Copy-Move Detection in Optical Microscopy: A Segmentation Network and a Dataset

With increasing revelations of academic fraud, detecting forged experimental images in the biomedical field has become a public concern. The challenge lies in the fact that copy-move targets can include background tissue, small foreground objects, or both, which may be out of the training domain and...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 32; pp. 1106 - 1110
Main Authors Shao, Hao-Chiang, Liao, Yuan-Rong, Tseng, Tse-Yu, Chuo, Yen-Liang, Lin, Fong-Yi
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With increasing revelations of academic fraud, detecting forged experimental images in the biomedical field has become a public concern. The challenge lies in the fact that copy-move targets can include background tissue, small foreground objects, or both, which may be out of the training domain and subject to unseen attacks, rendering standard object-detection-based approaches less effective. To address this, we reformulate the problem of detecting biomedical copy-move forgery regions as an intra-image co-saliency detection task and propose CMSeg-Net, a copy-move forgery segmentation network capable of identifying unseen duplicated areas. Built on a multi-resolution encoder-decoder architecture, CMSeg-Net incorporates self-correlation and correlation-assisted spatial-attention modules to detect intra-image regional similarities within feature tensors at each observation scale. This design helps distinguish even small copy-move targets in complex microscopic images from other similar objects. Furthermore, we created a copy-move forgery dataset of optical microscopic images, named FakeParaEgg, using open data from the ICIP 2022 Challenge to support CMSeg-Net's development and verify its performance. Extensive experiments demonstrate that our approach outperforms previous state-of-the-art methods on the FakeParaEgg dataset and other open copy-move detection datasets, including CASIA-CMFD , CoMoFoD , and CMF .
AbstractList With increasing revelations of academic fraud, detecting forged experimental images in the biomedical field has become a public concern. The challenge lies in the fact that copy-move targets can include background tissue, small foreground objects, or both, which may be out of the training domain and subject to unseen attacks, rendering standard object-detection-based approaches less effective. To address this, we reformulate the problem of detecting biomedical copy-move forgery regions as an intra-image co-saliency detection task and propose CMSeg-Net, a copy-move forgery segmentation network capable of identifying unseen duplicated areas. Built on a multi-resolution encoder-decoder architecture, CMSeg-Net incorporates self-correlation and correlation-assisted spatial-attention modules to detect intra-image regional similarities within feature tensors at each observation scale. This design helps distinguish even small copy-move targets in complex microscopic images from other similar objects. Furthermore, we created a copy-move forgery dataset of optical microscopic images, named FakeParaEgg, using open data from the ICIP 2022 Challenge to support CMSeg-Net's development and verify its performance. Extensive experiments demonstrate that our approach outperforms previous state-of-the-art methods on the FakeParaEgg dataset and other open copy-move detection datasets, including CASIA-CMFD , CoMoFoD , and CMF .
Author Liao, Yuan-Rong
Shao, Hao-Chiang
Chuo, Yen-Liang
Lin, Fong-Yi
Tseng, Tse-Yu
Author_xml – sequence: 1
  givenname: Hao-Chiang
  orcidid: 0000-0002-3749-234X
  surname: Shao
  fullname: Shao, Hao-Chiang
  email: shao.haochiang@gmail.com
  organization: Institute of Data Science and Information Computing, National Chung Hsing University, Taichung, Taiwan
– sequence: 2
  givenname: Yuan-Rong
  surname: Liao
  fullname: Liao, Yuan-Rong
  organization: SOE Technology Inc., Taipei, Taiwan
– sequence: 3
  givenname: Tse-Yu
  surname: Tseng
  fullname: Tseng, Tse-Yu
  organization: iGroup (Asia-Pacific) Ltd., Taiwan
– sequence: 4
  givenname: Yen-Liang
  surname: Chuo
  fullname: Chuo, Yen-Liang
  organization: Institute of Data Science and Information Computing, National Chung Hsing University, Taichung, Taiwan
– sequence: 5
  givenname: Fong-Yi
  orcidid: 0009-0001-1652-5237
  surname: Lin
  fullname: Lin, Fong-Yi
  organization: Institute of Data Science and Information Computing, National Chung Hsing University, Taichung, Taiwan
BookMark eNpNkE1PAjEQhhuDiYDePXho4nmx7W63rTcC-JGAmKDnpttOzSJs192i4d-7CAdPM4fnncn7DFCvChUgdE3JiFKi7uar1xEjjI9Sngkm0jPUp5zLhKU57XU7ESRRisgLNGjbNSFEUsn7aDkJ9T5ZhG_AU4hgYxkqXFZ4WcfSmg1elLYJre2gezzGK_jYQhXNH_UC8Sc0n9hUDhs8NdG0EC_RuTebFq5Oc4jeH2Zvk6dkvnx8nozniaWCx6QoIM8K43xBM2AgpBTGG--dYyq3zhHwjEEhnciVBJtbkXHvWNcicxmxNh2i2-PduglfO2ijXoddU3UvdUqFVJSyjHcUOVKHEm0DXtdNuTXNXlOiD9p0p00ftOmTti5yc4yUAPAPV0RRJdJfKRhrdA
CODEN ISPLEM
Cites_doi 10.1109/CVPR.2019.00977
10.1109/ICIP46576.2022.9897267
10.1109/TCYB.2021.3124231
10.1109/TII.2020.2982705
10.1109/CVPRW.2019.00010
10.1109/CVPR.2009.5206848
10.1109/ICASSPW62465.2024.10627758
10.1016/j.jvcir.2017.04.004
10.1109/GlobalSIP.2018.8646594
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2018.00116
10.1126/science.adn7530
10.1109/TIFS.2018.2876837
10.1126/science.add9993
10.1109/CVPR.2018.00474
10.1109/TIFS.2015.2455334
10.1109/TIFS.2015.2423261
10.1007/978-3-030-58610-2_27
10.1109/TBME.2011.2175446
10.1007/978-3-030-01231-1_11
10.1109/TII.2023.3316180
10.1109/CVPR46437.2021.01349
10.1109/ChinaSIP.2013.6625374
10.1109/TIFS.2019.2957693
10.1109/TPAMI.2017.2699184
10.1038/s41598-022-19325-y
10.1109/TIP.2021.3132828
10.1126/science.adj9568
10.1128/mBio.00809-16
10.48550/ARXIV.1807.06521
10.1109/CVPR42600.2020.00473
10.1109/TMM.2023.3270629
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2025.3547273
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 1110
ExternalDocumentID 10_1109_LSP_2025_3547273
10909197
Genre orig-research
GrantInformation_xml – fundername: NSTC
  grantid: 113-2221-E-005-070-MY3
– fundername: iGroup Asia-Pacifics
– fundername: NSTC
  grantid: 113-2640-E-110-002
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c175t-bbe64badfb14e2e7887afaffdd296cdd0ef22eb8d7698ec6c745fd21074d40cc3
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Thu Aug 14 17:27:36 EDT 2025
Tue Jul 01 05:15:57 EDT 2025
Wed Aug 27 01:38:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c175t-bbe64badfb14e2e7887afaffdd296cdd0ef22eb8d7698ec6c745fd21074d40cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3749-234X
0009-0001-1652-5237
PQID 3178911245
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_3178911245
ieee_primary_10909197
crossref_primary_10_1109_LSP_2025_3547273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
(ref33) 2023
ref36
ref30
ref11
ref10
ref32
ref2
ref17
ref19
ref18
Liu (ref16) 2023
ref24
ref23
ref26
Tralic (ref31) 2013
ref25
ref20
ref22
ref21
ref28
(ref7) 2023
ref27
McCook (ref1) 2018
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.1109/CVPR.2019.00977
– ident: ref8
  doi: 10.1109/ICIP46576.2022.9897267
– year: 2023
  ident: ref33
  article-title: Rembg
– ident: ref18
  doi: 10.1109/TCYB.2021.3124231
– ident: ref36
  doi: 10.1109/TII.2020.2982705
– ident: ref13
  doi: 10.1109/CVPRW.2019.00010
– ident: ref28
  doi: 10.1109/CVPR.2009.5206848
– ident: ref30
  doi: 10.1109/ICASSPW62465.2024.10627758
– ident: ref32
  doi: 10.1016/j.jvcir.2017.04.004
– year: 2023
  ident: ref16
  article-title: CMFDFormer: Transformer-based copy-move forgery detection with continual learning
– ident: ref5
  doi: 10.1109/GlobalSIP.2018.8646594
– ident: ref35
  doi: 10.1007/978-3-319-24574-4_28
– year: 2023
  ident: ref7
  article-title: ICIP 2022 Challenge: Parasitic EGG detection and classification in microscopic images
– ident: ref10
  doi: 10.1109/CVPR.2018.00116
– ident: ref4
  doi: 10.1126/science.adn7530
– ident: ref22
  doi: 10.1109/TIFS.2018.2876837
– ident: ref2
  doi: 10.1126/science.add9993
– ident: ref25
  doi: 10.1109/CVPR.2018.00474
– ident: ref20
  doi: 10.1109/TIFS.2015.2455334
– year: 2018
  ident: ref1
  article-title: Cancer researcher at the Ohio State University resigns following multiple misconduct findings
– ident: ref21
  doi: 10.1109/TIFS.2015.2423261
– ident: ref23
  doi: 10.1007/978-3-030-58610-2_27
– ident: ref29
  doi: 10.1109/TBME.2011.2175446
– ident: ref11
  doi: 10.1007/978-3-030-01231-1_11
– ident: ref19
  doi: 10.1109/TII.2023.3316180
– ident: ref24
  doi: 10.1109/CVPR46437.2021.01349
– ident: ref34
  doi: 10.1109/ChinaSIP.2013.6625374
– ident: ref9
  doi: 10.1109/TIFS.2019.2957693
– ident: ref27
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref37
  doi: 10.1038/s41598-022-19325-y
– ident: ref15
  doi: 10.1109/TIP.2021.3132828
– ident: ref3
  doi: 10.1126/science.adj9568
– ident: ref6
  doi: 10.1128/mBio.00809-16
– ident: ref26
  doi: 10.48550/ARXIV.1807.06521
– start-page: 49
  volume-title: Proc. ELMAR-2013
  year: 2013
  ident: ref31
  article-title: CoMoFodNew database for copy-move forgery detection
– ident: ref14
  doi: 10.1109/CVPR42600.2020.00473
– ident: ref17
  doi: 10.1109/TMM.2023.3270629
SSID ssj0008185
Score 2.4364762
Snippet With increasing revelations of academic fraud, detecting forged experimental images in the biomedical field has become a public concern. The challenge lies in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1106
SubjectTerms attention
co-saliency
Copy-move forgery detection
Correlation
Datasets
Decoding
Encoders-Decoders
Feature extraction
Forgery
Fraud
Image segmentation
Microscopy
multiresolution
Object recognition
Optical imaging
Optical microscopy
optical microscopy images
Tensors
Title Copy-Move Detection in Optical Microscopy: A Segmentation Network and a Dataset
URI https://ieeexplore.ieee.org/document/10909197
https://www.proquest.com/docview/3178911245
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62Jz34rFitkoMXD9vuI_uIt9JaithWqIXeljwmIuJu0a1Qf71JditVEbzlsFnCTDLfzOSbCUKXihGhSACOUspkq0LuaBiWTigDX9DYk6BMQn80joYzcjsP51Wxuq2FAQBLPoO2Gdq7fJmLpUmVdQyJkHo0rqGajtzKYq0vs2uQpyQYuo42scn6TtKlnbvpvY4E_bAdhMTg9TcMso-q_LLEFl4Ge2i8XljJKnluLwveFh8_ejb-e-X7aLdyNHG33BkHaAuyQ7Sz0X7wCE16-WLljPJ3wH0oLCcrw08ZnixsghuPDFnPlK2srnEXT-HxpSpUyvC4ZI9jlknMcJ8VGgyLBpoNbh56Q6d6YMER2msoHM4hIpxJxT0CPhhiIVNMKSl9GgkpXa0oH3gi44gmICIRk1BJ33A4JXGFCI5RPcszOEE48RiVOrQMPKYDOoip4jJiXkJDqp0qFTXR1Vrk6aLso5Ha-MOlqVZPatSTVuppooaR4MZ3pfCaqLVWUlqdtLdU-z-JNtg-CU__mHaGts3fy7xJC9WL1yWca0-i4Bd2B30C30HF0w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcGg5QB8gQqH1oRcOG_Zh7657i3go0CQgJZFyW_kxRgixiWCDFH49tneDgKpSbz6stdaMPd_M-JsxwC8jqDI0wcAY47JVTAYWhnXAdBIrnkUajUvoD4Zpb0IvpmzaFKv7WhhE9OQz7Lihv8vXM7VwqbIjRyLkEc8-wLoFfhbV5VovhtdhT00xDANrZPPVrWTIj_qjKxsLxqyTMOoQ-w0K-WdV_rLFHmDOtmC4WlrNK7ntLCrZUU_vujb-99o_w2bjapJuvTe-wBqWX2HjVQPCb3B5PJsvg8HsEckJVp6VVZKbklzOfYqbDBxdzxWuLH-TLhnh9V1TqlSSYc0fJ6LURJATUVk4rLZhcnY6Pu4FzRMLgbJ-QxVIiSmVQhsZUYzRUQuFEcZoHfNUaR1aVcUoc52lPEeVqowyo2PH4tQ0VCrZgVY5K3EXSB4Jrm1wmUTChnSYcSN1KqKcM27dKpO24XAl8mJed9IofAQS8sKqp3DqKRr1tGHbSfDVd7Xw2rC_UlLRnLWHwnpAuTXZMWV7_5j2Ez72xoN-0T8f_vkOn9yf6izKPrSq-wUeWL-ikj_8bnoGX37JHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copy-Move+Detection+in+Optical+Microscopy%3A+A+Segmentation+Network+and+a+Dataset&rft.jtitle=IEEE+signal+processing+letters&rft.au=Shao%2C+Hao-Chiang&rft.au=Liao%2C+Yuan-Rong&rft.au=Tseng%2C+Tse-Yu&rft.au=Chuo%2C+Yen-Liang&rft.date=2025&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=32&rft.spage=1106&rft.epage=1110&rft_id=info:doi/10.1109%2FLSP.2025.3547273&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2025_3547273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon