Collaborative Trajectory Optimization for Multitarget Tracking in Airborne Radar Network With Missing Data
In this paper, an effective collaborative trajectory optimization (CTO) strategy is proposed for multitarget tracking in airborne radar networks with missing data. Missing data may occur during data exchange between radar nodes and a fusion center (FC) due to unreliability of communication channels....
Saved in:
Published in | IEEE transactions on signal processing Vol. 73; pp. 1048 - 1064 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2025.3540798 |
Cover
Loading…
Abstract | In this paper, an effective collaborative trajectory optimization (CTO) strategy is proposed for multitarget tracking in airborne radar networks with missing data. Missing data may occur during data exchange between radar nodes and a fusion center (FC) due to unreliability of communication channels. The CTO strategy aims to enhance the overall multi-target tracking performance by collaboratively optimizing the trajectories of airborne radars and the FC. In this paper, we derive the posterior Cramér-Rao lower bound (PCRLB) with missing data to evaluate the target tracking performance. On this basis, to maximize the target tracking performance while considering dynamics, collision avoidance, and communication distance constraints, we formulate the CTO optimization problem. The formulated problem is non-convex and internally coupled, which is challenging to solve directly. We decompose the CTO problem into two subproblems and devise an alternating optimization method. Specifically, approximation, and successive convex approximation are applied to make the subproblems solvable. Then, the two subproblems are solved alternately to realize the collaborative trajectory optimization of radars and the FC. Simulation results demonstrate that the proposed CTO strategy achieves better target tracking performance as compared with other benchmark strategies. |
---|---|
AbstractList | In this paper, an effective collaborative trajectory optimization (CTO) strategy is proposed for multitarget tracking in airborne radar networks with missing data. Missing data may occur during data exchange between radar nodes and a fusion center (FC) due to unreliability of communication channels. The CTO strategy aims to enhance the overall multi-target tracking performance by collaboratively optimizing the trajectories of airborne radars and the FC. In this paper, we derive the posterior Cramér-Rao lower bound (PCRLB) with missing data to evaluate the target tracking performance. On this basis, to maximize the target tracking performance while considering dynamics, collision avoidance, and communication distance constraints, we formulate the CTO optimization problem. The formulated problem is non-convex and internally coupled, which is challenging to solve directly. We decompose the CTO problem into two subproblems and devise an alternating optimization method. Specifically, approximation, and successive convex approximation are applied to make the subproblems solvable. Then, the two subproblems are solved alternately to realize the collaborative trajectory optimization of radars and the FC. Simulation results demonstrate that the proposed CTO strategy achieves better target tracking performance as compared with other benchmark strategies. |
Author | Hu, Juan Zuo, Lei Lan, Zhengyu Gao, Yongchan Varshney, Pramod K. |
Author_xml | – sequence: 1 givenname: Juan orcidid: 0000-0003-0671-0153 surname: Hu fullname: Hu, Juan email: jhu24@stu.xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 2 givenname: Lei orcidid: 0000-0002-7478-3648 surname: Zuo fullname: Zuo, Lei email: lzuo@mail.xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 3 givenname: Pramod K. orcidid: 0000-0003-4504-5088 surname: Varshney fullname: Varshney, Pramod K. email: varshney@syr.edu organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA – sequence: 4 givenname: Zhengyu orcidid: 0000-0001-5173-167X surname: Lan fullname: Lan, Zhengyu email: lanzhengyu@stu.xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 5 givenname: Yongchan orcidid: 0000-0002-9735-5224 surname: Gao fullname: Gao, Yongchan email: ycgao@xidian.edu.cn organization: School of Electronic Engineering, Xidian University, Xi'an, China |
BookMark | eNpNkD1PwzAQhi0EEhTYGRgsMaf4EjtOxqp8SuVDUARbdHEuxWkbF8cFwa8nVRmY7tXpee-kZ8B2W9cSYycghgAiP58-Pw5jEathoqTQebbDDiCXEAmp090-C5VEKtNv-2zQdY0QIGWeHrBm7BYLLJ3HYD-JTz02ZILz3_xhFezS_vR71_LaeX63XgQb0M8obDgzt-2M25aPrO_7LfEnrNDzewpfzs_5qw3v_M523Qa7wIBHbK_GRUfHf_OQvVxdTsc30eTh-nY8mkQGtAoRkUFJMdUmN2WWllhrkqAxRh1XZZIi5KBrrdBUFWnMjZClRKkUQJbqTCSH7Gx7d-Xdx5q6UDRu7dv-ZZGAjpNYJTH0lNhSxruu81QXK2-X6L8LEMXGaNEbLTZGiz-jfeV0W7FE9A_PMgGgkl9Lv3YB |
CODEN | ITPRED |
Cites_doi | 10.1109/JSYST.2021.3116020 10.1109/TAES.2015.140044 10.1109/TAES.2007.4285352 10.1109/MAES.2021.3052312 10.1109/TWC.2023.3304900 10.1016/j.sigpro.2023.108973 10.1109/TGRS.2020.2998814 10.1109/TAES.2019.2949384 10.1109/TGRS.2023.3239952 10.1109/TSP.2024.3352915 10.1109/TAC.2008.921012 10.1016/j.automatica.2016.01.061 10.1109/JSEN.2011.2167964 10.1016/j.sigpro.2022.108689 10.1109/TAES.2024.3368378 10.1109/TSP.2016.2573767 10.1109/cec.2005.1554897 10.1109/TSP.2021.3101018 10.1109/TAES.2021.3138869 10.1109/TIT.1969.1054329 10.1109/ICECS.2018.8617880 10.1109/TSP.2023.3265882 10.1109/SAHCN.2004.1381954 10.1109/TAC.2017.2781374 10.1109/ICT.2018.8464879 10.1109/78.668800 10.1109/COMST.2021.3103044 10.1109/JIOT.2022.3233576 10.1109/CISDA.2009.5356539 10.1109/TAES.2024.3367662 10.1109/TSP.2021.3051743 10.1109/TAC.2004.834121 10.1109/INFCOM.2010.5461926 10.1201/9781439883136-12 10.1080/03081087.2014.891588 10.1109/JPROC.2006.887306 10.1109/LCOMM.2018.2849718 10.1109/MAES.2019.2957847 10.1109/RADAR.2008.4720926 10.1109/9780470544198 10.1109/TAES.2023.3328799 10.1109/MSP.2018.2822847 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TSP.2025.3540798 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 1064 |
ExternalDocumentID | 10_1109_TSP_2025_3540798 10880115 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62371379; 62371447 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c175t-eeca4e2efc9cb86baf7e417a2a72db36a1917f75acdde7a9c04b4a45511867803 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Tue Jul 22 18:41:23 EDT 2025 Tue Jul 01 05:25:41 EDT 2025 Wed Aug 27 01:49:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c175t-eeca4e2efc9cb86baf7e417a2a72db36a1917f75acdde7a9c04b4a45511867803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4504-5088 0000-0001-5173-167X 0000-0002-7478-3648 0000-0002-9735-5224 0000-0003-0671-0153 |
PQID | 3172325321 |
PQPubID | 85478 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3172325321 ieee_primary_10880115 crossref_primary_10_1109_TSP_2025_3540798 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 Boyd (ref44) 2013 ref21 ref28 Gunawan (ref43) 2002; 55 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref15 doi: 10.1109/JSYST.2021.3116020 – ident: ref32 doi: 10.1109/TAES.2015.140044 – ident: ref40 doi: 10.1109/TAES.2007.4285352 – ident: ref3 doi: 10.1109/MAES.2021.3052312 – ident: ref26 doi: 10.1109/TWC.2023.3304900 – ident: ref29 doi: 10.1016/j.sigpro.2023.108973 – ident: ref10 doi: 10.1109/TGRS.2020.2998814 – ident: ref11 doi: 10.1109/TAES.2019.2949384 – ident: ref14 doi: 10.1109/TGRS.2023.3239952 – ident: ref28 doi: 10.1109/TSP.2024.3352915 – ident: ref21 doi: 10.1109/TAC.2008.921012 – ident: ref23 doi: 10.1016/j.automatica.2016.01.061 – ident: ref4 doi: 10.1109/JSEN.2011.2167964 – ident: ref8 doi: 10.1016/j.sigpro.2022.108689 – ident: ref9 doi: 10.1109/TAES.2024.3368378 – year: 2013 ident: ref44 article-title: Convex Optimization – ident: ref5 doi: 10.1109/TSP.2016.2573767 – ident: ref12 doi: 10.1109/cec.2005.1554897 – ident: ref38 doi: 10.1109/TSP.2021.3101018 – ident: ref39 doi: 10.1109/TAES.2021.3138869 – volume: 55 start-page: 53 issue: 1 year: 2002 ident: ref43 article-title: On n-inner products, n-norms, and the Cauchy–Schwarz inequality publication-title: Sci. Math. Japn. – ident: ref19 doi: 10.1109/TIT.1969.1054329 – ident: ref36 doi: 10.1109/ICECS.2018.8617880 – ident: ref13 doi: 10.1109/TSP.2023.3265882 – ident: ref25 doi: 10.1109/SAHCN.2004.1381954 – ident: ref24 doi: 10.1109/TAC.2017.2781374 – ident: ref37 doi: 10.1109/ICT.2018.8464879 – ident: ref30 doi: 10.1109/78.668800 – ident: ref33 doi: 10.1109/COMST.2021.3103044 – ident: ref27 doi: 10.1109/JIOT.2022.3233576 – ident: ref41 doi: 10.1109/CISDA.2009.5356539 – ident: ref7 doi: 10.1109/TAES.2024.3367662 – ident: ref18 doi: 10.1109/TSP.2021.3051743 – ident: ref20 doi: 10.1109/TAC.2004.834121 – ident: ref17 doi: 10.1109/INFCOM.2010.5461926 – ident: ref34 doi: 10.1201/9781439883136-12 – ident: ref42 doi: 10.1080/03081087.2014.891588 – ident: ref22 doi: 10.1109/JPROC.2006.887306 – ident: ref35 doi: 10.1109/LCOMM.2018.2849718 – ident: ref2 doi: 10.1109/MAES.2019.2957847 – ident: ref6 doi: 10.1109/RADAR.2008.4720926 – ident: ref31 doi: 10.1109/9780470544198 – ident: ref16 doi: 10.1109/TAES.2023.3328799 – ident: ref1 doi: 10.1109/MSP.2018.2822847 |
SSID | ssj0014496 |
Score | 2.4646897 |
Snippet | In this paper, an effective collaborative trajectory optimization (CTO) strategy is proposed for multitarget tracking in airborne radar networks with missing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1048 |
SubjectTerms | Airborne radar airborne radar network Approximation Atmospheric modeling Collaboration Collision avoidance Data exchange Lower bounds Missing data Multiple target tracking Optimization Radar Radar cross-sections Radar data Radar networks Radar tracking Simulation Symbols Target tracking Tracking Trajectory optimization |
Title | Collaborative Trajectory Optimization for Multitarget Tracking in Airborne Radar Network With Missing Data |
URI | https://ieeexplore.ieee.org/document/10880115 https://www.proquest.com/docview/3172325321 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwHGIwUA5cOHSkbdKkx2kwTUgMxEPsVqWpKwaioNEhwa_HSTsYICRuPThVFDv2Z8cPQg4iUCrPBPMUGOHxiBkvznPtgYjiQDGVx67P7NkwGtzw05EY1cXqrhYGAFzyGXTsp3vLz57M1IbK8IajtPm2pHwRPbeqWOvzyYBzN4wL8ULoCSVHszdJFh9dX12gJxiIjg1yyFh9s0FuqMovTezMS3-VDGcbq7JKHjrTMu2Y9x89G_-98zWyUgNN2q0kY50sQLFBlufaD26S-96XELwCRbN172L4b_QcFcljXaFJEdbSqk7XZY1bOmMD7HRc0O54gusLoJc60xM6rJLK6e24vKNnyFNLdqxL3SQ3_ZPr3sCrZy94BgFF6QEYzSGA3MQmVVGqcwnclzrQMsjSMNLWz8ul0Ab1o9SxYTzlmgvrsKD9Y-EWaRRPBWwTigAPjAwi42c-F6FRPgMlM24YM6hwshY5nHEjea5abCTONWFxgpxLLOeSmnMt0rSHO0dXnWuLtGf8S-pL-JIgNEK8KMLA3_lj2S5Zsn-vQipt0ignU9hDkFGm-064PgCHec-N |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIADb8R45sCFQ0faJk16RDw0HhsIhtitSlNXDERBo0OCX4-TdjyFxK0HR43yOfYXx3YI2Y5AqTwTzFNghMcjZrw4z7UHIooDxVQeuz6z7U7UuuYnPdGri9VdLQwAuOQzaNpPd5efPZqhDZXhDkdt821J-QQ6fuFX5Voflwacu-e4kDGEnlCyN7qVZPFu9-oCz4KBaNowh4zVNy_knlX5ZYudgzmaJZ3R1Kq8kvvmsEyb5u1H18Z_z32OzNRUk-5VujFPxqBYINNfGhAukrv9TzV4AYqO685F8V_pOZqSh7pGkyKxpVWlrssbt3LGhthpv6B7_QGOL4Be6kwPaKdKK6c3_fKWthFVK3agS71Ero8Ou_str359wTNIKUoPwGgOAeQmNqmKUp1L4L7UgZZBloaRtie9XApt0EJKHRvGU64tLLZHnmLhMhkvHgtYIRQpHhgZRMbPfC5Co3wGSmbcMGbQ5GQNsjNCI3mqmmwk7nDC4gSRSyxySY1cgyzZxf0iV61rg6yP8EvqbficIDlCxijCwF_9Y9gWmWx122fJ2XHndI1M2T9VAZZ1Ml4OhrCBlKNMN52ivQOE9dLW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Trajectory+Optimization+for+Multitarget+Tracking+in+Airborne+Radar+Network+With+Missing+Data&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Hu%2C+Juan&rft.au=Zuo%2C+Lei&rft.au=Varshney%2C+Pramod+K.&rft.au=Lan%2C+Zhengyu&rft.date=2025&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=73&rft.spage=1048&rft.epage=1064&rft_id=info:doi/10.1109%2FTSP.2025.3540798&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2025_3540798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |