Quantitative detection of fatty acid value in brown rice using hyperspectral imaging combined with chemometric methods

•HSI and chemometrics were combined for detecting fatty acid value of brown rice.•The wavelengths of sample with different particle sizes were extracted by SPA.•PLSR and SVR were developed based on different spectra features.•The best BOC-SPA-SVR model yielded satisfactory performances. Fatty acid v...

Full description

Saved in:
Bibliographic Details
Published inInfrared physics & technology Vol. 150; p. 106049
Main Authors Cai, Ting, Liu, Xingquan, Li, Qianqian, Yang, Dong, Jie, Yu, Shi, Tianyu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •HSI and chemometrics were combined for detecting fatty acid value of brown rice.•The wavelengths of sample with different particle sizes were extracted by SPA.•PLSR and SVR were developed based on different spectra features.•The best BOC-SPA-SVR model yielded satisfactory performances. Fatty acid value was one of the important indexes to evaluate brown rice quality during storage. In this study, brown rice (Dao Huaxiang No. 2) was chosen as the experimental subject. Three different particle sizes of brown rice powder samples were explored to the change rule of the visible near infrared hyperspectral image and fatty acid value. Detection models for the fatty acid value of brown rice powder samples were established based on the full and feature spectra. Five pre-processing methods(including baseline offset correction, et al.) were used to process the full spectral data and the successive projections algorithm (SPA) was utilized to select feature wavelengths. And the partial least squares regression (PLSR) and the support vector regression (SVR) models were established based on both full wavelengths and feature wavelengths. The comparative results indicated that the BOC-SPA-SVR model had the highest performance, with a determination coefficient (Rp2) of 0.9954, root mean square errors (RMSEP) of 0.6693, and residual prediction deviation (RPD) of 10.4357 in the prediction set. The results demonstrated that HSI with BOC-SPA-SVR model performed well in the detection of fatty acid value of the brown rice, and the proposed BOC-SPA-SVR model in this study can be used for the development of the optical rapid detection equipment for brown rice’s fatty acid value and other quality indicators.
AbstractList •HSI and chemometrics were combined for detecting fatty acid value of brown rice.•The wavelengths of sample with different particle sizes were extracted by SPA.•PLSR and SVR were developed based on different spectra features.•The best BOC-SPA-SVR model yielded satisfactory performances. Fatty acid value was one of the important indexes to evaluate brown rice quality during storage. In this study, brown rice (Dao Huaxiang No. 2) was chosen as the experimental subject. Three different particle sizes of brown rice powder samples were explored to the change rule of the visible near infrared hyperspectral image and fatty acid value. Detection models for the fatty acid value of brown rice powder samples were established based on the full and feature spectra. Five pre-processing methods(including baseline offset correction, et al.) were used to process the full spectral data and the successive projections algorithm (SPA) was utilized to select feature wavelengths. And the partial least squares regression (PLSR) and the support vector regression (SVR) models were established based on both full wavelengths and feature wavelengths. The comparative results indicated that the BOC-SPA-SVR model had the highest performance, with a determination coefficient (Rp2) of 0.9954, root mean square errors (RMSEP) of 0.6693, and residual prediction deviation (RPD) of 10.4357 in the prediction set. The results demonstrated that HSI with BOC-SPA-SVR model performed well in the detection of fatty acid value of the brown rice, and the proposed BOC-SPA-SVR model in this study can be used for the development of the optical rapid detection equipment for brown rice’s fatty acid value and other quality indicators.
ArticleNumber 106049
Author Shi, Tianyu
Yang, Dong
Jie, Yu
Cai, Ting
Li, Qianqian
Liu, Xingquan
Author_xml – sequence: 1
  givenname: Ting
  surname: Cai
  fullname: Cai, Ting
  organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
– sequence: 2
  givenname: Xingquan
  surname: Liu
  fullname: Liu, Xingquan
  organization: College of Food and Health, Zhejiang A & F University, Hangzhou 310000, China
– sequence: 3
  givenname: Qianqian
  surname: Li
  fullname: Li, Qianqian
  organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
– sequence: 4
  givenname: Dong
  surname: Yang
  fullname: Yang, Dong
  organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
– sequence: 5
  givenname: Yu
  surname: Jie
  fullname: Jie, Yu
  organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
– sequence: 6
  givenname: Tianyu
  surname: Shi
  fullname: Shi, Tianyu
  email: stysty03@126.com
  organization: Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
BookMark eNqFkM1qwzAQhHVIoUnaVyh6AaeSbcnxrSX0JxAohfYsZGkVK8RSkBSHvH0V0p57WhjmG2ZnhibOO0DogZIFJZQ_7hbWmSAD6EVJSpZFTup2gqa0YqSo65bdolmMO5LNNeFTNH4epUs2yWRHwBoSqGS9w95gI1M6Y6msxqPcHwFbh7vgTw4HqwAfo3Vb3J8PEOIhU0HusR3k9qIqP3TWgcYnm3qsehj8ACljOJ_e63iHbozcR7j_vXP0_frytXovNh9v69XzplC04amgXLXM1KzhUpaqlAQM17JTlSKsaxlnTC-bSnNDamgpN7xmy7YzjV4qnr26miN-zVXBxxjAiEPIJcNZUCIui4md-FtMXBYT18Uy-HQFIbcbLQQRlQWnQNuQnxXa2_8ifgBrx3-Z
Cites_doi 10.1016/j.infrared.2019.102999
10.1111/jfpe.12297
10.1111/1541-4337.12449
10.1016/j.foodchem.2020.127290
10.1016/j.chemolab.2014.11.011
10.1016/j.infrared.2020.103226
10.1016/j.snb.2020.127816
10.1021/acs.jchemed.6b00460
10.1016/j.saa.2024.124938
10.1016/j.foodchem.2020.128473
10.1016/j.biosystemseng.2019.06.010
10.1016/j.jfca.2024.106995
10.1016/j.infrared.2020.103423
10.1016/j.foodchem.2021.129032
10.1016/j.trac.2013.04.015
10.1016/j.foodchem.2021.129954
10.1016/j.foodchem.2020.126695
10.1177/0967033517726724
10.1016/j.biosystemseng.2019.12.006
10.1016/j.sab.2019.105688
10.1111/1750-3841.15809
10.1007/s11694-020-00694-9
10.3390/s21093266
10.1016/j.infrared.2017.05.005
10.1080/10408398.2020.1844138
10.3390/s20174744
10.3390/s140407248
10.1016/j.infrared.2020.103462
10.1016/j.cclet.2014.10.023
10.1039/C4AN00837E
10.1007/s10068-018-0520-0
10.1007/s11694-024-02462-5
10.1016/j.infrared.2018.10.030
10.1016/j.foodhyd.2018.01.044
10.1016/j.ifset.2013.04.014
10.1016/j.jfoodeng.2019.07.013
10.1016/j.aca.2016.01.010
10.1007/s11356-018-3745-9
10.1111/ijfs.13265
10.1016/j.jcs.2020.102927
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.infrared.2025.106049
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_infrared_2025_106049
S1350449525003421
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
VH1
VOH
WUQ
ZMT
ZY4
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c176t-16c95f4576aa2c2a0ef6dabc3c05b95655d873d6f04e916f64589bf7d8c60efd3
IEDL.DBID .~1
ISSN 1350-4495
IngestDate Wed Aug 27 16:30:13 EDT 2025
Sat Aug 30 17:13:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Brown rice
Fatty acid value
Chemometrics
Quantitative detection
Hyperspectral imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c176t-16c95f4576aa2c2a0ef6dabc3c05b95655d873d6f04e916f64589bf7d8c60efd3
ParticipantIDs crossref_primary_10_1016_j_infrared_2025_106049
elsevier_sciencedirect_doi_10_1016_j_infrared_2025_106049
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Infrared physics & technology
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Song, Liu, Wang (b0070) 2024; 18
Chen, Sorensen, Engelsen (b0135) 2019; 263
Yao, Lu, Li (b0015) 2021; 42
Liu, Huang, Yang (b0085) 2020; 110
Engel, Gerretzen, Szymańska (b0150) 2013; 50
Huang, Hu, Tian (b0200) 2021; 359
Zhang, Fearn (b0170) 2015; 140
Hu, Zhang, Yu (b0155) 2019; 102
Jiang, Zhou, Yang (b0095) 2019; 34
Jiang, Liu, He (b0230) 2020; 309
Sun, Wang, Zhang (b0120) 2020; 105
Tang, Huang, Tian (b0165) 2014; 139
Liu, Rady, Wijewardane (b0220) 2021; 15
Zheng, Zhang, Tong (b0130) 2015; 26
Fu, Chen, Fu (b0215) 2020; 190
Huang, Liu, Ngadi (b0050) 2014; 14
Saleh, Wang, Wang (b0020) 2019; 18
Zhou, Zhang, Zou (b0010) 2019; 26
Guezenoc, Gallet-Budynek, Bousquet (b0145) 2019; 160
Ma, Sun (b0185) 2020; 321
Sun, Yuan, Liu (b0205) 2021; 258
Dong, Dong, Liu (b0060) 2024; 323
Luo, Yan, Fu (b0110) 2021; 348
Lee, Kim, Jang (b0025) 2019; 28
Wimonsiri, Ritthiruangdej, Kasemsumran (b0225) 2017; 25
Bai, Hu, Tian (b0125) 2020; 331
Cui, Cheng, Li (b0080) 2020; 20
Yang, He, Lu (b0175) 2017; 83
Jiang, Liu, Chen (b0030) 2020; 109
Sun, Lu, Mao (b0190) 2017; 40
Hu, Li, Du (b0065) 2021; 343
Zhao, Wang, Ni (b0180) 2019; 184
Liu, Li, Peng (b0240) 2021; 86
T. Wen, T.S. Hong, L.J. Li, et al. Non-destructive detection of fatty acid content in mould paddy based on high-spectral technology . Trans. Chinese Soc. Agric. Eng., 2015, 31(18): 233–239.
Jiang, Liu, Chen (b0100) 2020; 240
Lu, Jiang, Chen (b0235) 2021; 21
Li, Lu, Zhang (b0045) 2020; 28
Lazaridou, Vouris, Zoumpoulakis (b0195) 2018; 80
Bi, Yuan, Xiao (b0140) 2016; 909
G. 20569-2006. Guidelines for evaluation of paddy storage character . China 2006.
Tian, Zhang, Li (b0210) 2018; 95
Hashimoto, Hossain, Matsuzaki (b0005) 2022; 62
Xu, Dong, Liu (b0075) 2025; 137
Grabowski, Goode (b0040) 2017; 94
Wu, Sun (b0055) 2013; 19
Zhao, Wang, Ni (b0160) 2018; 8
Liu, Li, Chen (b0035) 2017; 52
Yan, Liu, Huang, 等 (b0115) 2020; 92
Huang (10.1016/j.infrared.2025.106049_b0200) 2021; 359
Huang (10.1016/j.infrared.2025.106049_b0050) 2014; 14
Jiang (10.1016/j.infrared.2025.106049_b0095) 2019; 34
Ma (10.1016/j.infrared.2025.106049_b0185) 2020; 321
Bai (10.1016/j.infrared.2025.106049_b0125) 2020; 331
Bi (10.1016/j.infrared.2025.106049_b0140) 2016; 909
Engel (10.1016/j.infrared.2025.106049_b0150) 2013; 50
Lee (10.1016/j.infrared.2025.106049_b0025) 2019; 28
Dong (10.1016/j.infrared.2025.106049_b0060) 2024; 323
Jiang (10.1016/j.infrared.2025.106049_b0230) 2020; 309
Xu (10.1016/j.infrared.2025.106049_b0075) 2025; 137
Zhao (10.1016/j.infrared.2025.106049_b0180) 2019; 184
Guezenoc (10.1016/j.infrared.2025.106049_b0145) 2019; 160
Wimonsiri (10.1016/j.infrared.2025.106049_b0225) 2017; 25
Hu (10.1016/j.infrared.2025.106049_b0155) 2019; 102
Tian (10.1016/j.infrared.2025.106049_b0210) 2018; 95
Jiang (10.1016/j.infrared.2025.106049_b0030) 2020; 109
Grabowski (10.1016/j.infrared.2025.106049_b0040) 2017; 94
Zhao (10.1016/j.infrared.2025.106049_b0160) 2018; 8
Tang (10.1016/j.infrared.2025.106049_b0165) 2014; 139
Liu (10.1016/j.infrared.2025.106049_b0240) 2021; 86
Song (10.1016/j.infrared.2025.106049_b0070) 2024; 18
Zhou (10.1016/j.infrared.2025.106049_b0010) 2019; 26
Sun (10.1016/j.infrared.2025.106049_b0190) 2017; 40
Wu (10.1016/j.infrared.2025.106049_b0055) 2013; 19
Liu (10.1016/j.infrared.2025.106049_b0085) 2020; 110
Hashimoto (10.1016/j.infrared.2025.106049_b0005) 2022; 62
Liu (10.1016/j.infrared.2025.106049_b0035) 2017; 52
Cui (10.1016/j.infrared.2025.106049_b0080) 2020; 20
Liu (10.1016/j.infrared.2025.106049_b0220) 2021; 15
Fu (10.1016/j.infrared.2025.106049_b0215) 2020; 190
Sun (10.1016/j.infrared.2025.106049_b0205) 2021; 258
Sun (10.1016/j.infrared.2025.106049_b0120) 2020; 105
Zheng (10.1016/j.infrared.2025.106049_b0130) 2015; 26
10.1016/j.infrared.2025.106049_b0090
Lazaridou (10.1016/j.infrared.2025.106049_b0195) 2018; 80
Yao (10.1016/j.infrared.2025.106049_b0015) 2021; 42
Li (10.1016/j.infrared.2025.106049_b0045) 2020; 28
Yang (10.1016/j.infrared.2025.106049_b0175) 2017; 83
Lu (10.1016/j.infrared.2025.106049_b0235) 2021; 21
Chen (10.1016/j.infrared.2025.106049_b0135) 2019; 263
Yan (10.1016/j.infrared.2025.106049_b0115) 2020; 92
10.1016/j.infrared.2025.106049_b0105
Hu (10.1016/j.infrared.2025.106049_b0065) 2021; 343
Jiang (10.1016/j.infrared.2025.106049_b0100) 2020; 240
Saleh (10.1016/j.infrared.2025.106049_b0020) 2019; 18
Zhang (10.1016/j.infrared.2025.106049_b0170) 2015; 140
Luo (10.1016/j.infrared.2025.106049_b0110) 2021; 348
References_xml – volume: 26
  start-page: 1848
  year: 2019
  end-page: 1856
  ident: b0010
  article-title: Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing
  publication-title: Environ. Sci. Pollut. Res.
– volume: 258
  start-page: 8
  year: 2021
  ident: b0205
  article-title: A sample selection method specific to unknown test samples for calibration and validation sets based on spectra similarity
  publication-title: Spectrochim. Acta Part a-Mol. Biomol. Spectroscopy
– volume: 909
  start-page: 30
  year: 2016
  end-page: 40
  ident: b0140
  article-title: A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation
  publication-title: Anal. Chim. Acta
– volume: 14
  start-page: 7248
  year: 2014
  end-page: 7276
  ident: b0050
  article-title: Recent developments in hyperspectral imaging for assessment of food quality and safety
  publication-title: Sensors
– volume: 62
  start-page: 1502
  year: 2022
  end-page: 1520
  ident: b0005
  article-title: The journey from white rice to ultra-high hydrostatic pressurized brown rice: an excellent endeavor for ideal nutrition from staple food
  publication-title: Crit. Rev. Food Sci. Nutr.
– reference: T. Wen, T.S. Hong, L.J. Li, et al. Non-destructive detection of fatty acid content in mould paddy based on high-spectral technology . Trans. Chinese Soc. Agric. Eng., 2015, 31(18): 233–239.
– volume: 184
  start-page: 55
  year: 2019
  end-page: 68
  ident: b0180
  article-title: Utilising near-infrared hyperspectral imaging to detect low-level peanut powder contamination of whole wheat flour
  publication-title: Biosyst. Eng.
– volume: 309
  year: 2020
  ident: b0230
  article-title: Quantitative analysis of fatty acid value during rice storage based on olfactory visualization sensor technology
  publication-title: Sensors and Actuators B-Chem.
– volume: 323
  year: 2024
  ident: b0060
  article-title: Identification and quantitative detection of illegal additives in wheat flour based on near-infrared spectroscopy combined with chemometrics
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 19
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0055
  article-title: Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review - Part I: Fundamentals
  publication-title: Innovative Food Sci. Emerg. Technol.
– volume: 321
  year: 2020
  ident: b0185
  article-title: Prediction of monounsaturated and polyunsaturated fatty acids of various processed pork meats using improved hyperspectral imaging technique
  publication-title: Food Chem.
– volume: 8
  year: 2018
  ident: b0160
  article-title: Evaluation of near-infrared hyperspectral imaging for detection of peanut and walnut powders in whole wheat flour
  publication-title: Appl. Sci.-Basel
– volume: 137
  year: 2025
  ident: b0075
  article-title: Combination of near infrared spectroscopy with characteristic interval selection for rapid detection of rice protein content
  publication-title: J. Food Compos. Anal.
– volume: 240
  year: 2020
  ident: b0100
  article-title: Dynamic monitoring of fatty acid value in rice storage based on a portable near-infrared spectroscopy system
  publication-title: Spectrochim, Acta Part a-Mol. Biomol. Spectroscopy
– volume: 343
  year: 2021
  ident: b0065
  article-title: Predicting micronutrients of wheat using hyperspectral imaging
  publication-title: Food Chem.
– volume: 92
  year: 2020
  ident: b0115
  article-title: The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill
  publication-title: J. Cereal Sci.
– volume: 140
  start-page: 133
  year: 2015
  end-page: 140
  ident: b0170
  article-title: A linearization method for partial least squares regression prediction uncertainty
  publication-title: Chemom. Intel. Lab. Syst.
– volume: 25
  start-page: 330
  year: 2017
  end-page: 337
  ident: b0225
  article-title: Rapid analysis of chemical composition in intact and milled rice cookies using near infrared spectroscopy
  publication-title: J. Near Infrared Spectrosc.
– volume: 110
  year: 2020
  ident: b0085
  article-title: Determination of starch content in single kernel using near-infrared hyperspectral images from two sides of corn seeds
  publication-title: Infrared Phys. Technol.
– volume: 80
  start-page: 111
  year: 2018
  end-page: 121
  ident: b0195
  article-title: Physicochemical properties of jet milled wheat flours and doughs
  publication-title: Food Hydrocoll.
– volume: 105
  year: 2020
  ident: b0120
  article-title: Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology
  publication-title: Infrared Phys. Technol.
– volume: 50
  start-page: 96
  year: 2013
  end-page: 106
  ident: b0150
  article-title: Breaking with trends in pre-processing?
  publication-title: TrAC Trends Anal. Chem.
– volume: 190
  start-page: 120
  year: 2020
  end-page: 130
  ident: b0215
  article-title: Discrimination of talcum powder and benzoyl peroxide in wheat flour by near-infrared hyperspectral imaging
  publication-title: Biosyst. Eng.
– volume: 102
  year: 2019
  ident: b0155
  article-title: Optimization of soluble solids content prediction models in 'Hami' melons by means of Vis-NIR spectroscopy and chemometric tools
  publication-title: Infrared Phys. Technol.
– volume: 139
  start-page: 4894
  year: 2014
  end-page: 4902
  ident: b0165
  article-title: A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm
  publication-title: Analyst
– volume: 18
  start-page: 1070
  year: 2019
  end-page: 1096
  ident: b0020
  article-title: Brown rice versus white rice: nutritional quality, potential health benefits, development of food products, and preservation technologies
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 18
  start-page: 3881
  year: 2024
  end-page: 3892
  ident: b0070
  article-title: Rapid identification of adulterated rice based on data fusion of near-infrared spectroscopy and machine vision
  publication-title: J. Food Meas. Charact.
– volume: 109
  year: 2020
  ident: b0030
  article-title: Quantitative detection of fatty acid value during storage of wheat flour based on a portable near-infrared (NIR) spectroscopy system
  publication-title: Infrared Phys. Technol.
– volume: 263
  start-page: 311
  year: 2019
  end-page: 319
  ident: b0135
  article-title: Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: effect of ice crystal growth and distribution
  publication-title: J. Food Eng.
– volume: 160
  start-page: 8
  year: 2019
  ident: b0145
  article-title: Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis
  publication-title: Spectrochim. Acta Part B-Atomic Spectroscopy
– volume: 359
  year: 2021
  ident: b0200
  article-title: Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging
  publication-title: Food Chem.
– volume: 15
  start-page: 953
  year: 2021
  end-page: 960
  ident: b0220
  article-title: Fourier-transform infrared spectroscopy and machine learning to predict fatty acid content of nine commercial insects
  publication-title: J. Food Meas. Charact.
– volume: 28
  start-page: 623
  year: 2019
  end-page: 631
  ident: b0025
  article-title: Effects of different storage conditions on the metabolite and microbial profiles of white rice (Oryza sativa L.)
  publication-title: Food Sci. Biotechnol.
– volume: 94
  start-page: 636
  year: 2017
  end-page: 639
  ident: b0040
  article-title: Determining a solubility product constant by potentiometric titration to increase students' conceptual understanding of potentiometry and titrations
  publication-title: J. Chem. Educ.
– volume: 42
  start-page: 204
  year: 2021
  end-page: 209
  ident: b0015
  article-title: Changes in quality and physicochemical characteristics of brown rice during storage
  publication-title: Food Res Dev
– reference: G. 20569-2006. Guidelines for evaluation of paddy storage character . China 2006.
– volume: 331
  year: 2020
  ident: b0125
  article-title: Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging
  publication-title: Food Chem.
– volume: 20
  year: 2020
  ident: b0080
  article-title: Prediction of sweet corn seed germination based on hyperspectral image technology and multivariate data regression
  publication-title: Sensors
– volume: 348
  year: 2021
  ident: b0110
  article-title: The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill
  publication-title: Food Chem.
– volume: 52
  start-page: 188
  year: 2017
  end-page: 195
  ident: b0035
  article-title: Lipid oxidation of brown rice stored at different temperatures
  publication-title: Int. J. Food Sci. Technol.
– volume: 26
  start-page: 293
  year: 2015
  end-page: 296
  ident: b0130
  article-title: Pretreating near infrared spectra with fractional order Savitzky-Golay differentiation (FOSGD)
  publication-title: Chin. Chem. Lett.
– volume: 28
  start-page: 87
  year: 2020
  end-page: 93
  ident: b0045
  article-title: Study on automatically potentiometric titration simulating manual titration method for determination of fatty acid value of grain
  publication-title: Sci. Technol. Cereals, Oils and Foods
– volume: 40
  year: 2017
  ident: b0190
  article-title: A method for rapid identification of rice origin by hyperspectral imaging technology
  publication-title: J. Food Process Eng
– volume: 86
  start-page: 3434
  year: 2021
  end-page: 3446
  ident: b0240
  article-title: A feasibility quantitative analysis of free fatty acids in polished rice by fourier transform near-infrared spectroscopy and chemometrics
  publication-title: J. Food Sci.
– volume: 34
  start-page: 177
  year: 2019
  ident: b0095
  article-title: Determination of fatty acid value of paddy by diffuse reflectance infrared spectroscopy and PLS
  publication-title: J. Chinese Cereals Oils
– volume: 95
  start-page: 88
  year: 2018
  end-page: 92
  ident: b0210
  article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy
  publication-title: Infrared Phys. Technol.
– volume: 21
  year: 2021
  ident: b0235
  article-title: Determination of fatty acid content of rice during storage based on feature fusion of olfactory visualization sensor data and near-infrared spectra
  publication-title: Sensors
– volume: 83
  start-page: 206
  year: 2017
  end-page: 216
  ident: b0175
  article-title: Combination of spectral and textural information of hyperspectral imaging for the prediction of the moisture content and storage time of cooked beef
  publication-title: Infrared Phys. Technol.
– volume: 28
  start-page: 87
  issue: 01
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0045
  article-title: Study on automatically potentiometric titration simulating manual titration method for determination of fatty acid value of grain
  publication-title: Sci. Technol. Cereals, Oils and Foods
– volume: 102
  year: 2019
  ident: 10.1016/j.infrared.2025.106049_b0155
  article-title: Optimization of soluble solids content prediction models in 'Hami' melons by means of Vis-NIR spectroscopy and chemometric tools
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.102999
– volume: 40
  issue: 1
  year: 2017
  ident: 10.1016/j.infrared.2025.106049_b0190
  article-title: A method for rapid identification of rice origin by hyperspectral imaging technology
  publication-title: J. Food Process Eng
  doi: 10.1111/jfpe.12297
– volume: 18
  start-page: 1070
  issue: 4
  year: 2019
  ident: 10.1016/j.infrared.2025.106049_b0020
  article-title: Brown rice versus white rice: nutritional quality, potential health benefits, development of food products, and preservation technologies
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12449
– volume: 331
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0125
  article-title: Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.127290
– volume: 258
  start-page: 8
  year: 2021
  ident: 10.1016/j.infrared.2025.106049_b0205
  article-title: A sample selection method specific to unknown test samples for calibration and validation sets based on spectra similarity
  publication-title: Spectrochim. Acta Part a-Mol. Biomol. Spectroscopy
– volume: 140
  start-page: 133
  year: 2015
  ident: 10.1016/j.infrared.2025.106049_b0170
  article-title: A linearization method for partial least squares regression prediction uncertainty
  publication-title: Chemom. Intel. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.11.011
– volume: 105
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0120
  article-title: Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103226
– volume: 309
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0230
  article-title: Quantitative analysis of fatty acid value during rice storage based on olfactory visualization sensor technology
  publication-title: Sensors and Actuators B-Chem.
  doi: 10.1016/j.snb.2020.127816
– volume: 94
  start-page: 636
  issue: 5
  year: 2017
  ident: 10.1016/j.infrared.2025.106049_b0040
  article-title: Determining a solubility product constant by potentiometric titration to increase students' conceptual understanding of potentiometry and titrations
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.6b00460
– volume: 323
  year: 2024
  ident: 10.1016/j.infrared.2025.106049_b0060
  article-title: Identification and quantitative detection of illegal additives in wheat flour based on near-infrared spectroscopy combined with chemometrics
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2024.124938
– volume: 343
  year: 2021
  ident: 10.1016/j.infrared.2025.106049_b0065
  article-title: Predicting micronutrients of wheat using hyperspectral imaging
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128473
– volume: 184
  start-page: 55
  year: 2019
  ident: 10.1016/j.infrared.2025.106049_b0180
  article-title: Utilising near-infrared hyperspectral imaging to detect low-level peanut powder contamination of whole wheat flour
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.06.010
– volume: 137
  year: 2025
  ident: 10.1016/j.infrared.2025.106049_b0075
  article-title: Combination of near infrared spectroscopy with characteristic interval selection for rapid detection of rice protein content
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2024.106995
– volume: 109
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0030
  article-title: Quantitative detection of fatty acid value during storage of wheat flour based on a portable near-infrared (NIR) spectroscopy system
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103423
– volume: 348
  year: 2021
  ident: 10.1016/j.infrared.2025.106049_b0110
  article-title: The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.129032
– volume: 50
  start-page: 96
  year: 2013
  ident: 10.1016/j.infrared.2025.106049_b0150
  article-title: Breaking with trends in pre-processing?
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2013.04.015
– volume: 359
  year: 2021
  ident: 10.1016/j.infrared.2025.106049_b0200
  article-title: Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.129954
– volume: 321
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0185
  article-title: Prediction of monounsaturated and polyunsaturated fatty acids of various processed pork meats using improved hyperspectral imaging technique
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126695
– volume: 34
  start-page: 177
  issue: 03
  year: 2019
  ident: 10.1016/j.infrared.2025.106049_b0095
  article-title: Determination of fatty acid value of paddy by diffuse reflectance infrared spectroscopy and PLS
  publication-title: J. Chinese Cereals Oils
– volume: 25
  start-page: 330
  issue: 5
  year: 2017
  ident: 10.1016/j.infrared.2025.106049_b0225
  article-title: Rapid analysis of chemical composition in intact and milled rice cookies using near infrared spectroscopy
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1177/0967033517726724
– volume: 190
  start-page: 120
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0215
  article-title: Discrimination of talcum powder and benzoyl peroxide in wheat flour by near-infrared hyperspectral imaging
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.12.006
– volume: 160
  start-page: 8
  year: 2019
  ident: 10.1016/j.infrared.2025.106049_b0145
  article-title: Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis
  publication-title: Spectrochim. Acta Part B-Atomic Spectroscopy
  doi: 10.1016/j.sab.2019.105688
– volume: 86
  start-page: 3434
  issue: 8
  year: 2021
  ident: 10.1016/j.infrared.2025.106049_b0240
  article-title: A feasibility quantitative analysis of free fatty acids in polished rice by fourier transform near-infrared spectroscopy and chemometrics
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.15809
– volume: 15
  start-page: 953
  issue: 1
  year: 2021
  ident: 10.1016/j.infrared.2025.106049_b0220
  article-title: Fourier-transform infrared spectroscopy and machine learning to predict fatty acid content of nine commercial insects
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-020-00694-9
– volume: 21
  issue: 9
  year: 2021
  ident: 10.1016/j.infrared.2025.106049_b0235
  article-title: Determination of fatty acid content of rice during storage based on feature fusion of olfactory visualization sensor data and near-infrared spectra
  publication-title: Sensors
  doi: 10.3390/s21093266
– volume: 83
  start-page: 206
  year: 2017
  ident: 10.1016/j.infrared.2025.106049_b0175
  article-title: Combination of spectral and textural information of hyperspectral imaging for the prediction of the moisture content and storage time of cooked beef
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.05.005
– volume: 62
  start-page: 1502
  issue: 6
  year: 2022
  ident: 10.1016/j.infrared.2025.106049_b0005
  article-title: The journey from white rice to ultra-high hydrostatic pressurized brown rice: an excellent endeavor for ideal nutrition from staple food
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2020.1844138
– volume: 20
  issue: 17
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0080
  article-title: Prediction of sweet corn seed germination based on hyperspectral image technology and multivariate data regression
  publication-title: Sensors
  doi: 10.3390/s20174744
– volume: 240
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0100
  article-title: Dynamic monitoring of fatty acid value in rice storage based on a portable near-infrared spectroscopy system
  publication-title: Spectrochim, Acta Part a-Mol. Biomol. Spectroscopy
– ident: 10.1016/j.infrared.2025.106049_b0090
– volume: 14
  start-page: 7248
  issue: 4
  year: 2014
  ident: 10.1016/j.infrared.2025.106049_b0050
  article-title: Recent developments in hyperspectral imaging for assessment of food quality and safety
  publication-title: Sensors
  doi: 10.3390/s140407248
– volume: 110
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0085
  article-title: Determination of starch content in single kernel using near-infrared hyperspectral images from two sides of corn seeds
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103462
– volume: 26
  start-page: 293
  issue: 3
  year: 2015
  ident: 10.1016/j.infrared.2025.106049_b0130
  article-title: Pretreating near infrared spectra with fractional order Savitzky-Golay differentiation (FOSGD)
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2014.10.023
– volume: 139
  start-page: 4894
  issue: 19
  year: 2014
  ident: 10.1016/j.infrared.2025.106049_b0165
  article-title: A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm
  publication-title: Analyst
  doi: 10.1039/C4AN00837E
– volume: 8
  issue: 7
  year: 2018
  ident: 10.1016/j.infrared.2025.106049_b0160
  article-title: Evaluation of near-infrared hyperspectral imaging for detection of peanut and walnut powders in whole wheat flour
  publication-title: Appl. Sci.-Basel
– volume: 42
  start-page: 204
  issue: 15
  year: 2021
  ident: 10.1016/j.infrared.2025.106049_b0015
  article-title: Changes in quality and physicochemical characteristics of brown rice during storage
  publication-title: Food Res Dev
– volume: 28
  start-page: 623
  issue: 3
  year: 2019
  ident: 10.1016/j.infrared.2025.106049_b0025
  article-title: Effects of different storage conditions on the metabolite and microbial profiles of white rice (Oryza sativa L.)
  publication-title: Food Sci. Biotechnol.
  doi: 10.1007/s10068-018-0520-0
– volume: 18
  start-page: 3881
  issue: 5
  year: 2024
  ident: 10.1016/j.infrared.2025.106049_b0070
  article-title: Rapid identification of adulterated rice based on data fusion of near-infrared spectroscopy and machine vision
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-024-02462-5
– volume: 95
  start-page: 88
  year: 2018
  ident: 10.1016/j.infrared.2025.106049_b0210
  article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.10.030
– ident: 10.1016/j.infrared.2025.106049_b0105
– volume: 80
  start-page: 111
  year: 2018
  ident: 10.1016/j.infrared.2025.106049_b0195
  article-title: Physicochemical properties of jet milled wheat flours and doughs
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2018.01.044
– volume: 19
  start-page: 1
  year: 2013
  ident: 10.1016/j.infrared.2025.106049_b0055
  article-title: Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review - Part I: Fundamentals
  publication-title: Innovative Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2013.04.014
– volume: 263
  start-page: 311
  year: 2019
  ident: 10.1016/j.infrared.2025.106049_b0135
  article-title: Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: effect of ice crystal growth and distribution
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2019.07.013
– volume: 909
  start-page: 30
  year: 2016
  ident: 10.1016/j.infrared.2025.106049_b0140
  article-title: A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.01.010
– volume: 26
  start-page: 1848
  issue: 2
  year: 2019
  ident: 10.1016/j.infrared.2025.106049_b0010
  article-title: Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3745-9
– volume: 52
  start-page: 188
  issue: 1
  year: 2017
  ident: 10.1016/j.infrared.2025.106049_b0035
  article-title: Lipid oxidation of brown rice stored at different temperatures
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/ijfs.13265
– volume: 92
  year: 2020
  ident: 10.1016/j.infrared.2025.106049_b0115
  article-title: The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill
  publication-title: J. Cereal Sci.
  doi: 10.1016/j.jcs.2020.102927
SSID ssj0016406
Score 2.403771
Snippet •HSI and chemometrics were combined for detecting fatty acid value of brown rice.•The wavelengths of sample with different particle sizes were extracted by...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106049
SubjectTerms Brown rice
Chemometrics
Fatty acid value
Hyperspectral imaging
Quantitative detection
Title Quantitative detection of fatty acid value in brown rice using hyperspectral imaging combined with chemometric methods
URI https://dx.doi.org/10.1016/j.infrared.2025.106049
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iCF7EJ77JwWttu03S9rgsLqvigqiwt5KnVtjuslbBi7_dmbSVFQQPHhMSUr6EmfnKNzOEnAOp4FlidZAzlgZMGR4o0ZMw5AqIXMqULzx_OxajR3Y94ZMVMuhyYVBW2dr-xqZ7a93OhC2a4bwsw_s44RGD-B6cONax8xnsLMVXfvH5LfMANuD7a-LiAFcvZQm_YGy7QJ038MQeh0kRYU3N3xzUktMZbpHNNlqk_eaDtsmKrXbIuldt6tdd8n73JiufJQY2ixpbe11VRWeOOlnXH1Tq0lCs521pWVGFlJtiFSGKcvcn-gwktMm1XMAp5dR3LKIABdBlayj-o6VwqdPZFPtuadq0m37dI4_Dy4fBKGgbKQQ6TkUdxELn3DGgFlL2dE9G1gkjlU50xBUQJM5NliZGuIhZCBedYDzLlUtNpgWsNck-Wa1mlT0glKcsj61TLMkskzpHuuPiWOQ8E1Ko-JCEHXrFvKmXUXRCspeiw7tAvIsG70OSdyAXP26-AKP-x96jf-w9Jhs4avIKT8hqvXizpxBg1OrMv6Azsta_uhmNvwCPNdJ5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEb2IT6zPPXiNSZrdTXKUYqlPEFvwFvapKTSVmgpe_O3O5CEVBA8es5kl4dtkdr7lmxlCzoBU8CSy2ksZiz2mDPeU6Eq45AqIXMxUVXj-7l4MRuz6iT8tkV6bC4Oyysb31z698tbNiN-g6b_muf8YRjxgEN_DJo517IACrTD4fbGNwfnnt84D6EDVYBOtPTRfSBMeY3A7Q6E3EMUuh0ERYFHN33aohV2nv0k2mnCRXtRvtEWWbLFNVivZpn7bIe8Pc1lUaWLgtKixZSWsKujUUSfL8oNKnRuKBb0tzQuqkHNTLCNEUe_-TF-AhdbJljN4Sj6pWhZRwAL4sjUUD2kprOpkOsHGW5rW_abfdsmofznsDbymk4Knw1iUXih0yh0DbiFlV3dlYJ0wUulIB1wBQ-LcJHFkhAuYhXjRCcaTVLnYJFqArYn2yHIxLew-oTxmaWidYlFimdQp8h0XhiLliZBChR3it-hlr3XBjKxVko2zFu8M8c5qvDskbUHOfix9Bl79j7kH_5h7StYGw7vb7Pbq_uaQrOOdOsnwiCyXs7k9hmijVCfV1_QFhxTUBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+detection+of+fatty+acid+value+in+brown+rice+using+hyperspectral+imaging+combined+with+chemometric+methods&rft.jtitle=Infrared+physics+%26+technology&rft.au=Cai%2C+Ting&rft.au=Liu%2C+Xingquan&rft.au=Li%2C+Qianqian&rft.au=Yang%2C+Dong&rft.date=2025-11-01&rft.issn=1350-4495&rft.volume=150&rft.spage=106049&rft_id=info:doi/10.1016%2Fj.infrared.2025.106049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2025_106049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon