Copy-Move Detection in Optical Microscopy: A Segmentation Network and a Dataset
With increasing revelations of academic fraud, detecting forged experimental images in the biomedical field has become a public concern. The challenge lies in the fact that copy-move targets can include background tissue, small foreground objects, or both, which may be out of the training domain and...
Saved in:
Published in | IEEE signal processing letters Vol. 32; pp. 1106 - 1110 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With increasing revelations of academic fraud, detecting forged experimental images in the biomedical field has become a public concern. The challenge lies in the fact that copy-move targets can include background tissue, small foreground objects, or both, which may be out of the training domain and subject to unseen attacks, rendering standard object-detection-based approaches less effective. To address this, we reformulate the problem of detecting biomedical copy-move forgery regions as an intra-image co-saliency detection task and propose CMSeg-Net, a copy-move forgery segmentation network capable of identifying unseen duplicated areas. Built on a multi-resolution encoder-decoder architecture, CMSeg-Net incorporates self-correlation and correlation-assisted spatial-attention modules to detect intra-image regional similarities within feature tensors at each observation scale. This design helps distinguish even small copy-move targets in complex microscopic images from other similar objects. Furthermore, we created a copy-move forgery dataset of optical microscopic images, named FakeParaEgg, using open data from the ICIP 2022 Challenge to support CMSeg-Net's development and verify its performance. Extensive experiments demonstrate that our approach outperforms previous state-of-the-art methods on the FakeParaEgg dataset and other open copy-move detection datasets, including CASIA-CMFD , CoMoFoD , and CMF . |
---|---|
AbstractList | With increasing revelations of academic fraud, detecting forged experimental images in the biomedical field has become a public concern. The challenge lies in the fact that copy-move targets can include background tissue, small foreground objects, or both, which may be out of the training domain and subject to unseen attacks, rendering standard object-detection-based approaches less effective. To address this, we reformulate the problem of detecting biomedical copy-move forgery regions as an intra-image co-saliency detection task and propose CMSeg-Net, a copy-move forgery segmentation network capable of identifying unseen duplicated areas. Built on a multi-resolution encoder-decoder architecture, CMSeg-Net incorporates self-correlation and correlation-assisted spatial-attention modules to detect intra-image regional similarities within feature tensors at each observation scale. This design helps distinguish even small copy-move targets in complex microscopic images from other similar objects. Furthermore, we created a copy-move forgery dataset of optical microscopic images, named FakeParaEgg, using open data from the ICIP 2022 Challenge to support CMSeg-Net's development and verify its performance. Extensive experiments demonstrate that our approach outperforms previous state-of-the-art methods on the FakeParaEgg dataset and other open copy-move detection datasets, including CASIA-CMFD , CoMoFoD , and CMF . |
Author | Liao, Yuan-Rong Shao, Hao-Chiang Chuo, Yen-Liang Lin, Fong-Yi Tseng, Tse-Yu |
Author_xml | – sequence: 1 givenname: Hao-Chiang orcidid: 0000-0002-3749-234X surname: Shao fullname: Shao, Hao-Chiang email: shao.haochiang@gmail.com organization: Institute of Data Science and Information Computing, National Chung Hsing University, Taichung, Taiwan – sequence: 2 givenname: Yuan-Rong surname: Liao fullname: Liao, Yuan-Rong organization: SOE Technology Inc., Taipei, Taiwan – sequence: 3 givenname: Tse-Yu surname: Tseng fullname: Tseng, Tse-Yu organization: iGroup (Asia-Pacific) Ltd., Taiwan – sequence: 4 givenname: Yen-Liang surname: Chuo fullname: Chuo, Yen-Liang organization: Institute of Data Science and Information Computing, National Chung Hsing University, Taichung, Taiwan – sequence: 5 givenname: Fong-Yi orcidid: 0009-0001-1652-5237 surname: Lin fullname: Lin, Fong-Yi organization: Institute of Data Science and Information Computing, National Chung Hsing University, Taichung, Taiwan |
BookMark | eNpNkE1PAjEQhhuDiYDePXho4nmx7W63rTcC-JGAmKDnpttOzSJs192i4d-7CAdPM4fnncn7DFCvChUgdE3JiFKi7uar1xEjjI9Sngkm0jPUp5zLhKU57XU7ESRRisgLNGjbNSFEUsn7aDkJ9T5ZhG_AU4hgYxkqXFZ4WcfSmg1elLYJre2gezzGK_jYQhXNH_UC8Sc0n9hUDhs8NdG0EC_RuTebFq5Oc4jeH2Zvk6dkvnx8nozniaWCx6QoIM8K43xBM2AgpBTGG--dYyq3zhHwjEEhnciVBJtbkXHvWNcicxmxNh2i2-PduglfO2ijXoddU3UvdUqFVJSyjHcUOVKHEm0DXtdNuTXNXlOiD9p0p00ftOmTti5yc4yUAPAPV0RRJdJfKRhrdA |
CODEN | ISPLEM |
Cites_doi | 10.1109/CVPR.2019.00977 10.1109/ICIP46576.2022.9897267 10.1109/TCYB.2021.3124231 10.1109/TII.2020.2982705 10.1109/CVPRW.2019.00010 10.1109/CVPR.2009.5206848 10.1109/ICASSPW62465.2024.10627758 10.1016/j.jvcir.2017.04.004 10.1109/GlobalSIP.2018.8646594 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2018.00116 10.1126/science.adn7530 10.1109/TIFS.2018.2876837 10.1126/science.add9993 10.1109/CVPR.2018.00474 10.1109/TIFS.2015.2455334 10.1109/TIFS.2015.2423261 10.1007/978-3-030-58610-2_27 10.1109/TBME.2011.2175446 10.1007/978-3-030-01231-1_11 10.1109/TII.2023.3316180 10.1109/CVPR46437.2021.01349 10.1109/ChinaSIP.2013.6625374 10.1109/TIFS.2019.2957693 10.1109/TPAMI.2017.2699184 10.1038/s41598-022-19325-y 10.1109/TIP.2021.3132828 10.1126/science.adj9568 10.1128/mBio.00809-16 10.48550/ARXIV.1807.06521 10.1109/CVPR42600.2020.00473 10.1109/TMM.2023.3270629 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LSP.2025.3547273 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 1110 |
ExternalDocumentID | 10_1109_LSP_2025_3547273 10909197 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSTC grantid: 113-2221-E-005-070-MY3 – fundername: iGroup Asia-Pacifics – fundername: NSTC grantid: 113-2640-E-110-002 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c175t-bbe64badfb14e2e7887afaffdd296cdd0ef22eb8d7698ec6c745fd21074d40cc3 |
IEDL.DBID | RIE |
ISSN | 1070-9908 |
IngestDate | Thu Aug 14 17:27:36 EDT 2025 Tue Jul 01 05:15:57 EDT 2025 Wed Aug 27 01:38:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c175t-bbe64badfb14e2e7887afaffdd296cdd0ef22eb8d7698ec6c745fd21074d40cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3749-234X 0009-0001-1652-5237 |
PQID | 3178911245 |
PQPubID | 75747 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3178911245 ieee_primary_10909197 crossref_primary_10_1109_LSP_2025_3547273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE signal processing letters |
PublicationTitleAbbrev | LSP |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 (ref33) 2023 ref36 ref30 ref11 ref10 ref32 ref2 ref17 ref19 ref18 Liu (ref16) 2023 ref24 ref23 ref26 Tralic (ref31) 2013 ref25 ref20 ref22 ref21 ref28 (ref7) 2023 ref27 McCook (ref1) 2018 ref29 ref8 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref12 doi: 10.1109/CVPR.2019.00977 – ident: ref8 doi: 10.1109/ICIP46576.2022.9897267 – year: 2023 ident: ref33 article-title: Rembg – ident: ref18 doi: 10.1109/TCYB.2021.3124231 – ident: ref36 doi: 10.1109/TII.2020.2982705 – ident: ref13 doi: 10.1109/CVPRW.2019.00010 – ident: ref28 doi: 10.1109/CVPR.2009.5206848 – ident: ref30 doi: 10.1109/ICASSPW62465.2024.10627758 – ident: ref32 doi: 10.1016/j.jvcir.2017.04.004 – year: 2023 ident: ref16 article-title: CMFDFormer: Transformer-based copy-move forgery detection with continual learning – ident: ref5 doi: 10.1109/GlobalSIP.2018.8646594 – ident: ref35 doi: 10.1007/978-3-319-24574-4_28 – year: 2023 ident: ref7 article-title: ICIP 2022 Challenge: Parasitic EGG detection and classification in microscopic images – ident: ref10 doi: 10.1109/CVPR.2018.00116 – ident: ref4 doi: 10.1126/science.adn7530 – ident: ref22 doi: 10.1109/TIFS.2018.2876837 – ident: ref2 doi: 10.1126/science.add9993 – ident: ref25 doi: 10.1109/CVPR.2018.00474 – ident: ref20 doi: 10.1109/TIFS.2015.2455334 – year: 2018 ident: ref1 article-title: Cancer researcher at the Ohio State University resigns following multiple misconduct findings – ident: ref21 doi: 10.1109/TIFS.2015.2423261 – ident: ref23 doi: 10.1007/978-3-030-58610-2_27 – ident: ref29 doi: 10.1109/TBME.2011.2175446 – ident: ref11 doi: 10.1007/978-3-030-01231-1_11 – ident: ref19 doi: 10.1109/TII.2023.3316180 – ident: ref24 doi: 10.1109/CVPR46437.2021.01349 – ident: ref34 doi: 10.1109/ChinaSIP.2013.6625374 – ident: ref9 doi: 10.1109/TIFS.2019.2957693 – ident: ref27 doi: 10.1109/TPAMI.2017.2699184 – ident: ref37 doi: 10.1038/s41598-022-19325-y – ident: ref15 doi: 10.1109/TIP.2021.3132828 – ident: ref3 doi: 10.1126/science.adj9568 – ident: ref6 doi: 10.1128/mBio.00809-16 – ident: ref26 doi: 10.48550/ARXIV.1807.06521 – start-page: 49 volume-title: Proc. ELMAR-2013 year: 2013 ident: ref31 article-title: CoMoFodNew database for copy-move forgery detection – ident: ref14 doi: 10.1109/CVPR42600.2020.00473 – ident: ref17 doi: 10.1109/TMM.2023.3270629 |
SSID | ssj0008185 |
Score | 2.4364762 |
Snippet | With increasing revelations of academic fraud, detecting forged experimental images in the biomedical field has become a public concern. The challenge lies in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1106 |
SubjectTerms | attention co-saliency Copy-move forgery detection Correlation Datasets Decoding Encoders-Decoders Feature extraction Forgery Fraud Image segmentation Microscopy multiresolution Object recognition Optical imaging Optical microscopy optical microscopy images Tensors |
Title | Copy-Move Detection in Optical Microscopy: A Segmentation Network and a Dataset |
URI | https://ieeexplore.ieee.org/document/10909197 https://www.proquest.com/docview/3178911245 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62Jz34rFitkoMXD9vuI_uIt9JaithWqIXeljwmIuJu0a1Qf71JditVEbzlsFnCTDLfzOSbCUKXihGhSACOUspkq0LuaBiWTigDX9DYk6BMQn80joYzcjsP51Wxuq2FAQBLPoO2Gdq7fJmLpUmVdQyJkHo0rqGajtzKYq0vs2uQpyQYuo42scn6TtKlnbvpvY4E_bAdhMTg9TcMso-q_LLEFl4Ge2i8XljJKnluLwveFh8_ejb-e-X7aLdyNHG33BkHaAuyQ7Sz0X7wCE16-WLljPJ3wH0oLCcrw08ZnixsghuPDFnPlK2srnEXT-HxpSpUyvC4ZI9jlknMcJ8VGgyLBpoNbh56Q6d6YMER2msoHM4hIpxJxT0CPhhiIVNMKSl9GgkpXa0oH3gi44gmICIRk1BJ33A4JXGFCI5RPcszOEE48RiVOrQMPKYDOoip4jJiXkJDqp0qFTXR1Vrk6aLso5Ha-MOlqVZPatSTVuppooaR4MZ3pfCaqLVWUlqdtLdU-z-JNtg-CU__mHaGts3fy7xJC9WL1yWca0-i4Bd2B30C30HF0w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcGg5QB8gQqH1oRcOG_Zh7657i3go0CQgJZFyW_kxRgixiWCDFH49tneDgKpSbz6stdaMPd_M-JsxwC8jqDI0wcAY47JVTAYWhnXAdBIrnkUajUvoD4Zpb0IvpmzaFKv7WhhE9OQz7Lihv8vXM7VwqbIjRyLkEc8-wLoFfhbV5VovhtdhT00xDANrZPPVrWTIj_qjKxsLxqyTMOoQ-w0K-WdV_rLFHmDOtmC4WlrNK7ntLCrZUU_vujb-99o_w2bjapJuvTe-wBqWX2HjVQPCb3B5PJsvg8HsEckJVp6VVZKbklzOfYqbDBxdzxWuLH-TLhnh9V1TqlSSYc0fJ6LURJATUVk4rLZhcnY6Pu4FzRMLgbJ-QxVIiSmVQhsZUYzRUQuFEcZoHfNUaR1aVcUoc52lPEeVqowyo2PH4tQ0VCrZgVY5K3EXSB4Jrm1wmUTChnSYcSN1KqKcM27dKpO24XAl8mJed9IofAQS8sKqp3DqKRr1tGHbSfDVd7Xw2rC_UlLRnLWHwnpAuTXZMWV7_5j2Ez72xoN-0T8f_vkOn9yf6izKPrSq-wUeWL-ikj_8bnoGX37JHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copy-Move+Detection+in+Optical+Microscopy%3A+A+Segmentation+Network+and+a+Dataset&rft.jtitle=IEEE+signal+processing+letters&rft.au=Shao%2C+Hao-Chiang&rft.au=Liao%2C+Yuan-Rong&rft.au=Tseng%2C+Tse-Yu&rft.au=Chuo%2C+Yen-Liang&rft.date=2025&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=32&rft.spage=1106&rft.epage=1110&rft_id=info:doi/10.1109%2FLSP.2025.3547273&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2025_3547273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |