b0060 article-title: Spectral super-resolution using optimized dictionary learning via spectral library and its effects on classification publication-title: National Remote Sensing Bulletin – volume: 46 start-page: 2435 year: 2008 ident: 10.1016/j.infrared.2025.106016_b0005 article-title: Hyperspectral subspace identification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.918089 – start-page: 462 year: 2020 ident: 10.1016/j.infrared.2025.106016_b0150 article-title: Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images – volume: 23 start-page: 4155 issue: 8 year: 2023 ident: 10.1016/j.infrared.2025.106016_b0125 article-title: A rehabilitation of pixel-based spectral reconstruction from RGB images publication-title: Sensors doi: 10.3390/s23084155 – start-page: 471 year: 2017 ident: 10.1016/j.infrared.2025.106016_b0075 article-title: In defense of shallow learned spectral reconstruction from RGB images – start-page: 2279 year: 2021 ident: 10.1016/j.infrared.2025.106016_b0040 article-title: Semantic-embedded unsupervised spectral reconstruction from single RGB images in the wild – start-page: 19 year: 2016 ident: 10.1016/j.infrared.2025.106016_b0070 article-title: Sparse recovery of hyperspectral signal from natural RGB images – ident: 10.1016/j.infrared.2025.106016_b0025 – volume: 27 start-page: 2530 issue: 11 year: 2023 ident: 10.1016/j.infrared.2025.106016_b0060 article-title: Spectral super-resolution using optimized dictionary learning via spectral library and its effects on classification publication-title: National Remote Sensing Bulletin doi: 10.11834/jrs.20210591 – volume: 3 start-page: 37 issue: 1 year: 2015 ident: 10.1016/j.infrared.2025.106016_b0135 article-title: Alternating direction method of multipliers for solving dictionary learning models publication-title: Commun. Math. Statist. doi: 10.1007/s40304-015-0050-5 – volume: 11 start-page: 1648 issue: 14 year: 2019 ident: 10.1016/j.infrared.2025.106016_b0055 article-title: Spectral super-resolution with optimized bands publication-title: Remote Sens. doi: 10.3390/rs11141648 – start-page: 17502 year: 2022 ident: 10.1016/j.infrared.2025.106016_b0035 article-title: Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction – start-page: 1255 year: 2019 ident: 10.1016/j.infrared.2025.106016_b0175 article-title: A brief review of Nearest neighbor algorithm for Learning and classification – volume: 97 year: 2023 ident: 10.1016/j.infrared.2025.106016_b0010 article-title: Spectral super-resolution meets deep learning: achievements and challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.101812 – start-page: 2586 year: 2012 ident: 10.1016/j.infrared.2025.106016_b0130 article-title: Sparse representation for face recognition based on discriminative low-rank dictionary learning – volume: 57 start-page: 1325 issue: 3 year: 2019 ident: 10.1016/j.infrared.2025.106016_b0065 article-title: Reconstruction from multispectral to hyperspectral image using spectral library-based Dictionary Learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2866054 – volume: 40 start-page: 1221 issue: 8 year: 2014 ident: 10.1016/j.infrared.2025.106016_b0165 article-title: Quality metrics evaluation of hyperspectral images publication-title: Proc. Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprsarchives-XL-8-1221-2014 – volume: 5 start-page: 963 issue: 5 year: 2011 ident: 10.1016/j.infrared.2025.106016_b0140 article-title: Learning Sparse codes for hyperspectral imagery publication-title: IEEE J. Sel. Topics Signal Process. doi: 10.1109/JSTSP.2011.2149497 – volume: 590 year: 2024 ident: 10.1016/j.infrared.2025.106016_b0030 article-title: A novel spectral super-resolution network with dominant information between spatial and spectral domains publication-title: Neurocomput. doi: 10.1016/j.neucom.2024.127753 – start-page: 186 year: 2014 ident: 10.1016/j.infrared.2025.106016_b0080 article-title: Training-based spectral reconstruction from a single RGB image – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.infrared.2025.106016_b0160 article-title: Semisupervised spectral degradation constrained network for spectral super-resolution publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 473 year: 2008 ident: 10.1016/j.infrared.2025.106016_b0085 article-title: Spatio-spectral reconstruction of the multispectral datacube using sparse recovery – volume: 26 start-page: 1 issue: 3 year: 2007 ident: 10.1016/j.infrared.2025.106016_b0115 article-title: Image deblurring with blurred/noisy image pairs publication-title: ACM Trans. Graph. doi: 10.1145/1276377.1276379 – start-page: 99 year: 2021 ident: 10.1016/j.infrared.2025.106016_b0155 article-title: Spectral response function-guided deep optimization-driven network for spectral super-resolution publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 19 start-page: 2861 issue: 11 year: 2010 ident: 10.1016/j.infrared.2025.106016_b0110 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2050625 – year: 1992 ident: 10.1016/j.infrared.2025.106016_b0170 article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm – start-page: 480 year: 2017 ident: 10.1016/j.infrared.2025.106016_b0020 article-title: Adversarial networks for spatial context-aware spectral image reconstruction from RGB – volume: 57 start-page: 2777 issue: 5 year: 2019 ident: 10.1016/j.infrared.2025.106016_b0090 article-title: Spectral super resolution of hyperspectral images via coupled Dictionary Learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2877124 – start-page: 422 year: 2020 ident: 10.1016/j.infrared.2025.106016_b0015 article-title: Hierarchical regression network for spectral reconstruction from RGB images – volume: 14 start-page: 481 year: 2004 ident: 10.1016/j.infrared.2025.106016_b0145 article-title: Sparse coding of sensory inputs publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2004.07.007 – start-page: 251 year: 2015 ident: 10.1016/j.infrared.2025.106016_b0100 article-title: Single image spectral reconstruction for multimedia applications – volume: 35 start-page: 10059 issue: 7 year: 2024 ident: 10.1016/j.infrared.2025.106016_b0045 article-title: Spectral super-resolution via model-guided cross-fusion network publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2023.3238506 – start-page: 2793 year: 2015 ident: 10.1016/j.infrared.2025.106016_b0105 article-title: Rank constraints on joint Dictionary Learning for image recognition – volume: 11 start-page: 2416 year: 2019 ident: 10.1016/j.infrared.2025.106016_b0095 article-title: A novel hyperspectral image simulation method based on nonnegative matrix factorization publication-title: Remote Sens. doi: 10.3390/rs11202416 – start-page: 84 year: 2014 ident: 10.1016/j.infrared.2025.106016_b0120 article-title: Low light image enhancement via sparse representations – year: 2024 ident: 10.1016/j.infrared.2025.106016_b0050 article-title: Spectral super-resolution via deep low-rank tensor representation publication-title: IEEE Trans. Neural Networks Learn. Syst. |
SSID | ssj0016406 |
Score | 2.403397 |
Snippet | •HSI reconstruction is regarded as a low-rank reconstruction problem.•Optimize the coupled spectral dictionary using the idea of low-rank... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 106016 |
SubjectTerms | Coupled dictionary learning Low-rank constraints Model optimization Spectral super-resolution reconstruction Transfer learning |
Title | Spectral super-resolution reconstruction of multispectral images based on low-rank coupled dictionary learning |
URI | https://dx.doi.org/10.1016/j.infrared.2025.106016 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRfAiPrE-yh68rulmd_M4lmKpCr1oobeQfURSahL6QLz4253dJEVB8OAxww6E2d1vZpJvZhC6DakwhqeWFJYpwnloSJSFKdG-jCgDmU4dy3caTGb8cS7mHTRqa2EsrbLB_hrTHVo3Eq-xplflufdMmRhwiO_Bibv_ebaCnYeW1nf3uaN5QDbg5mvaxcSu_lYlvLCx7cryvCFP9AUIbW-S3x3UN6czPkKHTbSIh_ULHaOOKU7QvmNtqvUpKuz0ePupAq-3lVkRSJ2bk4RdortrDovLDDvq4LpVyN8ASNbYOjGNYcGyfCd2fjtW5bZagkznTjNdfeBmssTrGZqN719GE9IMUCCKhsGGBALuY5CakCnha6pDw1gsaRCElEo_AM8e-9rnWkLSJGO4jUIrBSEG1yaLhUzZOeoWZWEuEGZxZAA45SCSjBsRxRYXJdOMZ8rPJOshr7VaUtV9MpKWQLZIWjsn1s5JbeceilvjJj92PAEw_0P38h-6V-jAPtX1hNeoCzthbiCw2Mi-Ozl9tDd8eJpMvwB--dB1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEB6sUtpL6ZPaZw69hnU3yT6OIhWt1ksVvC2bTbYodhVXKf33nexDLBR66HU2A2GSfDOz-TID8OTZQmseGVJYElPOPU39xIuocqRvM5SpKGf5jtzehL9MxbQGneotjKFVlthfYHqO1qXEKq1prWYz681mosUxvkcnnt_nHUDDVKfidWi0-4PeaHeZ4PK8xaYZT43C3kPhuQlv14bqjamiI1BoypP87qP2_E73FE7KgJG0izmdQU2n53CYEzfj7AJS00De_K0g2Xal1xSz53IzkTzX3dWHJcuE5OzBrFKYfSCWZMT4MUVwwGL5SU0LdxIvt6sFytQs14zWX6RsLvF-CZPu87jTo2UPBRrbnruhrsAj6UbaY7FwlK08zVggbdf1bFs6Ljr3wFEOVxLzJhnggRQqjjHK4EongZARu4J6ukz1NRAW-BqxU7Z8ybgWfmCgUTLFeBI7iWRNsCqrhauiVEZYccjmYWXn0Ng5LOzchKAybvhj0UPE8z90b_6h-whHvfHrMBz2R4NbODZfiueFd1DHVdH3GGds5EO5j74BrfnTJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+super-resolution+reconstruction+of+multispectral+images+based+on+low-rank+coupled+dictionary+learning&rft.jtitle=Infrared+physics+%26+technology&rft.au=Lv%2C+Xianlan&rft.au=Zhao%2C+Quanhua&rft.au=Li%2C+Yu&rft.date=2025-11-01&rft.issn=1350-4495&rft.volume=150&rft.spage=106016&rft_id=info:doi/10.1016%2Fj.infrared.2025.106016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2025_106016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon |