N:P ratios, δ15N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex
The vegetation N:P ratio is thought to be a diagnostic indicator of the nature of nutrient limitation in wetland vegetation. It should therefore be closely linked to other indicators of nutrient acquisition and conservation, such as nitrogen stable isotope fractionation (δ15N), nutrient resorption e...
Saved in:
Published in | Aquatic botany Vol. 94; no. 2; pp. 93 - 101 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The vegetation N:P ratio is thought to be a diagnostic indicator of the nature of nutrient limitation in wetland vegetation. It should therefore be closely linked to other indicators of nutrient acquisition and conservation, such as nitrogen stable isotope fractionation (δ15N), nutrient resorption efficiency (RE) and resorption proficiency (RP). However, the interrelationships among these traits and the N:P ratio remain unclear. We compared tissue nutrient concentrations, N:P ratios, δ15N fractionation, RE, and RP along an N to P limitation gradient in an oligotrophic wetland valley in the South Island of New Zealand. Within the valley, the soil TN:TP ratio increased from 1.3 to 18.0 in three discrete wetlands along the gradient. In pooled data from all vegetation communities within each site, the mass-based vegetation N:P ratio correlated significantly (r2=0.35, P<0.01) to soil TN:TP ratios and increased from 10.2±2.7 to 13.5±3.6 along the N to P limitation gradient. This was accompanied by an increase in tissue δ15N enrichment from 2.05±1.12‰ to 6.27±1.70‰, consistent with more open N cycling and lower N demand. These trends held within all vegetation types, but were particularly strong in a Typha orientalis (C-strategist) community (soil TN:TP vs vegetation N:P correlation r2=0.78, P<0.001; δ15N increase from 1.81±0.44‰ to 7.73±1.79‰). The individual N and P concentrations and retention patterns were more species-specific and less responsive to the nutrient limitation gradient. T. orientalis maximised N resorption as N limitation increased (increasing NRE from 50.8±3.3% to 71.7±7.4%; reducing NRP from 0.70±0.12% to 0.36±0.13%) but did not alter PRE or PRP, whereas the S-strategist Schoenus pauciflorus maximised P resorption as P limitation increased (increasing PRE from 48.0±5.6% to 73.5±10.1%; reducing PRP from 0.053±0.008% to 0.015±0.004%) but did not alter NRE or NRP. These results show that the tissue N:P ratio and its associated δ15N enrichment are highly responsive indicators of the relative availability of N and P at the site and community level. However, they are not indicators of species-specific physiological requirements for N and P, or of likely responses of individual species to N or P enrichment, which are better interpreted from indicators such as RE and RP that describe nutrient retention behaviour. |
---|---|
AbstractList | The vegetation N:P ratio is thought to be a diagnostic indicator of the nature of nutrient limitation in wetland vegetation. It should therefore be closely linked to other indicators of nutrient acquisition and conservation, such as nitrogen stable isotope fractionation (δ15N), nutrient resorption efficiency (RE) and resorption proficiency (RP). However, the interrelationships among these traits and the N:P ratio remain unclear. We compared tissue nutrient concentrations, N:P ratios, δ15N fractionation, RE, and RP along an N to P limitation gradient in an oligotrophic wetland valley in the South Island of New Zealand. Within the valley, the soil TN:TP ratio increased from 1.3 to 18.0 in three discrete wetlands along the gradient. In pooled data from all vegetation communities within each site, the mass-based vegetation N:P ratio correlated significantly (r2=0.35, P<0.01) to soil TN:TP ratios and increased from 10.2±2.7 to 13.5±3.6 along the N to P limitation gradient. This was accompanied by an increase in tissue δ15N enrichment from 2.05±1.12‰ to 6.27±1.70‰, consistent with more open N cycling and lower N demand. These trends held within all vegetation types, but were particularly strong in a Typha orientalis (C-strategist) community (soil TN:TP vs vegetation N:P correlation r2=0.78, P<0.001; δ15N increase from 1.81±0.44‰ to 7.73±1.79‰). The individual N and P concentrations and retention patterns were more species-specific and less responsive to the nutrient limitation gradient. T. orientalis maximised N resorption as N limitation increased (increasing NRE from 50.8±3.3% to 71.7±7.4%; reducing NRP from 0.70±0.12% to 0.36±0.13%) but did not alter PRE or PRP, whereas the S-strategist Schoenus pauciflorus maximised P resorption as P limitation increased (increasing PRE from 48.0±5.6% to 73.5±10.1%; reducing PRP from 0.053±0.008% to 0.015±0.004%) but did not alter NRE or NRP. These results show that the tissue N:P ratio and its associated δ15N enrichment are highly responsive indicators of the relative availability of N and P at the site and community level. However, they are not indicators of species-specific physiological requirements for N and P, or of likely responses of individual species to N or P enrichment, which are better interpreted from indicators such as RE and RP that describe nutrient retention behaviour. The vegetation N:P ratio is thought to be a diagnostic indicator of the nature of nutrient limitation in wetland vegetation. It should therefore be closely linked to other indicators of nutrient acquisition and conservation, such as nitrogen stable isotope fractionation (δ¹⁵N), nutrient resorption efficiency (RE) and resorption proficiency (RP). However, the interrelationships among these traits and the N:P ratio remain unclear. We compared tissue nutrient concentrations, N:P ratios, δ¹⁵N fractionation, RE, and RP along an N to P limitation gradient in an oligotrophic wetland valley in the South Island of New Zealand. Within the valley, the soil TN:TP ratio increased from 1.3 to 18.0 in three discrete wetlands along the gradient. In pooled data from all vegetation communities within each site, the mass-based vegetation N:P ratio correlated significantly (r²=0.35, P<0.01) to soil TN:TP ratios and increased from 10.2±2.7 to 13.5±3.6 along the N to P limitation gradient. This was accompanied by an increase in tissue δ¹⁵N enrichment from 2.05±1.12‰ to 6.27±1.70‰, consistent with more open N cycling and lower N demand. These trends held within all vegetation types, but were particularly strong in a Typha orientalis (C-strategist) community (soil TN:TP vs vegetation N:P correlation r²=0.78, P<0.001; δ¹⁵N increase from 1.81±0.44‰ to 7.73±1.79‰). The individual N and P concentrations and retention patterns were more species-specific and less responsive to the nutrient limitation gradient. T. orientalis maximised N resorption as N limitation increased (increasing NRE from 50.8±3.3% to 71.7±7.4%; reducing NRP from 0.70±0.12% to 0.36±0.13%) but did not alter PRE or PRP, whereas the S-strategist Schoenus pauciflorus maximised P resorption as P limitation increased (increasing PRE from 48.0±5.6% to 73.5±10.1%; reducing PRP from 0.053±0.008% to 0.015±0.004%) but did not alter NRE or NRP. These results show that the tissue N:P ratio and its associated δ¹⁵N enrichment are highly responsive indicators of the relative availability of N and P at the site and community level. However, they are not indicators of species-specific physiological requirements for N and P, or of likely responses of individual species to N or P enrichment, which are better interpreted from indicators such as RE and RP that describe nutrient retention behaviour. |
Author | Chagué-Goff, Catherine Basher, Les M Partridge, Trevor R Sorrell, Brian K |
Author_xml | – sequence: 1 fullname: Sorrell, Brian K – sequence: 2 fullname: Chagué-Goff, Catherine – sequence: 3 fullname: Basher, Les M – sequence: 4 fullname: Partridge, Trevor R |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23822574$$DView record in Pascal Francis |
BookMark | eNp9kM1u1TAQhS1UJG5LH6GqN-zIZWwnsdMdquiPVBUkytqaOE7qq1w72LkCHoK34Tn6THVIxZLFyJrjc85I3zE58sFbQs4YbBmw-sNui98P2IZ5y2HR2BagfkU2TMmmYBXnR2QDAspCSAlvyHFKOwBgCuSG_L6_-EIjzi6k9_TpD6vuaR_R5N0voqfoO-oPc3TWzzTaFOK06mPwA0Xq3RzDYD2dA50eQ8oTD4mObu_mtWGI2P1Nu6WNhtENIWemR2foDzuPywUT9tNof74lr3sckz19eU_Iw9Wnh8ub4u7z9e3lx7vCMFmXRWfrrgXboCgrW0Lbtgh9VffGYC2tbC0apupWWVC8hBIFQC_bXqhOGN5wcUKqtdbEkFK0vZ6i22P8pRnoBane6RekekGqGdMZac69W3MTJoNjBuWNS__CXCjOK1lm3_nq6zFoHGL2fPuai8pMPf8z9T8HNI1ijXgGJLWSfQ |
CODEN | AQBODS |
CitedBy_id | crossref_primary_10_1111_1365_2435_14318 crossref_primary_10_5141_JEFB_2011_044 crossref_primary_10_1111_1365_2745_12639 crossref_primary_10_1007_s11270_018_3731_3 crossref_primary_10_1016_j_scitotenv_2021_144951 crossref_primary_10_2139_ssrn_4022370 crossref_primary_10_1007_s11104_023_06214_0 crossref_primary_10_1016_j_scitotenv_2023_163843 crossref_primary_10_1088_1748_9326_10_4_045002 crossref_primary_10_3390_f13050804 crossref_primary_10_1007_s11104_015_2715_y crossref_primary_10_1111_fwb_12368 crossref_primary_10_1016_j_gca_2014_02_021 crossref_primary_10_1111_fwb_13452 crossref_primary_10_1186_s13717_024_00507_7 |
Cites_doi | 10.1023/A:1011953715153 10.1007/BF00867414 10.1007/s11273-007-9056-4 10.1007/s00442-005-0033-4 10.1016/S1360-1385(01)01889-1 10.1672/0277-5212(2000)020[0200:MFAWPI]2.0.CO;2 10.2307/2404783 10.1093/aob/mci166 10.1086/285725 10.2307/3558359 10.1007/BF01007573 10.2307/2261481 10.1111/j.0269-8463.2005.00967.x 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2 10.1046/j.1469-8137.1997.00808.x 10.1016/S0169-5347(00)02098-X 10.1023/A:1021166010892 10.2136/sssaj1991.03615995005500030039x 10.2307/1940890 10.1046/j.1365-2745.2002.00726.x 10.1104/pp.94.2.621 10.1007/s11258-009-9650-z 10.1016/j.aquabot.2009.04.003 10.1046/j.1469-8137.2001.00179.x 10.1111/j.1469-8137.2004.01192.x 10.1046/j.0028-646X.2001.00274.x 10.2307/2265777 10.1890/01-0639 10.1017/S0266467407004464 10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO;2 10.2307/3546494 10.1111/j.1365-2435.2003.00784.x 10.1017/S0266467400003710 10.1016/S0169-5347(96)10055-0 10.1078/1433-8319-0000022 10.1672/0277-5212(2004)024[0133:VAPCIT]2.0.CO;2 10.2307/2444458 10.1007/BF03161775 10.1016/S0269-7491(03)00194-5 10.1016/S0065-2504(08)60016-1 10.2307/3236250 10.1016/j.aquabot.2005.05.005 10.1111/j.1469-8137.2005.01449.x 10.1007/BF02857626 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | FBQ IQODW AAYXX CITATION |
DOI | 10.1016/j.aquabot.2010.11.006 |
DatabaseName | AGRIS Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1879-1522 |
EndPage | 101 |
ExternalDocumentID | 10_1016_j_aquabot_2010_11_006 23822574 US201400157418 US201400099819 |
GeographicLocations | New Zealand |
GeographicLocations_xml | – name: New Zealand |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 41~ 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABPIF ABPTK ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FBQ FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SEN SES SEW SPCBC SSA SSZ T5K TN5 UNMZH WH7 WUQ XJT Y6R ~02 ~G- 08R IQODW AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c1764-de6db0e9a345e40bbba0f56fcca67e7beac186b8e082404a300f7bf38d3c2923 |
ISSN | 0304-3770 |
IngestDate | Thu Sep 26 16:07:24 EDT 2024 Sun Oct 22 16:07:59 EDT 2023 Wed Dec 27 19:14:59 EST 2023 Wed Dec 27 19:29:11 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Monocotyledones Schoenus pauciflorus Wetland vegetation Typha orientalis Stable isotopes Angiospermae Nitrogen-15 Ratio Aquatic plant Oligotrophy Wetland Fractionation Resorption Phosphorus Nutrient limitation Carex species Stable isotope Typhaceae Limiting factor Cyperaceae Vegetation Nutrient Herbaceous plant Spermatophyta Carex Typha |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1764-de6db0e9a345e40bbba0f56fcca67e7beac186b8e082404a300f7bf38d3c2923 |
Notes | http://dx.doi.org/10.1016/j.aquabot.2010.11.006 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_aquabot_2010_11_006 pascalfrancis_primary_23822574 fao_agris_US201400157418 fao_agris_US201400099819 |
PublicationCentury | 2000 |
PublicationDate | 2011 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Aquatic botany |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Aerts (10.1016/j.aquabot.2010.11.006_bib0020) 1999; 80 Nordbakken (10.1016/j.aquabot.2010.11.006_bib0215) 2003; 126 Thormann (10.1016/j.aquabot.2010.11.006_bib0250) 1999; 19 McKee (10.1016/j.aquabot.2010.11.006_bib0170) 1988; 75 Turner (10.1016/j.aquabot.2010.11.006_bib0265) 2000; 20 Medina (10.1016/j.aquabot.2010.11.006_bib0180) 2008; 16 Keeney (10.1016/j.aquabot.2010.11.006_bib0135) 1982 Ball (10.1016/j.aquabot.2010.11.006_bib0030) 1986 Martinelli (10.1016/j.aquabot.2010.11.006_bib0165) 1999; 46 Troxler (10.1016/j.aquabot.2010.11.006_bib0255) 2007; 23 Ramsar (10.1016/j.aquabot.2010.11.006_bib0230) 2000 Aerts (10.1016/j.aquabot.2010.11.006_bib0005) 1996; 84 Rejmánková (10.1016/j.aquabot.2010.11.006_bib0240) 2005; 167 Feller (10.1016/j.aquabot.2010.11.006_bib0085) 2003; 62 Nadelhoffer (10.1016/j.aquabot.2010.11.006_bib0200) 1994 Olde Venterink (10.1016/j.aquabot.2010.11.006_bib0220) 2003; 84 Bridgham (10.1016/j.aquabot.2010.11.006_bib0050) 1991; 55 Poorter (10.1016/j.aquabot.2010.11.006_bib0225) 1990; 94 Asada (10.1016/j.aquabot.2010.11.006_bib0025) 2005; 82 Emmerton (10.1016/j.aquabot.2010.11.006_bib0075) 2001; 151 Howard-Williams (10.1016/j.aquabot.2010.11.006_bib0125) 1989; 5 Verhoeven (10.1016/j.aquabot.2010.11.006_bib0275) 1996; 11 Rejmánková (10.1016/j.aquabot.2010.11.006_bib0235) 2001; 236 Koerselman (10.1016/j.aquabot.2010.11.006_bib0150) 1996; 33 Killingbeck (10.1016/j.aquabot.2010.11.006_bib0140) 1996; 77 Mueller-Dombois (10.1016/j.aquabot.2010.11.006_bib0195) 1974 Grime (10.1016/j.aquabot.2010.11.006_bib0090) 2001 Evans (10.1016/j.aquabot.2010.11.006_bib0080) 2001; 6 Keddy (10.1016/j.aquabot.2010.11.006_bib0130) 2005; 96 Aerts (10.1016/j.aquabot.2010.11.006_bib0010) 2000; 30 Aerts (10.1016/j.aquabot.2010.11.006_bib0015) 1994; 75 Verhoeven (10.1016/j.aquabot.2010.11.006_bib0270) 1987; 38 Willby (10.1016/j.aquabot.2010.11.006_bib0285) 2001; 152 10.1016/j.aquabot.2010.11.006_bib0045 10.1016/j.aquabot.2010.11.006_bib0040 McKee (10.1016/j.aquabot.2010.11.006_bib0175) 2002; 83 Lockaby (10.1016/j.aquabot.2010.11.006_bib0160) 1999; 65 Güsewell (10.1016/j.aquabot.2010.11.006_bib0095) 2004; 164 Clarkson (10.1016/j.aquabot.2010.11.006_bib0060) 2004; 24 Troxler (10.1016/j.aquabot.2010.11.006_bib0260) 2009; 91 Wassen (10.1016/j.aquabot.2010.11.006_bib0280) 1995; 6 Koerselman (10.1016/j.aquabot.2010.11.006_bib0155) 1995 Bedford (10.1016/j.aquabot.2010.11.006_bib0035) 1999; 80 Högberg (10.1016/j.aquabot.2010.11.006_bib0120) 1997; 137 Clarkson (10.1016/j.aquabot.2010.11.006_bib0065) 2005; 144 Güsewell (10.1016/j.aquabot.2010.11.006_bib0100) 2005; 19 Robinson (10.1016/j.aquabot.2010.11.006_bib0245) 2001; 16 Güsewell (10.1016/j.aquabot.2010.11.006_bib0105) 2002; 5 Medina (10.1016/j.aquabot.2010.11.006_bib0185) 2010; 207 Hodgson (10.1016/j.aquabot.2010.11.006_bib0115) 1999; 85 Nichol (10.1016/j.aquabot.2010.11.006_bib0210) 1997; 31 Bridgham (10.1016/j.aquabot.2010.11.006_bib0055) 1995; 145 Nakamura (10.1016/j.aquabot.2010.11.006_bib0205) 2002; 90 Güsewell (10.1016/j.aquabot.2010.11.006_bib0110) 2003; 17 Cornwell (10.1016/j.aquabot.2010.11.006_bib0070) 2001; 88 Mitsch (10.1016/j.aquabot.2010.11.006_bib0190) 2007 Kirkham (10.1016/j.aquabot.2010.11.006_bib0145) 2005 |
References_xml | – year: 2007 ident: 10.1016/j.aquabot.2010.11.006_bib0190 contributor: fullname: Mitsch – volume: 236 start-page: 33 year: 2001 ident: 10.1016/j.aquabot.2010.11.006_bib0235 article-title: Effect of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, Central America publication-title: Plant Soil doi: 10.1023/A:1011953715153 contributor: fullname: Rejmánková – volume: 38 start-page: 210 year: 1987 ident: 10.1016/j.aquabot.2010.11.006_bib0270 article-title: A comparison of the chemical composition of fog and rainwater collected in the Fichtelgebirge, Federal Republic of Germany, and from the South Island of New Zealand publication-title: Theor. Appl. Climatol. doi: 10.1007/BF00867414 contributor: fullname: Verhoeven – volume: 16 start-page: 51 year: 2008 ident: 10.1016/j.aquabot.2010.11.006_bib0180 article-title: Isotopic signatures and nutrient relations of plants inhabiting brackish wetlands in the northeastern coastal plain of Venezuela publication-title: Wetlands Ecol. Manage. doi: 10.1007/s11273-007-9056-4 contributor: fullname: Medina – volume: 144 start-page: 550 year: 2005 ident: 10.1016/j.aquabot.2010.11.006_bib0065 article-title: Foliar 15N natural abundance indicates phosphorus limitation of bog species publication-title: Oecologia doi: 10.1007/s00442-005-0033-4 contributor: fullname: Clarkson – volume: 6 start-page: 121 year: 2001 ident: 10.1016/j.aquabot.2010.11.006_bib0080 article-title: Physiological mechanisms influencing plant nitrogen isotope composition publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(01)01889-1 contributor: fullname: Evans – volume: 20 start-page: 200 year: 2000 ident: 10.1016/j.aquabot.2010.11.006_bib0265 article-title: Mycorrhizal fungi associated with plants in groundwater fed wetlands publication-title: Wetlands doi: 10.1672/0277-5212(2000)020[0200:MFAWPI]2.0.CO;2 contributor: fullname: Turner – start-page: 215 year: 1986 ident: 10.1016/j.aquabot.2010.11.006_bib0030 article-title: Site and soils contributor: fullname: Ball – start-page: 23 year: 1994 ident: 10.1016/j.aquabot.2010.11.006_bib0200 article-title: Nitrogen isotope studies in forest ecosystems contributor: fullname: Nadelhoffer – volume: 33 start-page: 1441 year: 1996 ident: 10.1016/j.aquabot.2010.11.006_bib0150 article-title: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation publication-title: J. Appl. Ecol. doi: 10.2307/2404783 contributor: fullname: Koerselman – volume: 96 start-page: 177 year: 2005 ident: 10.1016/j.aquabot.2010.11.006_bib0130 article-title: Putting the plants back into plant ecology: six pragmatic models for understanding and conserving plant diversity publication-title: Ann. Bot. doi: 10.1093/aob/mci166 contributor: fullname: Keddy – volume: 145 start-page: 1 year: 1995 ident: 10.1016/j.aquabot.2010.11.006_bib0055 article-title: Nutrient-use efficiency: a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina peatlands publication-title: Am. Nat. doi: 10.1086/285725 contributor: fullname: Bridgham – volume: 88 start-page: 1824 year: 2001 ident: 10.1016/j.aquabot.2010.11.006_bib0070 article-title: Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization publication-title: Am. J. Bot. doi: 10.2307/3558359 contributor: fullname: Cornwell – volume: 46 start-page: 45 year: 1999 ident: 10.1016/j.aquabot.2010.11.006_bib0165 article-title: Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests publication-title: Biogeochemistry doi: 10.1007/BF01007573 contributor: fullname: Martinelli – volume: 84 start-page: 597 year: 1996 ident: 10.1016/j.aquabot.2010.11.006_bib0005 article-title: Nutrient resorption from senescing leaves of perennials: are there general patterns? publication-title: J. Ecol. doi: 10.2307/2261481 contributor: fullname: Aerts – volume: 19 start-page: 344 year: 2005 ident: 10.1016/j.aquabot.2010.11.006_bib0100 article-title: Nutrient resorption of wetland graminoids is related to the type of nutrient limitation publication-title: Funct. Ecol. doi: 10.1111/j.0269-8463.2005.00967.x contributor: fullname: Güsewell – volume: 80 start-page: 2170 year: 1999 ident: 10.1016/j.aquabot.2010.11.006_bib0020 article-title: Plant-mediated controls on nutrient cycling in temperate fens and bogs publication-title: Ecology doi: 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2 contributor: fullname: Aerts – year: 2005 ident: 10.1016/j.aquabot.2010.11.006_bib0145 contributor: fullname: Kirkham – volume: 137 start-page: 179 year: 1997 ident: 10.1016/j.aquabot.2010.11.006_bib0120 article-title: 15N natural abundance in soil–plant systems publication-title: New Phytol. doi: 10.1046/j.1469-8137.1997.00808.x contributor: fullname: Högberg – volume: 16 start-page: 153 year: 2001 ident: 10.1016/j.aquabot.2010.11.006_bib0245 article-title: δ15N as an integrator of the nitrogen cycle publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(00)02098-X contributor: fullname: Robinson – volume: 83 start-page: 1065 year: 2002 ident: 10.1016/j.aquabot.2010.11.006_bib0175 article-title: Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient publication-title: Ecology contributor: fullname: McKee – volume: 62 start-page: 145 year: 2003 ident: 10.1016/j.aquabot.2010.11.006_bib0085 article-title: Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest publication-title: Biogeochemistry doi: 10.1023/A:1021166010892 contributor: fullname: Feller – volume: 55 start-page: 856 year: 1991 ident: 10.1016/j.aquabot.2010.11.006_bib0050 article-title: Steel rod oxidation as a hydrologic indicator in wetland soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1991.03615995005500030039x contributor: fullname: Bridgham – volume: 75 start-page: 2362 year: 1994 ident: 10.1016/j.aquabot.2010.11.006_bib0015 article-title: Nitrogen use efficiency of Carex species in relation to nitrogen supply publication-title: Ecology doi: 10.2307/1940890 contributor: fullname: Aerts – volume: 90 start-page: 1017 year: 2002 ident: 10.1016/j.aquabot.2010.11.006_bib0205 article-title: Hydrochemical regime of fen and bog in north Japanese mires as an influence on habitat and above-ground biomass of Carex species publication-title: J. Ecol. doi: 10.1046/j.1365-2745.2002.00726.x contributor: fullname: Nakamura – volume: 94 start-page: 621 year: 1990 ident: 10.1016/j.aquabot.2010.11.006_bib0225 article-title: Carbon and nitrogen economy of 24 wild species differing in relative growth rate publication-title: Plant Physiol. doi: 10.1104/pp.94.2.621 contributor: fullname: Poorter – volume: 207 start-page: 13 year: 2010 ident: 10.1016/j.aquabot.2010.11.006_bib0185 article-title: Nutrient relations of dwarf Rhizophora mangle L. mangroves on peat in eastern Puerto Rico publication-title: Plant Ecol. doi: 10.1007/s11258-009-9650-z contributor: fullname: Medina – volume: 91 start-page: 157 year: 2009 ident: 10.1016/j.aquabot.2010.11.006_bib0260 article-title: δ13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglades deep slough, Florida, USA publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2009.04.003 contributor: fullname: Troxler – volume: 31 start-page: 30 year: 1997 ident: 10.1016/j.aquabot.2010.11.006_bib0210 article-title: Ten years of rainfall chemistry in New Zealand publication-title: Clean Air contributor: fullname: Nichol – year: 2000 ident: 10.1016/j.aquabot.2010.11.006_bib0230 contributor: fullname: Ramsar – year: 2001 ident: 10.1016/j.aquabot.2010.11.006_bib0090 contributor: fullname: Grime – volume: 151 start-page: 513 year: 2001 ident: 10.1016/j.aquabot.2010.11.006_bib0075 article-title: Assimilation and isotopic fractionation of nitrogen by mycorrhizal and nonmycorrhizal subarctic plants publication-title: New Phytol. doi: 10.1046/j.1469-8137.2001.00179.x contributor: fullname: Emmerton – volume: 164 start-page: 243 year: 2004 ident: 10.1016/j.aquabot.2010.11.006_bib0095 article-title: N:P ratios in terrestrial plants: variation and functional significance publication-title: New Phytol. doi: 10.1111/j.1469-8137.2004.01192.x contributor: fullname: Güsewell – volume: 152 start-page: 463 year: 2001 ident: 10.1016/j.aquabot.2010.11.006_bib0285 article-title: Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability publication-title: New Phytol. doi: 10.1046/j.0028-646X.2001.00274.x contributor: fullname: Willby – volume: 77 start-page: 1716 year: 1996 ident: 10.1016/j.aquabot.2010.11.006_bib0140 article-title: Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency publication-title: Ecology doi: 10.2307/2265777 contributor: fullname: Killingbeck – volume: 84 start-page: 2191 year: 2003 ident: 10.1016/j.aquabot.2010.11.006_bib0220 article-title: Species richness-productivity patterns differ between N-, P-, and K-limited wetlands publication-title: Ecology doi: 10.1890/01-0639 contributor: fullname: Olde Venterink – volume: 23 start-page: 683 year: 2007 ident: 10.1016/j.aquabot.2010.11.006_bib0255 article-title: Patterns of phosphorus, nitrogen and δ15N along a peat development gradient in a coastal mire, Panama publication-title: J. Trop. Ecol. doi: 10.1017/S0266467407004464 contributor: fullname: Troxler – ident: 10.1016/j.aquabot.2010.11.006_bib0045 – volume: 80 start-page: 2151 year: 1999 ident: 10.1016/j.aquabot.2010.11.006_bib0035 article-title: Patterns in nutrient availability and plant diversity of temperate North American wetlands publication-title: Ecology doi: 10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO;2 contributor: fullname: Bedford – volume: 85 start-page: 282 year: 1999 ident: 10.1016/j.aquabot.2010.11.006_bib0115 article-title: Allocating C–S–R plant functional types: a soft approach to a hard problem publication-title: Oikos doi: 10.2307/3546494 contributor: fullname: Hodgson – volume: 17 start-page: 754 year: 2003 ident: 10.1016/j.aquabot.2010.11.006_bib0110 article-title: Contrasting effects of nitrogen, phosphorus and water regime on first- and second-year growth of 16 wetland plant species publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2003.00784.x contributor: fullname: Güsewell – volume: 5 start-page: 323 year: 1989 ident: 10.1016/j.aquabot.2010.11.006_bib0125 article-title: Short term nitrogen dynamics in a small Brazilian wetland (Lago Infernao, Sao Paulo) publication-title: J. Trop. Ecol. doi: 10.1017/S0266467400003710 contributor: fullname: Howard-Williams – volume: 11 start-page: 494 year: 1996 ident: 10.1016/j.aquabot.2010.11.006_bib0275 article-title: Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(96)10055-0 contributor: fullname: Verhoeven – volume: 5 start-page: 37 year: 2002 ident: 10.1016/j.aquabot.2010.11.006_bib0105 article-title: Variation in nitrogen and phosphorus concentrations of wetland plants publication-title: Perspect. Plant Ecol. Evol. Syst. doi: 10.1078/1433-8319-0000022 contributor: fullname: Güsewell – volume: 24 start-page: 133 year: 2004 ident: 10.1016/j.aquabot.2010.11.006_bib0060 article-title: Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand publication-title: Wetlands doi: 10.1672/0277-5212(2004)024[0133:VAPCIT]2.0.CO;2 contributor: fullname: Clarkson – volume: 75 start-page: 1352 year: 1988 ident: 10.1016/j.aquabot.2010.11.006_bib0170 article-title: Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans publication-title: Am. J. Bot. doi: 10.2307/2444458 contributor: fullname: McKee – volume: 19 start-page: 438 year: 1999 ident: 10.1016/j.aquabot.2010.11.006_bib0250 article-title: The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada publication-title: Wetlands doi: 10.1007/BF03161775 contributor: fullname: Thormann – volume: 126 start-page: 191 year: 2003 ident: 10.1016/j.aquabot.2010.11.006_bib0215 article-title: Boreal bog plants: nitrogen sources and uptake of recently deposited nitrogen publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(03)00194-5 contributor: fullname: Nordbakken – volume: 30 start-page: 1 year: 2000 ident: 10.1016/j.aquabot.2010.11.006_bib0010 article-title: The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns publication-title: Adv. Ecol. Res. doi: 10.1016/S0065-2504(08)60016-1 contributor: fullname: Aerts – volume: 6 start-page: 5 year: 1995 ident: 10.1016/j.aquabot.2010.11.006_bib0280 article-title: Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems publication-title: J. Veg. Sci. doi: 10.2307/3236250 contributor: fullname: Wassen – volume: 82 start-page: 297 year: 2005 ident: 10.1016/j.aquabot.2010.11.006_bib0025 article-title: Nitrogen isotope signature variability in plant species from open peatland publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2005.05.005 contributor: fullname: Asada – ident: 10.1016/j.aquabot.2010.11.006_bib0040 – start-page: 91 year: 1995 ident: 10.1016/j.aquabot.2010.11.006_bib0155 article-title: Eutrophication of fen ecosystems: external and internal nutrient sources and restoration strategies contributor: fullname: Koerselman – volume: 167 start-page: 471 year: 2005 ident: 10.1016/j.aquabot.2010.11.006_bib0240 article-title: Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01449.x contributor: fullname: Rejmánková – start-page: 711 year: 1982 ident: 10.1016/j.aquabot.2010.11.006_bib0135 article-title: Nitrogen-availability indices contributor: fullname: Keeney – year: 1974 ident: 10.1016/j.aquabot.2010.11.006_bib0195 contributor: fullname: Mueller-Dombois – volume: 65 start-page: 171 year: 1999 ident: 10.1016/j.aquabot.2010.11.006_bib0160 article-title: N:P balance in wetland forests: productivity across a biogeochemical continuum publication-title: Bot. Rev. doi: 10.1007/BF02857626 contributor: fullname: Lockaby |
SSID | ssj0001807 |
Score | 1.9519085 |
Snippet | The vegetation N:P ratio is thought to be a diagnostic indicator of the nature of nutrient limitation in wetland vegetation. It should therefore be closely... |
SourceID | crossref pascalfrancis fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 93 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Autoecology Biological and medical sciences Fundamental and applied biological sciences. Psychology isotope fractionation nitrogen nutrient content nutrient resorption (physiology) nutrient retention phosphorus plant communities Plants and fungi resorption stable isotopes Typha orientalis vegetation types |
Title | N:P ratios, δ15N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FlAdeEFc1XKp9oE_GwZe1nfCWRoUK2igqqdQ3a9feTVNFcXAcQPwDf8MP8AN8EzPeteNAhChSEkVOvL6c49mZ2bkQ8sJnPhN9Htm8n3CbJSqxOZfw4AGfZBoo0UsxOflsFJ5csHeXwWWr9aMRtbQuRDf5ujOv5H9QhW2AK2bJ3gDZelDYAN8BX_gEhOHznzAewR_HVolhCcfh8PjwCObKkaVynbCg4UXn-ALL7uPCP9jXWa4FBZ9jpyFuwWOdZ3AUVESXV9kK3vl6Zc0x-UmPMM3L0LCynwA2s5jPphnss7yaJdZnWcxNdtxyLr801d3Bx3VZEVZkRSV00JuDHUHMckeOAuZ9txFlMF3rxXv7baYrRtZJihuva9Wu_VSurLN65zHcorpZ_CSXn7LcOu82_RpG4ppMLlytiXRDkUpK61bIho1eQ-TqBotm8na1Z-SPeUG7KK67HC4bLlmH9GH1VmdHHe7f5sc6arEKiLuOzTAxDgM2VFwWfd_zQNYFbbI3GJ6fjmt1wDU5-9VFbdLIXu08ny0F6ZbiGYbr8hU8sUq3WmnoP5N75K4xXOhAs_A-acnFA3L7qAT2Ifk2ej2mmogv6c_vQEG6RUEKBKEVBemGgrSkIOW0oiAtMrqhIN1QkFYUpDMcjTYpSA0FqaHgIzJ5czwZntim04eduFHI7FSGqXBkn_sskMwRQnBHBaEC8RJGMhKgHbi9UPQkKKzMYdx3HBUJ5fdSP_HARHlM2otsIfcJdUMReIkfBWC3sDQBc7nvSuErJb1UpRHvkG51d-OlrucS_xXXDtkHDGI-hTk3vvjgoUcCzSrQpHf-5AZYD6pDDrYwq48FGjLMoBF7ctPzeEru6OUMfD0j7SJfy-egDxfiwDDuFzyKu0Q |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N%3AP+ratios%2C+%CE%B415N+fractionation+and+nutrient+resorption+along+a+nitrogen+to+phosphorus+limitation+gradient+in+an+oligotrophic+wetland+complex&rft.jtitle=Aquatic+botany&rft.au=Sorrell%2C+Brian+K.&rft.au=Chagu%C3%A9-Goff%2C+Catherine&rft.au=Basher%2C+Les+M.&rft.au=Partridge%2C+Trevor+R.&rft.date=2011&rft.issn=0304-3770&rft.volume=94&rft.issue=2&rft.spage=93&rft.epage=101&rft_id=info:doi/10.1016%2Fj.aquabot.2010.11.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aquabot_2010_11_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3770&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3770&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3770&client=summon |