Effective porosity in groundwater flow analysis for fractured sedimentary rocks: Case studies of the Koetoi and Wakkanai formations in Horonobe, Hokkaido, Japan
Groundwater flow analysis is used to evaluate groundwater travel times and pathways over several kilometers to several tens of kilometers, covering the entire groundwater recharge and discharge areas, during preliminary investigations for a potential repository for high-level radioactive waste. A...
Saved in:
Published in | Journal of Nuclear Fuel Cycle and Environment Vol. 31; no. 2; pp. 82 - 95 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan
15.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1884-7579 1884-7579 |
DOI | 10.3327/jnuce.31.2_82 |
Cover
Abstract | Groundwater flow analysis is used to evaluate groundwater travel times and pathways over several kilometers to several tens of kilometers, covering the entire groundwater recharge and discharge areas, during preliminary investigations for a potential repository for high-level radioactive waste. A rock's hydraulic effective porosity (kinematic porosity) is a sensitive parameter while analytically determining the travel time of groundwater in the fractured rock. However, the concept of kinematic porosity in fractured sedimentary rock is unclear. For example, the permeability of fractures obtained from in-situ hydraulic packer tests in borehole investigations is treated as the permeability of the rock, while the porosity of the intact rock obtained from other tests is treated as the kinematic porosity. In this study, we examined the method to estimate the kinematic porosity of fractured sedimentary rock by comparing the travel time using the kinematic porosity estimated based on the fracture aperture and intact rock’s porosity with the observation results, using the Koetoi Formation and Wakkanai Formation (shallower part), which are sedimentary rocks with fracture development in low-permeability rock matrix, as an example. The travel time was consistent with the observations when the kinematic porosity was estimated based on the fracture aperture; the kinematic porosity was one to three orders of magnitude smaller than the porosity in the intact rock. In the case of sedimentary rocks with a water-conducting-fracture network in low-permeability rock matrix, it was shown that estimating the kinematic porosity based on the fracture aperture width is effective. |
---|---|
AbstractList | Groundwater flow analysis is used to evaluate groundwater travel times and pathways over several kilometers to several tens of kilometers, covering the entire groundwater recharge and discharge areas, during preliminary investigations for a potential repository for high-level radioactive waste. A rock's hydraulic effective porosity (kinematic porosity) is a sensitive parameter while analytically determining the travel time of groundwater in the fractured rock. However, the concept of kinematic porosity in fractured sedimentary rock is unclear. For example, the permeability of fractures obtained from in-situ hydraulic packer tests in borehole investigations is treated as the permeability of the rock, while the porosity of the intact rock obtained from other tests is treated as the kinematic porosity. In this study, we examined the method to estimate the kinematic porosity of fractured sedimentary rock by comparing the travel time using the kinematic porosity estimated based on the fracture aperture and intact rock’s porosity with the observation results, using the Koetoi Formation and Wakkanai Formation (shallower part), which are sedimentary rocks with fracture development in low-permeability rock matrix, as an example. The travel time was consistent with the observations when the kinematic porosity was estimated based on the fracture aperture; the kinematic porosity was one to three orders of magnitude smaller than the porosity in the intact rock. In the case of sedimentary rocks with a water-conducting-fracture network in low-permeability rock matrix, it was shown that estimating the kinematic porosity based on the fracture aperture width is effective. |
Author | HASEGAWA, Takuma IMAI, Hisashi MIYAKAWA, Kazuya OHNO, Hirokazu ISHII, Eiichi HIRAI, Satoru NAKATA, Kotaro |
Author_xml | – sequence: 1 fullname: MIYAKAWA, Kazuya organization: Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency – sequence: 1 fullname: IMAI, Hisashi organization: HAZAMAANDO CORPORATION – sequence: 1 fullname: NAKATA, Kotaro organization: Central Research Institute of Electric Power Industry – sequence: 1 fullname: OHNO, Hirokazu organization: Horonobe Underground Research Center, Japan Atomic Energy Agency – sequence: 1 fullname: HASEGAWA, Takuma organization: Central Research Institute of Electric Power Industry – sequence: 1 fullname: ISHII, Eiichi organization: Horonobe Underground Research Center, Japan Atomic Energy Agency – sequence: 1 fullname: HIRAI, Satoru organization: HAZAMAANDO CORPORATION |
BookMark | eNp1kMtKAzEUhoMoWC9L93mATs2lk5m6EKSo9QJuFJdDJnOiaadJSTKWvo2PasaKFMFNcjj5zn_Cd4T2rbOA0BklI85ZcT63nYIRpyNWlWwPDWhZjrMiLyb7O_UhOg1hTgjhnAg6zgfo81prUNF8AF4574KJG2wsfvOus81aRvBYt26NpZXtJpiAtUsdL1XsPDQ4QGOWYKP0G-ydWoQLPJUBcIhdYyBgp3F8B_zgIDqTQhr8KheLFGb6oKWMxtnQL5yl5dbVMExVAkzjhvherqQ9QQdatgFOf-5j9HJz_TydZY9Pt3fTq8dM0UKwTHFOhZLjhhIFOle1KAoxYQCElnkpRA6CNYxyVvIiz-mkric15FwQAUxTVfJjxLe5KlkIHnSlTPz-X_TStBUlVe-5-vZccVr1ntNU9mdq5c0y2fiXv9zy8xDlG_zS0kejWtil01Gy3wf1Ln0Fln8BcYmdSw |
CitedBy_id | crossref_primary_10_2343_geochemj_GJ24028 |
Cites_doi | 10.3327/taesj.J07.053 10.1144/geoenergy2023-056 10.1016/j.jsg.2011.11.001 10.1029/2011JB008279 10.1007/s10040-010-0575-3 10.1016/j.jhydrol.2015.08.002 10.1016/j.enggeo.2017.02.026 10.1029/WR017i002p00421 10.1155/2018/7823195 10.1016/j.pce.2008.10.016 10.1007/s10040-023-02714-6 10.2343/geochemj.GJ23014 10.1111/gwat.13171 10.3720/japt.57.32 10.3327/jaesjb.64.1_46 10.5110/jjseg.47.68 10.1007/s002540050276 10.3133/sir20055049 10.1002/hyp.13520 10.1016/j.jhydrol.2012.04.061 10.1002/2014JB011756 10.1016/j.apgeochem.2023.105737 10.1007/s10040-022-02576-4 10.1029/2018WR022556 10.3720/japt.59.283 10.1029/2007WR006441 10.2473/journalofmmij.125.521 10.1111/j.1745-6584.1999.tb01190.x 10.1016/j.gete.2022.100311 10.1061/JSFEAQ.0001097 10.1016/j.ijrmms.2017.10.017 10.1016/j.enggeo.2018.08.008 10.1144/geoenergy2023-047 10.1007/s10040-022-02466-9 10.5917/jagh.52.381 10.1007/s10040-023-02628-3 |
ContentType | Journal Article |
Copyright | 2024 Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
Copyright_xml | – notice: 2024 Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
DBID | AAYXX CITATION |
DOI | 10.3327/jnuce.31.2_82 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1884-7579 |
EndPage | 95 |
ExternalDocumentID | 10_3327_jnuce_31_2_82 article_jnuce_31_2_31_82_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT AAYXX CITATION |
ID | FETCH-LOGICAL-c1762-c3316ca4d10cef5cb677692ee01858665e62d21328375519bb9be53606e2f1c83 |
ISSN | 1884-7579 |
IngestDate | Tue Jul 01 02:22:33 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Wed Sep 03 06:30:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1762-c3316ca4d10cef5cb677692ee01858665e62d21328375519bb9be53606e2f1c83 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jnuce/31/2/31_82/_article/-char/en |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_3327_jnuce_31_2_82 crossref_primary_10_3327_jnuce_31_2_82 jstage_primary_article_jnuce_31_2_31_82_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024/12/15 2024-12-15 |
PublicationDateYYYYMMDD | 2024-12-15 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024/12/15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Nuclear Fuel Cycle and Environment |
PublicationTitleAlternate | Journal of Nuclear Fuel Cycle and Environment |
PublicationYear | 2024 |
Publisher | Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
Publisher_xml | – name: Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan |
References | [2] 原子力発電環境整備機構: 包括的技術報告:わが国における安全な地層処分の実現-適切なサイトの選定に向けたセーフティケースの構築-. NUMO-TR-20-01, 原子力発電環境整備機構 (2021). [24] 岡 孝雄: 北海道天北・問寒別構造盆地のネオテクトニクス. 活断層研究 1, pp.19-29 (1985). [4] Svensson, U.: A regional analysis of groundwater flow and salinity distribution in the Äspö area. SKB Technical Report 97-09 (1997). [25] 岡 孝雄, 五十嵐八枝子: 北海道・天塩平野北部の上部新行界-特に勇知層・更別層の堆積相と花粉化石層序について. 加藤誠教授退官記念論文集,pp.341-365 (1997). [50] Ishii, E.: Effects of flow dimension in faulted or fractured rock on natural reductions of inflow during excavation: a case study of the Horonobe Underground Research Laboratory site, Japan. Hydrogeol. J. doi: 10.1007/s10040-023-02628-3 (2023). [72] 大島洋志, 西田道人, 前川統一郎, 平山利晶, 藤原幹之, 嵐 正治: 幌延町開進地区における地下水流動解析研究. JNC TJ1400 99-045, 核燃料サイクル開発機構 (1995). [55] Doughty, C., Tsang, C.F., Hatanaka, K., Yabuuchi, S. and Kurikami, H.: Application of direct-fitting, mass integral, and multirate methods to analysis of flowing fluid electric conductivity logs from Horonobe, Japan. Water Resour. Res. 44, W08403, doi:10.1029/2007WR006441 (2008). [73] 日本原子力研究開発機構: 平成28年度地層処分技術調査等事業地質環境長期安定性評価確証技術開発報告書. 経済産業省資源エネルギー庁 (2017). [18] Schulze-Makuch, D., Carlson, D.A., Cherkauer, D.S. and Malik, P.: Scale dependency of hydraulic conductivity in heterogeneous media. Groundwater 37, pp.904-919 (1999). [5] Li, L., Zhang, Q., Zhou, Z., Cui, Y., Zhao, Y., Zhao, J. and Shao, J.: Regional groundwater flow pattern in fractured bedrock with a high-level radioactive waste repository: numerical simulation of the Xinchang site, northwestern China. Hydrogeol. J. 31, pp.2159-2176 (2023). [12] Zheng, C. and Bennett, G.D.: Applied contaminant transport modeling. Wiley, New York (2002). [13] Worthington, S.R.H.: Estimating effective porosity in bedrock aquifers. Groundwater 60, pp.169-179 (2022). [6] 尾上博則, 笹尾英嗣, 三枝博光, 小坂寛: 過去から現在までの長期的な地形変化が地下水流動特性に与える影響の解析的評価の試み. 日本原子力学会和文論文誌, 8, pp.40-53 (2009). [65] Neretnieks, I.: Age dating of groundwater in fissured rock: Influence of water volume in micropores. Water Resour. Res. 17, pp.421-422 (1981). [48] 西垣 誠, 菱谷智幸, 橋本 学, 河野伊一郎: 飽和・不飽和領域における物質移動を伴う密度依存地下水流の数値解析手法に関する研究. 土木学会論文集 511, pp.135-144 (1995). [71] Miyakawa, K., Kashiwaya, K., Komura, Y. and Nakata, K.: Evolution of porewater in a Neogene sedimentary formation in the Horonobe area, Hokkaido, Japan: Modeling of burial diagenesis. Geochem. J. 57(5), pp.155-175, doi:10.2343/geochemj.GJ23014 (2023). [8] Zuber, A. and Motyka, J.: Hydraulic parameters and solute velocities in triple-porosity karstic-fissured-porous carbonate aquifers: Case studies in southern Poland. Environ. Geol. 34, pp.243-250 (1998). [70] Ozaki, Y., Ishii, E.: Relationship among the fault transmissivity, flow dimension, and effective hydraulic conductivity in siliceous mudstone of the Wakkanai Formation around the Horonobe Underground Research Laboratory in Japan. Geoenergy doi:10.1144/geoenergy2023-056 (2024). [51] Ozaki, Y., Ishii, E. and Sugawara, K.: Variation in fault hydraulic connectivity with depth in mudstone: An analysis of poroelastic hydraulic response to excavation in the Horonobe URL. Geomech. Energy Envir., 31, 100311 (2022). [29] 操上広志, 竹内竜史, 瀬尾昭治: 幌延深地層研究計画における地下水流動解析. JNC TN5400 2005-003, 核燃料サイクル開発機構 (2005). [64] 須甲武志, 高野 仁, 内田雅大, 関 陽児, 伊藤一誠, 渡部芳夫, 宗像雅弘, 田中忠夫, 天野健二: 幌延深地層研究施設周辺の地質環境情報に基づく地下水流動評価手法の検証に関する研究. JNES-RE-2013-9032, 原子力安全基盤機構 (2014). [43] 河西 基, 田中靖治, 五十嵐敏文: 高レベル放射性廃棄物地層処分の天然バリア性能評価手法の開発(その1)―割れ目系岩盤中の地下水流動解析手法―. 電力中央研究所報告 U93054, 電力中央研究所 (1994). [11] Rhén, I. (ed.), Svensson, U. (ed.), Andersson, J.E., Andersson, P., Eriksson, C.O., Gustafsson, E., Ittner, T. and Nordqvist, R.: Äspö Hard Rock Laboratory: Evaluation of the combined longterm pumping and tracer test (LPT2) in borehole KAS06. SKB Technical Report 92-32 (1992). [52] Rhén, I. (ed.), Gustafson, G., Stanfors, R. and Wikberg, P.: ÄSPÖ HRL – Geoscientific evaluation 1997/5. SKB Technical Report 97-06 (1997). [23] 長尾捨一: 5万分の1地質図幅「豊富」および同説明書, 北海道立地下資源調査所 (1960). [37] Mochizuki, A. and Ishii, E.: Paleohydrogeology of the Horonobe area, Northern Hokkaido, Japan: Groundwater flow conditions during glacial and postglacial periods estimated from chemical and isotopic data for fracture and pore water. Appl. Geochem. 155, 105737 (2023). [42] 今井 久, 前田信行, 山下 亮, 塩崎 功, 雨宮 清, 千々松正和: 幌延深地層研究計画における地下水流動解析に関する検討. JNC TJ1400 2002-004, 核燃料サイクル開発機構 (2002). [14] Bear, J.: Dynamics of fluids in porous media. Dover, New York (1972). [28] Kurikami, H., Takeuchi, R. and Yabuuchi, S.: Scale effect and heterogeneity of hydraulic conductivity of sedimentary rocks at Horonobe URL site. Physics and Chemistry of the Earth 33, pp.S37-S44 (2008). [61] Ohno, H., Ishii, E. and Takeda, M.: Modelling transport pathways of faults with low hydraulic connectivity in mudstones with low swelling capacity. Geoenergy 2, geoenergy2023-047, doi:10.1144/geoenergy2023-047 (2024). [49] 菱谷智幸, 西垣 誠, 橋本 学: 物質移動を伴う密度依存地下水流の3次元数値解析手法に関する研究. 土木学会論文集 638, pp.59-69 (1999). [26] 石油公団: 国内石油・天然ガス基礎調査 基礎試錐「天北」調査報告書 (1995). [67] 安江健一, 石井英一, 浴 信博, 福島龍朗: 北海道北部,幌延町北進地域の段丘堆積物の特徴. 地球惑星科学関連学会2004年合同大会, 千葉, 2004年5月9〜13日, Q042-P004 (2004). [47] 操上広志, 竹内竜史, 藪内 聡, 瀬尾昭治, 戸村豪治, 柴野一則, 原 稔, 國丸貴紀: 幌延深地層研究計画の地上からの調査研究段階における地下水流動に関する調査研究. 土木学会論文集C 64 (3), pp.680-695 (2008). [7] 産業技術総合研究所, 原子力環境整備促進・資金管理センター, 電力中央研究所: 平成31年度高レベル放射性廃棄物等の地層処分に関する技術開発事業-沿岸部処分システム評価確証技術開発-成果報告書. 経済産業省資源エネルギー庁 (2020). [79] 真田祐幸, 丹生屋純夫, 松井裕哉: HDB-9〜11孔における岩盤力学的調査結果及び研究所設置地区の岩盤力学的概念モデル更新. JAEA-Research 2008-069, 日本原子力研究開発機構 (2008). [22] 岡 孝雄: 北海道付近のネオテクトニクス像-特にネオテクトニクスの地域区分と特徴-. 月刊地球 21, pp.549-556 (1999). [15] Posiva Oy: Olkiluoto Site Description 2011. Eurajoki, Finland (2012). [74] 北海道開発庁: 北海道地下資源調査資料 第125号 豊富背斜地域の天然ガス鉱床. (1971). [19] Jiang, X.W., Wang, X.S. and Wan, L.: Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. Hydrogeol. J. 18, pp.839-850 (2010). [44] 石井英一, 安江健一, 田中竹延, 津久井朗太, 松尾公一, 杉山和稔, 松尾重明: 北海道北部,幌延地域における大曲断層の三次元分布と水理特性. 地質学雑誌 112, pp.301-314 (2006). [33] Ota, K., Abe, H. and Kunimaru, T.: Horonobe underground research laboratory project synthesis of phase I investigations 2001-2005 volume "geoscientific research". JAEA-Research 2010-068, 日本原子力研究開発機構 (2011). [77] Ishii, E., Sanada, H., Funaki, H., Sugita, Y. and Kurikami, H.: The relationships among brittleness, deformation behavior, and transport properties in mudstones: An example from the Horonobe Underground Research Laboratory, Japan. J. Geophys. Res. 116, doi: 10.1029/2011JB008279 (2011). [56] Doughty, C., Tsang, C.F., Yabuuchi, S. and Kunimaru, T.: Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow. J. Hydrol. 482, pp.1-13 (2013). [27] 辻 隆司, 横井 悟: 北海道天北地域における新第三系珪質岩中の炭化水素トラップ. 石油技術協会誌 59, pp.283-295 (1994). [46] 伊藤成輝, 越谷 賢, 丸井敦尚: 幌延沿岸域における地下水流動・塩淡境界解析の初期モデル構築. 地下水学会誌 52 (4), pp.381-394 (2010). [3] Joyce, S., Simpson, T., Hartley, L., Marsic, N. and Follin, S.: Groundwater flow modelling of periods with temperate climate conditions – Forsmark. SKB Technical Report R-09-20 (2010). [20] Worthington, S.R.H.: How preferential flow delivers pre-event groundwater rapidly to streams. Hydrol. Processes 33, pp.2373-2380 (2019). [81] 日本原子力研究開発機構, 電力中央研究所: 平成31年度高レベル放射性廃棄物等の地層処分に関する技術開発事業-岩盤中地下水流動評価技術高度化開発-報告書. 経済産業省資源エネルギー庁 (2020). [54] Bruines, P., Niunoya, S., Munakata, M., Kimura, H. and Kawamura, H.: FEC analysis carried out in SAB-2 borehole located near Horonobe. Proceedings of the 13th Japan Symposium on Rock Mechanics & the 6th Japan-Korea Joint Symposium on Rock Engineering, pp.893-898, Japanese Committee for Rock Mechanics, Tokyo (2013). [66] 東中基倫, 津久井朗太, 太田陽一: 幌延深地層研究計画における反射法地震探査を用いた地質構造調査. JNC TJ1410 2002-002, 核燃料サイクル開発機構 (2002). [58] 薮内聡, 國丸貴紀, 石井英一, 羽出山吉裕, 井尻裕二, 松岡清幸, 井原哲夫, 松波伸次朗, 牧野章也: 幌延深地層研究計画 換気立坑先行ボーリング(PB-V01孔)調査報告書–岩盤の水理特性調査–. JAEA-Data/Code 2008-026, 日本原子力研究開発機構 (2009). [76] 動力炉・核燃料開発事業団: 貯蔵工学センター立地環境調査 – 深層ボーリング報告書. PNC TJ1027 98-012, 動力炉・核燃料開発事業団 (1987). [34] 寺本雅子, 嶋田 純, 國丸貴紀: コア間隙水中の安定同位体比をもとにした低透水性堆積岩盤における地下水挙動の兆候. 応用地質 47, pp.68-76 (2006). [36] 天野由記, 山本陽一, 南條 功, 村上裕晃, 横田秀晴, 山崎雅則, 國丸貴紀, 大山隆弘, 岩月輝希: 幌延深地層研究計画における地下水, 河川水及び降水の水質データ(2001〜2010年度). JAEA-Data/Code 2011–023, 日本原子力研究開発機構 (2012). [75] 今井 久, 山下 亮, 雨宮 清, 塩崎 功: 堆積岩地域における広域地下水流動解析手法に関する検討. JNC TJ1410 2001-002, 核燃料サイクル開発機構 (2001). [17] Lewis-Brown, J.C., Carleton, G.B. and Imbrigiotta, T.E.: Hydraulic and solute-transport properties and simulated advective transport of contaminated ground water in a fractured-rock aquifer at the Naval Air Warfare Center, West Trenton, New Jersey, 2003. U.S. Geological Survey Scientific Investigations Report 2005-5049 (2006). [32] 牧野仁史, 澤田淳, 前川恵輔, 柴田雅博, 笹本広, 吉川英樹, 若杉圭一郎, 小尾繁, 濱克宏, 操上広志, 國丸貴紀, 石井英一, 竹内竜史, 中野勝志, 三枝博光, 竹内真司, 岩月輝希, 太田久仁雄, 瀬尾俊弘: 地質環境の調査から物質移行解析にいたる一連の調査・解析技術-2つの深地層の研究施設計画の地上からの調査研究段階(第1段階)における地質環境情報に基づく検討-. JNC TN1400 2005-021, 核燃料サイクル開発機構 (2005). [59] Gelhar, L.W.: Applications of stochastic models to solute transport in fractured rocks. SKB Technical Report 87-05 (1987). [30] Ishii, E.: Assessment of hydraulic connectivity of fractures in mudstones by single-borehole investigations. Water Resour. Res. 54, pp.3335-3356 (2018). [38] エネルギー委員会 低レベル放射性廃棄物の余裕深度処分に関する研究小委員会: 余裕深度処分の安全評価における地下水シナリオに用いる核種移行評価パラメータ設定の考え方, 土木学会, 東京 (2008). [53] Snow, D.T.: Rock fracture spacings, openings, and porosities. J. Soil Mech. Found. Div. 94, pp.73-92 (1968). [1] 三枝博光, 松岡稔幸, 丹羽正和, 笹尾英嗣, 早野 明: 第2回 地層処分に関する地質環境評価技術 オールジャパンでとりくむ地層処分のいま. 日本原子力学会誌 64 (1), pp.46-50 (2022). [9] Worthington, S.R.H.: Examining the assumptions of the single-porosity archetype for transport in bedrock aquifers. Hydrogeol. J. 31, pp.87-96 (2023). [31] Nakata, K., Hasegawa, T., Oyama, T., Ishii, E., Miyakawa, K. and Sasamoto, H.: An evaluation of the long-term stagnancy of porewater in the Neogene sedimentary rocks in northern Japan. Geofluids 2018, 7823195 (2018). [60] Hjerne, C., Nordqvist, R., Harrström, H. and Geosigma, A.B.: Compilation and analyses of results from cross-hole tracer tests with conservative tracers. SKB Technical Report R-09-28 (2010). [78] 丹生屋純夫, 松井裕哉: HDB-3〜8孔における岩盤力学的調査結果及び研究所設置地区の岩盤力学的概念モデル検討. JAEA- 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 71 72 73 30 74 31 75 32 76 33 77 34 78 35 79 36 37 38 39 80 81 82 83 40 41 42 43 |
References_xml | – reference: [23] 長尾捨一: 5万分の1地質図幅「豊富」および同説明書, 北海道立地下資源調査所 (1960). – reference: [46] 伊藤成輝, 越谷 賢, 丸井敦尚: 幌延沿岸域における地下水流動・塩淡境界解析の初期モデル構築. 地下水学会誌 52 (4), pp.381-394 (2010). – reference: [2] 原子力発電環境整備機構: 包括的技術報告:わが国における安全な地層処分の実現-適切なサイトの選定に向けたセーフティケースの構築-. NUMO-TR-20-01, 原子力発電環境整備機構 (2021). – reference: [22] 岡 孝雄: 北海道付近のネオテクトニクス像-特にネオテクトニクスの地域区分と特徴-. 月刊地球 21, pp.549-556 (1999). – reference: [59] Gelhar, L.W.: Applications of stochastic models to solute transport in fractured rocks. SKB Technical Report 87-05 (1987). – reference: [25] 岡 孝雄, 五十嵐八枝子: 北海道・天塩平野北部の上部新行界-特に勇知層・更別層の堆積相と花粉化石層序について. 加藤誠教授退官記念論文集,pp.341-365 (1997). – reference: [36] 天野由記, 山本陽一, 南條 功, 村上裕晃, 横田秀晴, 山崎雅則, 國丸貴紀, 大山隆弘, 岩月輝希: 幌延深地層研究計画における地下水, 河川水及び降水の水質データ(2001〜2010年度). JAEA-Data/Code 2011–023, 日本原子力研究開発機構 (2012). – reference: [10] Worthington, S.R.H.: Diagnostic tests for conceptualizing transport in bedrock aquifers. J. Hydrol. 529, pp.365-372 (2015). – reference: [4] Svensson, U.: A regional analysis of groundwater flow and salinity distribution in the Äspö area. SKB Technical Report 97-09 (1997). – reference: [71] Miyakawa, K., Kashiwaya, K., Komura, Y. and Nakata, K.: Evolution of porewater in a Neogene sedimentary formation in the Horonobe area, Hokkaido, Japan: Modeling of burial diagenesis. Geochem. J. 57(5), pp.155-175, doi:10.2343/geochemj.GJ23014 (2023). – reference: [44] 石井英一, 安江健一, 田中竹延, 津久井朗太, 松尾公一, 杉山和稔, 松尾重明: 北海道北部,幌延地域における大曲断層の三次元分布と水理特性. 地質学雑誌 112, pp.301-314 (2006). – reference: [45] 今井 久, 山下 亮, 塩崎 功, 浦野和彦, 笠 博義, 丸山能生, 新里忠史, 前川恵輔: 地下水流動に対する地質環境の長期的変遷の影響に関する研究(委託研究). JAEA-Research 2009–001, 日本原子力研究開発機構 (2009). – reference: [16] Earon, R. and Olofsson, B.: Hydraulic heterogeneity and its impact on kinematic porosity in Swedish coastal terrains. Eng. Geol. 245, pp.61-71 (2018). – reference: [20] Worthington, S.R.H.: How preferential flow delivers pre-event groundwater rapidly to streams. Hydrol. Processes 33, pp.2373-2380 (2019). – reference: [77] Ishii, E., Sanada, H., Funaki, H., Sugita, Y. and Kurikami, H.: The relationships among brittleness, deformation behavior, and transport properties in mudstones: An example from the Horonobe Underground Research Laboratory, Japan. J. Geophys. Res. 116, doi: 10.1029/2011JB008279 (2011). – reference: [55] Doughty, C., Tsang, C.F., Hatanaka, K., Yabuuchi, S. and Kurikami, H.: Application of direct-fitting, mass integral, and multirate methods to analysis of flowing fluid electric conductivity logs from Horonobe, Japan. Water Resour. Res. 44, W08403, doi:10.1029/2007WR006441 (2008). – reference: [3] Joyce, S., Simpson, T., Hartley, L., Marsic, N. and Follin, S.: Groundwater flow modelling of periods with temperate climate conditions – Forsmark. SKB Technical Report R-09-20 (2010). – reference: [52] Rhén, I. (ed.), Gustafson, G., Stanfors, R. and Wikberg, P.: ÄSPÖ HRL – Geoscientific evaluation 1997/5. SKB Technical Report 97-06 (1997). – reference: [35] Mochizuki, A. and Ishii, E.: Assessment of the level of activity of advective transport through fractures and faults in marine deposits by comparison between stable isotope compositions of fracture and pore waters. Hydrogeol. J. 30, pp.813-827 (2022). – reference: [37] Mochizuki, A. and Ishii, E.: Paleohydrogeology of the Horonobe area, Northern Hokkaido, Japan: Groundwater flow conditions during glacial and postglacial periods estimated from chemical and isotopic data for fracture and pore water. Appl. Geochem. 155, 105737 (2023). – reference: [47] 操上広志, 竹内竜史, 藪内 聡, 瀬尾昭治, 戸村豪治, 柴野一則, 原 稔, 國丸貴紀: 幌延深地層研究計画の地上からの調査研究段階における地下水流動に関する調査研究. 土木学会論文集C 64 (3), pp.680-695 (2008). – reference: [56] Doughty, C., Tsang, C.F., Yabuuchi, S. and Kunimaru, T.: Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow. J. Hydrol. 482, pp.1-13 (2013). – reference: [58] 薮内聡, 國丸貴紀, 石井英一, 羽出山吉裕, 井尻裕二, 松岡清幸, 井原哲夫, 松波伸次朗, 牧野章也: 幌延深地層研究計画 換気立坑先行ボーリング(PB-V01孔)調査報告書–岩盤の水理特性調査–. JAEA-Data/Code 2008-026, 日本原子力研究開発機構 (2009). – reference: [34] 寺本雅子, 嶋田 純, 國丸貴紀: コア間隙水中の安定同位体比をもとにした低透水性堆積岩盤における地下水挙動の兆候. 応用地質 47, pp.68-76 (2006). – reference: [78] 丹生屋純夫, 松井裕哉: HDB-3〜8孔における岩盤力学的調査結果及び研究所設置地区の岩盤力学的概念モデル検討. JAEA-Research 2006-086, 日本原子力研究開発機構 (2007). – reference: [40] 酒井利啓,松岡稔幸,天野健治: 幌延地域を対象とした10mグリッド数値標高モデルを用いた精密地形解析図の作成. JAEA-Data/Code 2014-005, 日本原子力研究開発機構 (2014). – reference: [42] 今井 久, 前田信行, 山下 亮, 塩崎 功, 雨宮 清, 千々松正和: 幌延深地層研究計画における地下水流動解析に関する検討. JNC TJ1400 2002-004, 核燃料サイクル開発機構 (2002). – reference: [9] Worthington, S.R.H.: Examining the assumptions of the single-porosity archetype for transport in bedrock aquifers. Hydrogeol. J. 31, pp.87-96 (2023). – reference: [69] Kunimaru, T. and Metcalfe, R.: Isotopic study of the groundwater at Horonobe, northern Hokkaido, Japan. In Abstracts of the 13th annual V.M. Goldschmidt conference (p. A239). The European Association of Geochemistry and the Geochemical Society (2003). – reference: [54] Bruines, P., Niunoya, S., Munakata, M., Kimura, H. and Kawamura, H.: FEC analysis carried out in SAB-2 borehole located near Horonobe. Proceedings of the 13th Japan Symposium on Rock Mechanics & the 6th Japan-Korea Joint Symposium on Rock Engineering, pp.893-898, Japanese Committee for Rock Mechanics, Tokyo (2013). – reference: [62] Ishii, E.: Estimation of the highest potential transmissivity of discrete shear fractures using the ductility index. Int. J. Rock Mech. Min. 100, pp.10-22 (2017). – reference: [26] 石油公団: 国内石油・天然ガス基礎調査 基礎試錐「天北」調査報告書 (1995). – reference: [1] 三枝博光, 松岡稔幸, 丹羽正和, 笹尾英嗣, 早野 明: 第2回 地層処分に関する地質環境評価技術 オールジャパンでとりくむ地層処分のいま. 日本原子力学会誌 64 (1), pp.46-50 (2022). – reference: [38] エネルギー委員会 低レベル放射性廃棄物の余裕深度処分に関する研究小委員会: 余裕深度処分の安全評価における地下水シナリオに用いる核種移行評価パラメータ設定の考え方, 土木学会, 東京 (2008). – reference: [50] Ishii, E.: Effects of flow dimension in faulted or fractured rock on natural reductions of inflow during excavation: a case study of the Horonobe Underground Research Laboratory site, Japan. Hydrogeol. J. doi: 10.1007/s10040-023-02628-3 (2023). – reference: [63] Ishii, E.: Microstructure and origin of faults in siliceous mudstone at the Horonobe Underground Research Laboratory site, Japan. J. Struct. Geol. 34, pp.20-29 (2012). – reference: [43] 河西 基, 田中靖治, 五十嵐敏文: 高レベル放射性廃棄物地層処分の天然バリア性能評価手法の開発(その1)―割れ目系岩盤中の地下水流動解析手法―. 電力中央研究所報告 U93054, 電力中央研究所 (1994). – reference: [72] 大島洋志, 西田道人, 前川統一郎, 平山利晶, 藤原幹之, 嵐 正治: 幌延町開進地区における地下水流動解析研究. JNC TJ1400 99-045, 核燃料サイクル開発機構 (1995). – reference: [7] 産業技術総合研究所, 原子力環境整備促進・資金管理センター, 電力中央研究所: 平成31年度高レベル放射性廃棄物等の地層処分に関する技術開発事業-沿岸部処分システム評価確証技術開発-成果報告書. 経済産業省資源エネルギー庁 (2020). – reference: [24] 岡 孝雄: 北海道天北・問寒別構造盆地のネオテクトニクス. 活断層研究 1, pp.19-29 (1985). – reference: [57] Ishii, E.: Predictions of the highest potential transmissivity of fractures in fault zones from rock rheology: Preliminary results. J. Geophys. Res. Solid Earth 120, doi:10.1002/2014JB011756 (2015). – reference: [61] Ohno, H., Ishii, E. and Takeda, M.: Modelling transport pathways of faults with low hydraulic connectivity in mudstones with low swelling capacity. Geoenergy 2, geoenergy2023-047, doi:10.1144/geoenergy2023-047 (2024). – reference: [5] Li, L., Zhang, Q., Zhou, Z., Cui, Y., Zhao, Y., Zhao, J. and Shao, J.: Regional groundwater flow pattern in fractured bedrock with a high-level radioactive waste repository: numerical simulation of the Xinchang site, northwestern China. Hydrogeol. J. 31, pp.2159-2176 (2023). – reference: [14] Bear, J.: Dynamics of fluids in porous media. Dover, New York (1972). – reference: [74] 北海道開発庁: 北海道地下資源調査資料 第125号 豊富背斜地域の天然ガス鉱床. (1971). – reference: [51] Ozaki, Y., Ishii, E. and Sugawara, K.: Variation in fault hydraulic connectivity with depth in mudstone: An analysis of poroelastic hydraulic response to excavation in the Horonobe URL. Geomech. Energy Envir., 31, 100311 (2022). – reference: [65] Neretnieks, I.: Age dating of groundwater in fissured rock: Influence of water volume in micropores. Water Resour. Res. 17, pp.421-422 (1981). – reference: [70] Ozaki, Y., Ishii, E.: Relationship among the fault transmissivity, flow dimension, and effective hydraulic conductivity in siliceous mudstone of the Wakkanai Formation around the Horonobe Underground Research Laboratory in Japan. Geoenergy doi:10.1144/geoenergy2023-056 (2024). – reference: [11] Rhén, I. (ed.), Svensson, U. (ed.), Andersson, J.E., Andersson, P., Eriksson, C.O., Gustafsson, E., Ittner, T. and Nordqvist, R.: Äspö Hard Rock Laboratory: Evaluation of the combined longterm pumping and tracer test (LPT2) in borehole KAS06. SKB Technical Report 92-32 (1992). – reference: [27] 辻 隆司, 横井 悟: 北海道天北地域における新第三系珪質岩中の炭化水素トラップ. 石油技術協会誌 59, pp.283-295 (1994). – reference: [82] 電力中央研究所: 平成22年度地層処分技術調査等委託費(地層処分共通技術調査:ボーリング技術高度化開発)成果報告書. 経済産業省資源エネルギー庁 (2011). – reference: [64] 須甲武志, 高野 仁, 内田雅大, 関 陽児, 伊藤一誠, 渡部芳夫, 宗像雅弘, 田中忠夫, 天野健二: 幌延深地層研究施設周辺の地質環境情報に基づく地下水流動評価手法の検証に関する研究. JNES-RE-2013-9032, 原子力安全基盤機構 (2014). – reference: [75] 今井 久, 山下 亮, 雨宮 清, 塩崎 功: 堆積岩地域における広域地下水流動解析手法に関する検討. JNC TJ1410 2001-002, 核燃料サイクル開発機構 (2001). – reference: [60] Hjerne, C., Nordqvist, R., Harrström, H. and Geosigma, A.B.: Compilation and analyses of results from cross-hole tracer tests with conservative tracers. SKB Technical Report R-09-28 (2010). – reference: [83] Ishii, E.: Preliminary assessment of the highest potential transmissivity of fractures in fault zones by core logging. Eng. Geol. 221, pp.124-132 (2017). – reference: [15] Posiva Oy: Olkiluoto Site Description 2011. Eurajoki, Finland (2012). – reference: [66] 東中基倫, 津久井朗太, 太田陽一: 幌延深地層研究計画における反射法地震探査を用いた地質構造調査. JNC TJ1410 2002-002, 核燃料サイクル開発機構 (2002). – reference: [80] 真田祐幸, 丹生屋純夫, 松井裕哉, 藤井義明: 堆積履歴が幌延地域に分布する珪質岩の力学的特性や微視的構造変化に及ぼす影響. Journal of the Mining and Materials Processing Institute of Japan 125, pp.521-529 (2009). – reference: [17] Lewis-Brown, J.C., Carleton, G.B. and Imbrigiotta, T.E.: Hydraulic and solute-transport properties and simulated advective transport of contaminated ground water in a fractured-rock aquifer at the Naval Air Warfare Center, West Trenton, New Jersey, 2003. U.S. Geological Survey Scientific Investigations Report 2005-5049 (2006). – reference: [73] 日本原子力研究開発機構: 平成28年度地層処分技術調査等事業地質環境長期安定性評価確証技術開発報告書. 経済産業省資源エネルギー庁 (2017). – reference: [18] Schulze-Makuch, D., Carlson, D.A., Cherkauer, D.S. and Malik, P.: Scale dependency of hydraulic conductivity in heterogeneous media. Groundwater 37, pp.904-919 (1999). – reference: [49] 菱谷智幸, 西垣 誠, 橋本 学: 物質移動を伴う密度依存地下水流の3次元数値解析手法に関する研究. 土木学会論文集 638, pp.59-69 (1999). – reference: [30] Ishii, E.: Assessment of hydraulic connectivity of fractures in mudstones by single-borehole investigations. Water Resour. Res. 54, pp.3335-3356 (2018). – reference: [33] Ota, K., Abe, H. and Kunimaru, T.: Horonobe underground research laboratory project synthesis of phase I investigations 2001-2005 volume "geoscientific research". JAEA-Research 2010-068, 日本原子力研究開発機構 (2011). – reference: [48] 西垣 誠, 菱谷智幸, 橋本 学, 河野伊一郎: 飽和・不飽和領域における物質移動を伴う密度依存地下水流の数値解析手法に関する研究. 土木学会論文集 511, pp.135-144 (1995). – reference: [28] Kurikami, H., Takeuchi, R. and Yabuuchi, S.: Scale effect and heterogeneity of hydraulic conductivity of sedimentary rocks at Horonobe URL site. Physics and Chemistry of the Earth 33, pp.S37-S44 (2008). – reference: [53] Snow, D.T.: Rock fracture spacings, openings, and porosities. J. Soil Mech. Found. Div. 94, pp.73-92 (1968). – reference: [76] 動力炉・核燃料開発事業団: 貯蔵工学センター立地環境調査 – 深層ボーリング報告書. PNC TJ1027 98-012, 動力炉・核燃料開発事業団 (1987). – reference: [79] 真田祐幸, 丹生屋純夫, 松井裕哉: HDB-9〜11孔における岩盤力学的調査結果及び研究所設置地区の岩盤力学的概念モデル更新. JAEA-Research 2008-069, 日本原子力研究開発機構 (2008). – reference: [81] 日本原子力研究開発機構, 電力中央研究所: 平成31年度高レベル放射性廃棄物等の地層処分に関する技術開発事業-岩盤中地下水流動評価技術高度化開発-報告書. 経済産業省資源エネルギー庁 (2020). – reference: [21] 小椋伸幸, 掃部 満: 天北・羽幌地域の石油地質-深部構造特性と炭化水素ポテンシャル. 石油技術協会誌 57, pp.32-44 (1992). – reference: [32] 牧野仁史, 澤田淳, 前川恵輔, 柴田雅博, 笹本広, 吉川英樹, 若杉圭一郎, 小尾繁, 濱克宏, 操上広志, 國丸貴紀, 石井英一, 竹内竜史, 中野勝志, 三枝博光, 竹内真司, 岩月輝希, 太田久仁雄, 瀬尾俊弘: 地質環境の調査から物質移行解析にいたる一連の調査・解析技術-2つの深地層の研究施設計画の地上からの調査研究段階(第1段階)における地質環境情報に基づく検討-. JNC TN1400 2005-021, 核燃料サイクル開発機構 (2005). – reference: [8] Zuber, A. and Motyka, J.: Hydraulic parameters and solute velocities in triple-porosity karstic-fissured-porous carbonate aquifers: Case studies in southern Poland. Environ. Geol. 34, pp.243-250 (1998). – reference: [19] Jiang, X.W., Wang, X.S. and Wan, L.: Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. Hydrogeol. J. 18, pp.839-850 (2010). – reference: [29] 操上広志, 竹内竜史, 瀬尾昭治: 幌延深地層研究計画における地下水流動解析. JNC TN5400 2005-003, 核燃料サイクル開発機構 (2005). – reference: [12] Zheng, C. and Bennett, G.D.: Applied contaminant transport modeling. Wiley, New York (2002). – reference: [67] 安江健一, 石井英一, 浴 信博, 福島龍朗: 北海道北部,幌延町北進地域の段丘堆積物の特徴. 地球惑星科学関連学会2004年合同大会, 千葉, 2004年5月9〜13日, Q042-P004 (2004). – reference: [39] 日本原子力研究開発機構: 平成27年度地層処分技術調査等事業地質環境長期安定性評価確証技術開発報告書. 経済産業省資源エネルギー庁 (2016). – reference: [13] Worthington, S.R.H.: Estimating effective porosity in bedrock aquifers. Groundwater 60, pp.169-179 (2022). – reference: [41] 酒井利啓,松岡稔幸: 幌延地域を対象とした地表踏査および地形データにもとづく地質分布の推定. JAEA-Research 2015-004, 日本原子力研究開発機構 (2015). – reference: [6] 尾上博則, 笹尾英嗣, 三枝博光, 小坂寛: 過去から現在までの長期的な地形変化が地下水流動特性に与える影響の解析的評価の試み. 日本原子力学会和文論文誌, 8, pp.40-53 (2009). – reference: [31] Nakata, K., Hasegawa, T., Oyama, T., Ishii, E., Miyakawa, K. and Sasamoto, H.: An evaluation of the long-term stagnancy of porewater in the Neogene sedimentary rocks in northern Japan. Geofluids 2018, 7823195 (2018). – reference: [68] 新里忠史, 舟木泰智, 安江健一: 北海道北部,幌延地域における後期鮮新世以降の古地理と地質構造発達史. 地質学雑誌 113 補遺, pp.119-135 (2007). – ident: 2 – ident: 6 doi: 10.3327/taesj.J07.053 – ident: 70 doi: 10.1144/geoenergy2023-056 – ident: 39 – ident: 64 – ident: 68 – ident: 63 doi: 10.1016/j.jsg.2011.11.001 – ident: 12 – ident: 77 doi: 10.1029/2011JB008279 – ident: 74 – ident: 19 doi: 10.1007/s10040-010-0575-3 – ident: 10 doi: 10.1016/j.jhydrol.2015.08.002 – ident: 78 – ident: 83 doi: 10.1016/j.enggeo.2017.02.026 – ident: 60 – ident: 65 doi: 10.1029/WR017i002p00421 – ident: 49 – ident: 45 – ident: 26 – ident: 31 doi: 10.1155/2018/7823195 – ident: 41 – ident: 22 – ident: 28 doi: 10.1016/j.pce.2008.10.016 – ident: 69 – ident: 5 doi: 10.1007/s10040-023-02714-6 – ident: 71 doi: 10.2343/geochemj.GJ23014 – ident: 13 doi: 10.1111/gwat.13171 – ident: 59 – ident: 21 doi: 10.3720/japt.57.32 – ident: 38 – ident: 1 doi: 10.3327/jaesjb.64.1_46 – ident: 54 – ident: 82 – ident: 58 – ident: 75 – ident: 34 doi: 10.5110/jjseg.47.68 – ident: 8 doi: 10.1007/s002540050276 – ident: 79 – ident: 48 – ident: 44 – ident: 23 – ident: 40 – ident: 66 – ident: 43 – ident: 4 – ident: 17 doi: 10.3133/sir20055049 – ident: 20 doi: 10.1002/hyp.13520 – ident: 56 doi: 10.1016/j.jhydrol.2012.04.061 – ident: 57 doi: 10.1002/2014JB011756 – ident: 72 – ident: 33 – ident: 14 – ident: 37 doi: 10.1016/j.apgeochem.2023.105737 – ident: 9 doi: 10.1007/s10040-022-02576-4 – ident: 81 – ident: 76 – ident: 30 doi: 10.1029/2018WR022556 – ident: 24 – ident: 7 – ident: 47 – ident: 27 doi: 10.3720/japt.59.283 – ident: 55 doi: 10.1029/2007WR006441 – ident: 42 – ident: 3 – ident: 67 – ident: 80 doi: 10.2473/journalofmmij.125.521 – ident: 18 doi: 10.1111/j.1745-6584.1999.tb01190.x – ident: 51 doi: 10.1016/j.gete.2022.100311 – ident: 53 doi: 10.1061/JSFEAQ.0001097 – ident: 36 – ident: 73 – ident: 11 – ident: 62 doi: 10.1016/j.ijrmms.2017.10.017 – ident: 52 – ident: 15 – ident: 32 – ident: 16 doi: 10.1016/j.enggeo.2018.08.008 – ident: 29 – ident: 61 doi: 10.1144/geoenergy2023-047 – ident: 35 doi: 10.1007/s10040-022-02466-9 – ident: 46 doi: 10.5917/jagh.52.381 – ident: 50 doi: 10.1007/s10040-023-02628-3 – ident: 25 |
SSID | ssj0003306145 ssib008483848 |
Score | 2.2766395 |
Snippet | Groundwater flow analysis is used to evaluate groundwater travel times and pathways over several kilometers to several tens of kilometers, covering the... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 82 |
SubjectTerms | Fractured mudstone Groundwater-flow analysis Kinematic porosity Sedimentary rock |
Title | Effective porosity in groundwater flow analysis for fractured sedimentary rocks: Case studies of the Koetoi and Wakkanai formations in Horonobe, Hokkaido, Japan |
URI | https://www.jstage.jst.go.jp/article/jnuce/31/2/31_82/_article/-char/en |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Nuclear Fuel Cycle and Environment, 2024/12/15, Vol.31(2), pp.82-95 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK4IEXBALE-JIfEC9tShPnk7eo2pRSbRKwaeMpShxH81olqGuEul_Df-OPcK-duNnUSYOXqHUdp-09uffaOfeYkA9BhrJYIbf8wo8sl7vMypibWW7EHVaULndKnCgeHfvJqfvl3DsfDP70WEvNOh_z6511Jf9jVWgDu2KV7D9Y1gwKDfAa7AtHsDAc72VjLT2M3B_IomvFrpDVEAs1quJXhvKH5bJGym8rPIKUwhLLohpknV9B3FLU8dVmCGFsochxU4hqSnNWajVazEvntVjXUj1mOMsWCxhOboseFZ82QR2EOleLo0kNXWShn-hAKK7uyH-PUUk5Ww0PG7EcTjfwRl3hYFt5Z8Aw-xHP47NYsz-um40JJbjaNlPuXEp-IU3zUaxaE3mFe0UZ6M6-6fbvuNLQ9Bc8HCWrqEs-Wx8dhq4VeHoPmrHY0dY69ja8yN78Wntpvd1RG-_1Hp-3IwljDj7LvqzgBhsze-yk3Ul9xe5bkdTwG2FmhQOk6vSU2Sme_oA8dIJAcQnmX0OzEMgYTsqRamt-hNaCxRE-3fgCN3KnR5cwfeiohyobOnlKnrRmpLHG5DMyENVz8tvgkXZ4pLKiPTxSxCPt8EgBRNTgkfbwSBUeP1NEI23RSOuSAhqpRiMMUtAOjXSLRrxgh8YR7bA4ogqJL8jp4cHJNLHaHUAsbkOUtjhjts8zt7AnXJQez_0g8CNHiAmkmajUKHyncGyGEk6Q-kd5HuXCYzApF-BjeMhekr2qrsQrQv2ccS7yALnHLqroFhyimfDKic8jmBTsk1H336a8lcfHXVqW6U5j7pOPpvtPrQtzV8dAG8p0a91FvxscQsd8gPWW4N5e3_cSb8jj7X3yluytV414B6nyOn-voPYXfkDIBQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+porosity+in+groundwater+flow+analysis+for+fractured+sedimentary+rocks%3A+Case+studies+of+the+Koetoi+and+Wakkanai+formations+in+Horonobe%2C+Hokkaido%2C+Japan&rft.jtitle=Journal+of+Nuclear+Fuel+Cycle+and+Environment&rft.au=MIYAKAWA%2C+Kazuya&rft.au=ISHII%2C+Eiichi&rft.au=IMAI%2C+Hisashi&rft.au=HIRAI%2C+Satoru&rft.date=2024-12-15&rft.issn=1884-7579&rft.eissn=1884-7579&rft.volume=31&rft.issue=2&rft.spage=82&rft.epage=95&rft_id=info:doi/10.3327%2Fjnuce.31.2_82&rft.externalDBID=n%2Fa&rft.externalDocID=10_3327_jnuce_31_2_82 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-7579&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-7579&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-7579&client=summon |