Quantitative detection of fatty acid value in brown rice using hyperspectral imaging combined with chemometric methods
•HSI and chemometrics were combined for detecting fatty acid value of brown rice.•The wavelengths of sample with different particle sizes were extracted by SPA.•PLSR and SVR were developed based on different spectra features.•The best BOC-SPA-SVR model yielded satisfactory performances. Fatty acid v...
Saved in:
Published in | Infrared physics & technology Vol. 150; p. 106049 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •HSI and chemometrics were combined for detecting fatty acid value of brown rice.•The wavelengths of sample with different particle sizes were extracted by SPA.•PLSR and SVR were developed based on different spectra features.•The best BOC-SPA-SVR model yielded satisfactory performances.
Fatty acid value was one of the important indexes to evaluate brown rice quality during storage. In this study, brown rice (Dao Huaxiang No. 2) was chosen as the experimental subject. Three different particle sizes of brown rice powder samples were explored to the change rule of the visible near infrared hyperspectral image and fatty acid value. Detection models for the fatty acid value of brown rice powder samples were established based on the full and feature spectra. Five pre-processing methods(including baseline offset correction, et al.) were used to process the full spectral data and the successive projections algorithm (SPA) was utilized to select feature wavelengths. And the partial least squares regression (PLSR) and the support vector regression (SVR) models were established based on both full wavelengths and feature wavelengths. The comparative results indicated that the BOC-SPA-SVR model had the highest performance, with a determination coefficient (Rp2) of 0.9954, root mean square errors (RMSEP) of 0.6693, and residual prediction deviation (RPD) of 10.4357 in the prediction set. The results demonstrated that HSI with BOC-SPA-SVR model performed well in the detection of fatty acid value of the brown rice, and the proposed BOC-SPA-SVR model in this study can be used for the development of the optical rapid detection equipment for brown rice’s fatty acid value and other quality indicators. |
---|---|
AbstractList | •HSI and chemometrics were combined for detecting fatty acid value of brown rice.•The wavelengths of sample with different particle sizes were extracted by SPA.•PLSR and SVR were developed based on different spectra features.•The best BOC-SPA-SVR model yielded satisfactory performances.
Fatty acid value was one of the important indexes to evaluate brown rice quality during storage. In this study, brown rice (Dao Huaxiang No. 2) was chosen as the experimental subject. Three different particle sizes of brown rice powder samples were explored to the change rule of the visible near infrared hyperspectral image and fatty acid value. Detection models for the fatty acid value of brown rice powder samples were established based on the full and feature spectra. Five pre-processing methods(including baseline offset correction, et al.) were used to process the full spectral data and the successive projections algorithm (SPA) was utilized to select feature wavelengths. And the partial least squares regression (PLSR) and the support vector regression (SVR) models were established based on both full wavelengths and feature wavelengths. The comparative results indicated that the BOC-SPA-SVR model had the highest performance, with a determination coefficient (Rp2) of 0.9954, root mean square errors (RMSEP) of 0.6693, and residual prediction deviation (RPD) of 10.4357 in the prediction set. The results demonstrated that HSI with BOC-SPA-SVR model performed well in the detection of fatty acid value of the brown rice, and the proposed BOC-SPA-SVR model in this study can be used for the development of the optical rapid detection equipment for brown rice’s fatty acid value and other quality indicators. |
ArticleNumber | 106049 |
Author | Shi, Tianyu Yang, Dong Jie, Yu Cai, Ting Li, Qianqian Liu, Xingquan |
Author_xml | – sequence: 1 givenname: Ting surname: Cai fullname: Cai, Ting organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China – sequence: 2 givenname: Xingquan surname: Liu fullname: Liu, Xingquan organization: College of Food and Health, Zhejiang A & F University, Hangzhou 310000, China – sequence: 3 givenname: Qianqian surname: Li fullname: Li, Qianqian organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China – sequence: 4 givenname: Dong surname: Yang fullname: Yang, Dong organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China – sequence: 5 givenname: Yu surname: Jie fullname: Jie, Yu organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China – sequence: 6 givenname: Tianyu surname: Shi fullname: Shi, Tianyu email: stysty03@126.com organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China |
BookMark | eNqFkM1qwzAQhHVIoUnaVyh6AaeSbcnxrSX0JxAohfYsZGkVK8RSkBSHvH0V0p57WhjmG2ZnhibOO0DogZIFJZQ_7hbWmSAD6EVJSpZFTup2gqa0YqSo65bdolmMO5LNNeFTNH4epUs2yWRHwBoSqGS9w95gI1M6Y6msxqPcHwFbh7vgTw4HqwAfo3Vb3J8PEOIhU0HusR3k9qIqP3TWgcYnm3qsehj8ACljOJ_e63iHbozcR7j_vXP0_frytXovNh9v69XzplC04amgXLXM1KzhUpaqlAQM17JTlSKsaxlnTC-bSnNDamgpN7xmy7YzjV4qnr26miN-zVXBxxjAiEPIJcNZUCIui4md-FtMXBYT18Uy-HQFIbcbLQQRlQWnQNuQnxXa2_8ifgBrx3-Z |
Cites_doi | 10.1016/j.infrared.2019.102999 10.1111/jfpe.12297 10.1111/1541-4337.12449 10.1016/j.foodchem.2020.127290 10.1016/j.chemolab.2014.11.011 10.1016/j.infrared.2020.103226 10.1016/j.snb.2020.127816 10.1021/acs.jchemed.6b00460 10.1016/j.saa.2024.124938 10.1016/j.foodchem.2020.128473 10.1016/j.biosystemseng.2019.06.010 10.1016/j.jfca.2024.106995 10.1016/j.infrared.2020.103423 10.1016/j.foodchem.2021.129032 10.1016/j.trac.2013.04.015 10.1016/j.foodchem.2021.129954 10.1016/j.foodchem.2020.126695 10.1177/0967033517726724 10.1016/j.biosystemseng.2019.12.006 10.1016/j.sab.2019.105688 10.1111/1750-3841.15809 10.1007/s11694-020-00694-9 10.3390/s21093266 10.1016/j.infrared.2017.05.005 10.1080/10408398.2020.1844138 10.3390/s20174744 10.3390/s140407248 10.1016/j.infrared.2020.103462 10.1016/j.cclet.2014.10.023 10.1039/C4AN00837E 10.1007/s10068-018-0520-0 10.1007/s11694-024-02462-5 10.1016/j.infrared.2018.10.030 10.1016/j.foodhyd.2018.01.044 10.1016/j.ifset.2013.04.014 10.1016/j.jfoodeng.2019.07.013 10.1016/j.aca.2016.01.010 10.1007/s11356-018-3745-9 10.1111/ijfs.13265 10.1016/j.jcs.2020.102927 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.infrared.2025.106049 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_infrared_2025_106049 S1350449525003421 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K VH1 VOH WUQ ZMT ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c176t-16c95f4576aa2c2a0ef6dabc3c05b95655d873d6f04e916f64589bf7d8c60efd3 |
IEDL.DBID | .~1 |
ISSN | 1350-4495 |
IngestDate | Wed Aug 27 16:30:13 EDT 2025 Sat Aug 30 17:13:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brown rice Fatty acid value Chemometrics Quantitative detection Hyperspectral imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c176t-16c95f4576aa2c2a0ef6dabc3c05b95655d873d6f04e916f64589bf7d8c60efd3 |
ParticipantIDs | crossref_primary_10_1016_j_infrared_2025_106049 elsevier_sciencedirect_doi_10_1016_j_infrared_2025_106049 |
PublicationCentury | 2000 |
PublicationDate | November 2025 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
PublicationDecade | 2020 |
PublicationTitle | Infrared physics & technology |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Song, Liu, Wang (b0070) 2024; 18 Chen, Sorensen, Engelsen (b0135) 2019; 263 Yao, Lu, Li (b0015) 2021; 42 Liu, Huang, Yang (b0085) 2020; 110 Engel, Gerretzen, Szymańska (b0150) 2013; 50 Huang, Hu, Tian (b0200) 2021; 359 Zhang, Fearn (b0170) 2015; 140 Hu, Zhang, Yu (b0155) 2019; 102 Jiang, Zhou, Yang (b0095) 2019; 34 Jiang, Liu, He (b0230) 2020; 309 Sun, Wang, Zhang (b0120) 2020; 105 Tang, Huang, Tian (b0165) 2014; 139 Liu, Rady, Wijewardane (b0220) 2021; 15 Zheng, Zhang, Tong (b0130) 2015; 26 Fu, Chen, Fu (b0215) 2020; 190 Huang, Liu, Ngadi (b0050) 2014; 14 Saleh, Wang, Wang (b0020) 2019; 18 Zhou, Zhang, Zou (b0010) 2019; 26 Guezenoc, Gallet-Budynek, Bousquet (b0145) 2019; 160 Ma, Sun (b0185) 2020; 321 Sun, Yuan, Liu (b0205) 2021; 258 Dong, Dong, Liu (b0060) 2024; 323 Luo, Yan, Fu (b0110) 2021; 348 Lee, Kim, Jang (b0025) 2019; 28 Wimonsiri, Ritthiruangdej, Kasemsumran (b0225) 2017; 25 Bai, Hu, Tian (b0125) 2020; 331 Cui, Cheng, Li (b0080) 2020; 20 Yang, He, Lu (b0175) 2017; 83 Jiang, Liu, Chen (b0030) 2020; 109 Sun, Lu, Mao (b0190) 2017; 40 Hu, Li, Du (b0065) 2021; 343 Zhao, Wang, Ni (b0180) 2019; 184 Liu, Li, Peng (b0240) 2021; 86 T. Wen, T.S. Hong, L.J. Li, et al. Non-destructive detection of fatty acid content in mould paddy based on high-spectral technology . Trans. Chinese Soc. Agric. Eng., 2015, 31(18): 233–239. Jiang, Liu, Chen (b0100) 2020; 240 Lu, Jiang, Chen (b0235) 2021; 21 Li, Lu, Zhang (b0045) 2020; 28 Lazaridou, Vouris, Zoumpoulakis (b0195) 2018; 80 Bi, Yuan, Xiao (b0140) 2016; 909 G. 20569-2006. Guidelines for evaluation of paddy storage character . China 2006. Tian, Zhang, Li (b0210) 2018; 95 Hashimoto, Hossain, Matsuzaki (b0005) 2022; 62 Xu, Dong, Liu (b0075) 2025; 137 Grabowski, Goode (b0040) 2017; 94 Wu, Sun (b0055) 2013; 19 Zhao, Wang, Ni (b0160) 2018; 8 Liu, Li, Chen (b0035) 2017; 52 Yan, Liu, Huang, 等 (b0115) 2020; 92 Huang (10.1016/j.infrared.2025.106049_b0200) 2021; 359 Huang (10.1016/j.infrared.2025.106049_b0050) 2014; 14 Jiang (10.1016/j.infrared.2025.106049_b0095) 2019; 34 Ma (10.1016/j.infrared.2025.106049_b0185) 2020; 321 Bai (10.1016/j.infrared.2025.106049_b0125) 2020; 331 Bi (10.1016/j.infrared.2025.106049_b0140) 2016; 909 Engel (10.1016/j.infrared.2025.106049_b0150) 2013; 50 Lee (10.1016/j.infrared.2025.106049_b0025) 2019; 28 Dong (10.1016/j.infrared.2025.106049_b0060) 2024; 323 Jiang (10.1016/j.infrared.2025.106049_b0230) 2020; 309 Xu (10.1016/j.infrared.2025.106049_b0075) 2025; 137 Zhao (10.1016/j.infrared.2025.106049_b0180) 2019; 184 Guezenoc (10.1016/j.infrared.2025.106049_b0145) 2019; 160 Wimonsiri (10.1016/j.infrared.2025.106049_b0225) 2017; 25 Hu (10.1016/j.infrared.2025.106049_b0155) 2019; 102 Tian (10.1016/j.infrared.2025.106049_b0210) 2018; 95 Jiang (10.1016/j.infrared.2025.106049_b0030) 2020; 109 Grabowski (10.1016/j.infrared.2025.106049_b0040) 2017; 94 Zhao (10.1016/j.infrared.2025.106049_b0160) 2018; 8 Tang (10.1016/j.infrared.2025.106049_b0165) 2014; 139 Liu (10.1016/j.infrared.2025.106049_b0240) 2021; 86 Song (10.1016/j.infrared.2025.106049_b0070) 2024; 18 Zhou (10.1016/j.infrared.2025.106049_b0010) 2019; 26 Sun (10.1016/j.infrared.2025.106049_b0190) 2017; 40 Wu (10.1016/j.infrared.2025.106049_b0055) 2013; 19 Liu (10.1016/j.infrared.2025.106049_b0085) 2020; 110 Hashimoto (10.1016/j.infrared.2025.106049_b0005) 2022; 62 Liu (10.1016/j.infrared.2025.106049_b0035) 2017; 52 Cui (10.1016/j.infrared.2025.106049_b0080) 2020; 20 Liu (10.1016/j.infrared.2025.106049_b0220) 2021; 15 Fu (10.1016/j.infrared.2025.106049_b0215) 2020; 190 Sun (10.1016/j.infrared.2025.106049_b0205) 2021; 258 Sun (10.1016/j.infrared.2025.106049_b0120) 2020; 105 Zheng (10.1016/j.infrared.2025.106049_b0130) 2015; 26 10.1016/j.infrared.2025.106049_b0090 Lazaridou (10.1016/j.infrared.2025.106049_b0195) 2018; 80 Yao (10.1016/j.infrared.2025.106049_b0015) 2021; 42 Li (10.1016/j.infrared.2025.106049_b0045) 2020; 28 Yang (10.1016/j.infrared.2025.106049_b0175) 2017; 83 Lu (10.1016/j.infrared.2025.106049_b0235) 2021; 21 Chen (10.1016/j.infrared.2025.106049_b0135) 2019; 263 Yan (10.1016/j.infrared.2025.106049_b0115) 2020; 92 10.1016/j.infrared.2025.106049_b0105 Hu (10.1016/j.infrared.2025.106049_b0065) 2021; 343 Jiang (10.1016/j.infrared.2025.106049_b0100) 2020; 240 Saleh (10.1016/j.infrared.2025.106049_b0020) 2019; 18 Zhang (10.1016/j.infrared.2025.106049_b0170) 2015; 140 Luo (10.1016/j.infrared.2025.106049_b0110) 2021; 348 |
References_xml | – volume: 26 start-page: 1848 year: 2019 end-page: 1856 ident: b0010 article-title: Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing publication-title: Environ. Sci. Pollut. Res. – volume: 258 start-page: 8 year: 2021 ident: b0205 article-title: A sample selection method specific to unknown test samples for calibration and validation sets based on spectra similarity publication-title: Spectrochim. Acta Part a-Mol. Biomol. Spectroscopy – volume: 909 start-page: 30 year: 2016 end-page: 40 ident: b0140 article-title: A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation publication-title: Anal. Chim. Acta – volume: 14 start-page: 7248 year: 2014 end-page: 7276 ident: b0050 article-title: Recent developments in hyperspectral imaging for assessment of food quality and safety publication-title: Sensors – volume: 62 start-page: 1502 year: 2022 end-page: 1520 ident: b0005 article-title: The journey from white rice to ultra-high hydrostatic pressurized brown rice: an excellent endeavor for ideal nutrition from staple food publication-title: Crit. Rev. Food Sci. Nutr. – reference: T. Wen, T.S. Hong, L.J. Li, et al. Non-destructive detection of fatty acid content in mould paddy based on high-spectral technology . Trans. Chinese Soc. Agric. Eng., 2015, 31(18): 233–239. – volume: 184 start-page: 55 year: 2019 end-page: 68 ident: b0180 article-title: Utilising near-infrared hyperspectral imaging to detect low-level peanut powder contamination of whole wheat flour publication-title: Biosyst. Eng. – volume: 309 year: 2020 ident: b0230 article-title: Quantitative analysis of fatty acid value during rice storage based on olfactory visualization sensor technology publication-title: Sensors and Actuators B-Chem. – volume: 323 year: 2024 ident: b0060 article-title: Identification and quantitative detection of illegal additives in wheat flour based on near-infrared spectroscopy combined with chemometrics publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 19 start-page: 1 year: 2013 end-page: 14 ident: b0055 article-title: Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review - Part I: Fundamentals publication-title: Innovative Food Sci. Emerg. Technol. – volume: 321 year: 2020 ident: b0185 article-title: Prediction of monounsaturated and polyunsaturated fatty acids of various processed pork meats using improved hyperspectral imaging technique publication-title: Food Chem. – volume: 8 year: 2018 ident: b0160 article-title: Evaluation of near-infrared hyperspectral imaging for detection of peanut and walnut powders in whole wheat flour publication-title: Appl. Sci.-Basel – volume: 137 year: 2025 ident: b0075 article-title: Combination of near infrared spectroscopy with characteristic interval selection for rapid detection of rice protein content publication-title: J. Food Compos. Anal. – volume: 240 year: 2020 ident: b0100 article-title: Dynamic monitoring of fatty acid value in rice storage based on a portable near-infrared spectroscopy system publication-title: Spectrochim, Acta Part a-Mol. Biomol. Spectroscopy – volume: 343 year: 2021 ident: b0065 article-title: Predicting micronutrients of wheat using hyperspectral imaging publication-title: Food Chem. – volume: 92 year: 2020 ident: b0115 article-title: The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill publication-title: J. Cereal Sci. – volume: 140 start-page: 133 year: 2015 end-page: 140 ident: b0170 article-title: A linearization method for partial least squares regression prediction uncertainty publication-title: Chemom. Intel. Lab. Syst. – volume: 25 start-page: 330 year: 2017 end-page: 337 ident: b0225 article-title: Rapid analysis of chemical composition in intact and milled rice cookies using near infrared spectroscopy publication-title: J. Near Infrared Spectrosc. – volume: 110 year: 2020 ident: b0085 article-title: Determination of starch content in single kernel using near-infrared hyperspectral images from two sides of corn seeds publication-title: Infrared Phys. Technol. – volume: 80 start-page: 111 year: 2018 end-page: 121 ident: b0195 article-title: Physicochemical properties of jet milled wheat flours and doughs publication-title: Food Hydrocoll. – volume: 105 year: 2020 ident: b0120 article-title: Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology publication-title: Infrared Phys. Technol. – volume: 50 start-page: 96 year: 2013 end-page: 106 ident: b0150 article-title: Breaking with trends in pre-processing? publication-title: TrAC Trends Anal. Chem. – volume: 190 start-page: 120 year: 2020 end-page: 130 ident: b0215 article-title: Discrimination of talcum powder and benzoyl peroxide in wheat flour by near-infrared hyperspectral imaging publication-title: Biosyst. Eng. – volume: 102 year: 2019 ident: b0155 article-title: Optimization of soluble solids content prediction models in 'Hami' melons by means of Vis-NIR spectroscopy and chemometric tools publication-title: Infrared Phys. Technol. – volume: 139 start-page: 4894 year: 2014 end-page: 4902 ident: b0165 article-title: A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm publication-title: Analyst – volume: 18 start-page: 1070 year: 2019 end-page: 1096 ident: b0020 article-title: Brown rice versus white rice: nutritional quality, potential health benefits, development of food products, and preservation technologies publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 18 start-page: 3881 year: 2024 end-page: 3892 ident: b0070 article-title: Rapid identification of adulterated rice based on data fusion of near-infrared spectroscopy and machine vision publication-title: J. Food Meas. Charact. – volume: 109 year: 2020 ident: b0030 article-title: Quantitative detection of fatty acid value during storage of wheat flour based on a portable near-infrared (NIR) spectroscopy system publication-title: Infrared Phys. Technol. – volume: 263 start-page: 311 year: 2019 end-page: 319 ident: b0135 article-title: Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: effect of ice crystal growth and distribution publication-title: J. Food Eng. – volume: 160 start-page: 8 year: 2019 ident: b0145 article-title: Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis publication-title: Spectrochim. Acta Part B-Atomic Spectroscopy – volume: 359 year: 2021 ident: b0200 article-title: Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging publication-title: Food Chem. – volume: 15 start-page: 953 year: 2021 end-page: 960 ident: b0220 article-title: Fourier-transform infrared spectroscopy and machine learning to predict fatty acid content of nine commercial insects publication-title: J. Food Meas. Charact. – volume: 28 start-page: 623 year: 2019 end-page: 631 ident: b0025 article-title: Effects of different storage conditions on the metabolite and microbial profiles of white rice (Oryza sativa L.) publication-title: Food Sci. Biotechnol. – volume: 94 start-page: 636 year: 2017 end-page: 639 ident: b0040 article-title: Determining a solubility product constant by potentiometric titration to increase students' conceptual understanding of potentiometry and titrations publication-title: J. Chem. Educ. – volume: 42 start-page: 204 year: 2021 end-page: 209 ident: b0015 article-title: Changes in quality and physicochemical characteristics of brown rice during storage publication-title: Food Res Dev – reference: G. 20569-2006. Guidelines for evaluation of paddy storage character . China 2006. – volume: 331 year: 2020 ident: b0125 article-title: Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging publication-title: Food Chem. – volume: 20 year: 2020 ident: b0080 article-title: Prediction of sweet corn seed germination based on hyperspectral image technology and multivariate data regression publication-title: Sensors – volume: 348 year: 2021 ident: b0110 article-title: The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill publication-title: Food Chem. – volume: 52 start-page: 188 year: 2017 end-page: 195 ident: b0035 article-title: Lipid oxidation of brown rice stored at different temperatures publication-title: Int. J. Food Sci. Technol. – volume: 26 start-page: 293 year: 2015 end-page: 296 ident: b0130 article-title: Pretreating near infrared spectra with fractional order Savitzky-Golay differentiation (FOSGD) publication-title: Chin. Chem. Lett. – volume: 28 start-page: 87 year: 2020 end-page: 93 ident: b0045 article-title: Study on automatically potentiometric titration simulating manual titration method for determination of fatty acid value of grain publication-title: Sci. Technol. Cereals, Oils and Foods – volume: 40 year: 2017 ident: b0190 article-title: A method for rapid identification of rice origin by hyperspectral imaging technology publication-title: J. Food Process Eng – volume: 86 start-page: 3434 year: 2021 end-page: 3446 ident: b0240 article-title: A feasibility quantitative analysis of free fatty acids in polished rice by fourier transform near-infrared spectroscopy and chemometrics publication-title: J. Food Sci. – volume: 34 start-page: 177 year: 2019 ident: b0095 article-title: Determination of fatty acid value of paddy by diffuse reflectance infrared spectroscopy and PLS publication-title: J. Chinese Cereals Oils – volume: 95 start-page: 88 year: 2018 end-page: 92 ident: b0210 article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy publication-title: Infrared Phys. Technol. – volume: 21 year: 2021 ident: b0235 article-title: Determination of fatty acid content of rice during storage based on feature fusion of olfactory visualization sensor data and near-infrared spectra publication-title: Sensors – volume: 83 start-page: 206 year: 2017 end-page: 216 ident: b0175 article-title: Combination of spectral and textural information of hyperspectral imaging for the prediction of the moisture content and storage time of cooked beef publication-title: Infrared Phys. Technol. – volume: 28 start-page: 87 issue: 01 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0045 article-title: Study on automatically potentiometric titration simulating manual titration method for determination of fatty acid value of grain publication-title: Sci. Technol. Cereals, Oils and Foods – volume: 102 year: 2019 ident: 10.1016/j.infrared.2025.106049_b0155 article-title: Optimization of soluble solids content prediction models in 'Hami' melons by means of Vis-NIR spectroscopy and chemometric tools publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.102999 – volume: 40 issue: 1 year: 2017 ident: 10.1016/j.infrared.2025.106049_b0190 article-title: A method for rapid identification of rice origin by hyperspectral imaging technology publication-title: J. Food Process Eng doi: 10.1111/jfpe.12297 – volume: 18 start-page: 1070 issue: 4 year: 2019 ident: 10.1016/j.infrared.2025.106049_b0020 article-title: Brown rice versus white rice: nutritional quality, potential health benefits, development of food products, and preservation technologies publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12449 – volume: 331 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0125 article-title: Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127290 – volume: 258 start-page: 8 year: 2021 ident: 10.1016/j.infrared.2025.106049_b0205 article-title: A sample selection method specific to unknown test samples for calibration and validation sets based on spectra similarity publication-title: Spectrochim. Acta Part a-Mol. Biomol. Spectroscopy – volume: 140 start-page: 133 year: 2015 ident: 10.1016/j.infrared.2025.106049_b0170 article-title: A linearization method for partial least squares regression prediction uncertainty publication-title: Chemom. Intel. Lab. Syst. doi: 10.1016/j.chemolab.2014.11.011 – volume: 105 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0120 article-title: Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103226 – volume: 309 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0230 article-title: Quantitative analysis of fatty acid value during rice storage based on olfactory visualization sensor technology publication-title: Sensors and Actuators B-Chem. doi: 10.1016/j.snb.2020.127816 – volume: 94 start-page: 636 issue: 5 year: 2017 ident: 10.1016/j.infrared.2025.106049_b0040 article-title: Determining a solubility product constant by potentiometric titration to increase students' conceptual understanding of potentiometry and titrations publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.6b00460 – volume: 323 year: 2024 ident: 10.1016/j.infrared.2025.106049_b0060 article-title: Identification and quantitative detection of illegal additives in wheat flour based on near-infrared spectroscopy combined with chemometrics publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2024.124938 – volume: 343 year: 2021 ident: 10.1016/j.infrared.2025.106049_b0065 article-title: Predicting micronutrients of wheat using hyperspectral imaging publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128473 – volume: 184 start-page: 55 year: 2019 ident: 10.1016/j.infrared.2025.106049_b0180 article-title: Utilising near-infrared hyperspectral imaging to detect low-level peanut powder contamination of whole wheat flour publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.06.010 – volume: 137 year: 2025 ident: 10.1016/j.infrared.2025.106049_b0075 article-title: Combination of near infrared spectroscopy with characteristic interval selection for rapid detection of rice protein content publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2024.106995 – volume: 109 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0030 article-title: Quantitative detection of fatty acid value during storage of wheat flour based on a portable near-infrared (NIR) spectroscopy system publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103423 – volume: 348 year: 2021 ident: 10.1016/j.infrared.2025.106049_b0110 article-title: The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.129032 – volume: 50 start-page: 96 year: 2013 ident: 10.1016/j.infrared.2025.106049_b0150 article-title: Breaking with trends in pre-processing? publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2013.04.015 – volume: 359 year: 2021 ident: 10.1016/j.infrared.2025.106049_b0200 article-title: Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.129954 – volume: 321 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0185 article-title: Prediction of monounsaturated and polyunsaturated fatty acids of various processed pork meats using improved hyperspectral imaging technique publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126695 – volume: 34 start-page: 177 issue: 03 year: 2019 ident: 10.1016/j.infrared.2025.106049_b0095 article-title: Determination of fatty acid value of paddy by diffuse reflectance infrared spectroscopy and PLS publication-title: J. Chinese Cereals Oils – volume: 25 start-page: 330 issue: 5 year: 2017 ident: 10.1016/j.infrared.2025.106049_b0225 article-title: Rapid analysis of chemical composition in intact and milled rice cookies using near infrared spectroscopy publication-title: J. Near Infrared Spectrosc. doi: 10.1177/0967033517726724 – volume: 190 start-page: 120 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0215 article-title: Discrimination of talcum powder and benzoyl peroxide in wheat flour by near-infrared hyperspectral imaging publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.12.006 – volume: 160 start-page: 8 year: 2019 ident: 10.1016/j.infrared.2025.106049_b0145 article-title: Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis publication-title: Spectrochim. Acta Part B-Atomic Spectroscopy doi: 10.1016/j.sab.2019.105688 – volume: 86 start-page: 3434 issue: 8 year: 2021 ident: 10.1016/j.infrared.2025.106049_b0240 article-title: A feasibility quantitative analysis of free fatty acids in polished rice by fourier transform near-infrared spectroscopy and chemometrics publication-title: J. Food Sci. doi: 10.1111/1750-3841.15809 – volume: 15 start-page: 953 issue: 1 year: 2021 ident: 10.1016/j.infrared.2025.106049_b0220 article-title: Fourier-transform infrared spectroscopy and machine learning to predict fatty acid content of nine commercial insects publication-title: J. Food Meas. Charact. doi: 10.1007/s11694-020-00694-9 – volume: 21 issue: 9 year: 2021 ident: 10.1016/j.infrared.2025.106049_b0235 article-title: Determination of fatty acid content of rice during storage based on feature fusion of olfactory visualization sensor data and near-infrared spectra publication-title: Sensors doi: 10.3390/s21093266 – volume: 83 start-page: 206 year: 2017 ident: 10.1016/j.infrared.2025.106049_b0175 article-title: Combination of spectral and textural information of hyperspectral imaging for the prediction of the moisture content and storage time of cooked beef publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.05.005 – volume: 62 start-page: 1502 issue: 6 year: 2022 ident: 10.1016/j.infrared.2025.106049_b0005 article-title: The journey from white rice to ultra-high hydrostatic pressurized brown rice: an excellent endeavor for ideal nutrition from staple food publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2020.1844138 – volume: 20 issue: 17 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0080 article-title: Prediction of sweet corn seed germination based on hyperspectral image technology and multivariate data regression publication-title: Sensors doi: 10.3390/s20174744 – volume: 240 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0100 article-title: Dynamic monitoring of fatty acid value in rice storage based on a portable near-infrared spectroscopy system publication-title: Spectrochim, Acta Part a-Mol. Biomol. Spectroscopy – ident: 10.1016/j.infrared.2025.106049_b0090 – volume: 14 start-page: 7248 issue: 4 year: 2014 ident: 10.1016/j.infrared.2025.106049_b0050 article-title: Recent developments in hyperspectral imaging for assessment of food quality and safety publication-title: Sensors doi: 10.3390/s140407248 – volume: 110 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0085 article-title: Determination of starch content in single kernel using near-infrared hyperspectral images from two sides of corn seeds publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103462 – volume: 26 start-page: 293 issue: 3 year: 2015 ident: 10.1016/j.infrared.2025.106049_b0130 article-title: Pretreating near infrared spectra with fractional order Savitzky-Golay differentiation (FOSGD) publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2014.10.023 – volume: 139 start-page: 4894 issue: 19 year: 2014 ident: 10.1016/j.infrared.2025.106049_b0165 article-title: A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm publication-title: Analyst doi: 10.1039/C4AN00837E – volume: 8 issue: 7 year: 2018 ident: 10.1016/j.infrared.2025.106049_b0160 article-title: Evaluation of near-infrared hyperspectral imaging for detection of peanut and walnut powders in whole wheat flour publication-title: Appl. Sci.-Basel – volume: 42 start-page: 204 issue: 15 year: 2021 ident: 10.1016/j.infrared.2025.106049_b0015 article-title: Changes in quality and physicochemical characteristics of brown rice during storage publication-title: Food Res Dev – volume: 28 start-page: 623 issue: 3 year: 2019 ident: 10.1016/j.infrared.2025.106049_b0025 article-title: Effects of different storage conditions on the metabolite and microbial profiles of white rice (Oryza sativa L.) publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-018-0520-0 – volume: 18 start-page: 3881 issue: 5 year: 2024 ident: 10.1016/j.infrared.2025.106049_b0070 article-title: Rapid identification of adulterated rice based on data fusion of near-infrared spectroscopy and machine vision publication-title: J. Food Meas. Charact. doi: 10.1007/s11694-024-02462-5 – volume: 95 start-page: 88 year: 2018 ident: 10.1016/j.infrared.2025.106049_b0210 article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2018.10.030 – ident: 10.1016/j.infrared.2025.106049_b0105 – volume: 80 start-page: 111 year: 2018 ident: 10.1016/j.infrared.2025.106049_b0195 article-title: Physicochemical properties of jet milled wheat flours and doughs publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2018.01.044 – volume: 19 start-page: 1 year: 2013 ident: 10.1016/j.infrared.2025.106049_b0055 article-title: Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review - Part I: Fundamentals publication-title: Innovative Food Sci. Emerg. Technol. doi: 10.1016/j.ifset.2013.04.014 – volume: 263 start-page: 311 year: 2019 ident: 10.1016/j.infrared.2025.106049_b0135 article-title: Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: effect of ice crystal growth and distribution publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2019.07.013 – volume: 909 start-page: 30 year: 2016 ident: 10.1016/j.infrared.2025.106049_b0140 article-title: A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.01.010 – volume: 26 start-page: 1848 issue: 2 year: 2019 ident: 10.1016/j.infrared.2025.106049_b0010 article-title: Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3745-9 – volume: 52 start-page: 188 issue: 1 year: 2017 ident: 10.1016/j.infrared.2025.106049_b0035 article-title: Lipid oxidation of brown rice stored at different temperatures publication-title: Int. J. Food Sci. Technol. doi: 10.1111/ijfs.13265 – volume: 92 year: 2020 ident: 10.1016/j.infrared.2025.106049_b0115 article-title: The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2020.102927 |
SSID | ssj0016406 |
Score | 2.403771 |
Snippet | •HSI and chemometrics were combined for detecting fatty acid value of brown rice.•The wavelengths of sample with different particle sizes were extracted by... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 106049 |
SubjectTerms | Brown rice Chemometrics Fatty acid value Hyperspectral imaging Quantitative detection |
Title | Quantitative detection of fatty acid value in brown rice using hyperspectral imaging combined with chemometric methods |
URI | https://dx.doi.org/10.1016/j.infrared.2025.106049 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iCF7EJ77JwWttu03S9rgsLqvigqiwt5KnVtjuslbBi7_dmbSVFQQPHhMSUr6EmfnKNzOEnAOp4FlidZAzlgZMGR4o0ZMw5AqIXMqULzx_OxajR3Y94ZMVMuhyYVBW2dr-xqZ7a93OhC2a4bwsw_s44RGD-B6cONax8xnsLMVXfvH5LfMANuD7a-LiAFcvZQm_YGy7QJ038MQeh0kRYU3N3xzUktMZbpHNNlqk_eaDtsmKrXbIuldt6tdd8n73JiufJQY2ixpbe11VRWeOOlnXH1Tq0lCs521pWVGFlJtiFSGKcvcn-gwktMm1XMAp5dR3LKIABdBlayj-o6VwqdPZFPtuadq0m37dI4_Dy4fBKGgbKQQ6TkUdxELn3DGgFlL2dE9G1gkjlU50xBUQJM5NliZGuIhZCBedYDzLlUtNpgWsNck-Wa1mlT0glKcsj61TLMkskzpHuuPiWOQ8E1Ko-JCEHXrFvKmXUXRCspeiw7tAvIsG70OSdyAXP26-AKP-x96jf-w9Jhs4avIKT8hqvXizpxBg1OrMv6Azsta_uhmNvwCPNdJ5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEb2IT6zPPXiNSZrdTXKUYqlPEFvwFvapKTSVmgpe_O3O5CEVBA8es5kl4dtkdr7lmxlCzoBU8CSy2ksZiz2mDPeU6Eq45AqIXMxUVXj-7l4MRuz6iT8tkV6bC4Oyysb31z698tbNiN-g6b_muf8YRjxgEN_DJo517IACrTD4fbGNwfnnt84D6EDVYBOtPTRfSBMeY3A7Q6E3EMUuh0ERYFHN33aohV2nv0k2mnCRXtRvtEWWbLFNVivZpn7bIe8Pc1lUaWLgtKixZSWsKujUUSfL8oNKnRuKBb0tzQuqkHNTLCNEUe_-TF-AhdbJljN4Sj6pWhZRwAL4sjUUD2kprOpkOsHGW5rW_abfdsmofznsDbymk4Knw1iUXih0yh0DbiFlV3dlYJ0wUulIB1wBQ-LcJHFkhAuYhXjRCcaTVLnYJFqArYn2yHIxLew-oTxmaWidYlFimdQp8h0XhiLliZBChR3it-hlr3XBjKxVko2zFu8M8c5qvDskbUHOfix9Bl79j7kH_5h7StYGw7vb7Pbq_uaQrOOdOsnwiCyXs7k9hmijVCfV1_QFhxTUBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+detection+of+fatty+acid+value+in+brown+rice+using+hyperspectral+imaging+combined+with+chemometric+methods&rft.jtitle=Infrared+physics+%26+technology&rft.au=Cai%2C+Ting&rft.au=Liu%2C+Xingquan&rft.au=Li%2C+Qianqian&rft.au=Yang%2C+Dong&rft.date=2025-11-01&rft.issn=1350-4495&rft.volume=150&rft.spage=106049&rft_id=info:doi/10.1016%2Fj.infrared.2025.106049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2025_106049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon |