Multilevel Knowledge Transmission for Object Detection in Rainy Night Weather Conditions

In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However, most of the CNN-based object detectors have been developed to operate under favorable weather conditions, limiting their ability to accurately d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 20; no. 9; pp. 11224 - 11232
Main Authors Le, Trung-Hieu, Huang, Shih-Chia, Hoang, Quoc-Viet
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However, most of the CNN-based object detectors have been developed to operate under favorable weather conditions, limiting their ability to accurately detect objects in rainy nighttime (RNT) scenes, thereby resulting in low performance. In this work, we introduce a multilevel knowledge transmission network (MKT-Net) to overcome the challenges of detecting objects with the interference of rain and night. Our proposed model accomplishes this objective by collaborating OD with rain removal (RR) and low-illumination enhancement (LE) tasks. Specifically, the MKT-Net is composed of three main subnetworks that share some shallow layers with each other: an OD subnetwork for performing object classification and localization, an RR subnetwork, and an LE subnetwork for generating clear features. To aggregate and transmit multiscale features generated by the RR and LE subnetworks to the OD subnetwork for boosting detection accuracy, we introduce two feature transmission modules with identical architectures. Extensive evaluation on various datasets has demonstrated the effectiveness of our proposed model, which outperformed competing methods by up to 25.43% and 15.26% in mean average precision on a collected RNT dataset and the published rain in driving dataset, respectively, while maintaining high detection speed.
AbstractList In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However, most of the CNN-based object detectors have been developed to operate under favorable weather conditions, limiting their ability to accurately detect objects in rainy nighttime (RNT) scenes, thereby resulting in low performance. In this work, we introduce a multilevel knowledge transmission network (MKT-Net) to overcome the challenges of detecting objects with the interference of rain and night. Our proposed model accomplishes this objective by collaborating OD with rain removal (RR) and low-illumination enhancement (LE) tasks. Specifically, the MKT-Net is composed of three main subnetworks that share some shallow layers with each other: an OD subnetwork for performing object classification and localization, an RR subnetwork, and an LE subnetwork for generating clear features. To aggregate and transmit multiscale features generated by the RR and LE subnetworks to the OD subnetwork for boosting detection accuracy, we introduce two feature transmission modules with identical architectures. Extensive evaluation on various datasets has demonstrated the effectiveness of our proposed model, which outperformed competing methods by up to 25.43% and 15.26% in mean average precision on a collected RNT dataset and the published rain in driving dataset, respectively, while maintaining high detection speed.
Author Huang, Shih-Chia
Hoang, Quoc-Viet
Le, Trung-Hieu
Author_xml – sequence: 1
  givenname: Trung-Hieu
  orcidid: 0000-0001-5766-4199
  surname: Le
  fullname: Le, Trung-Hieu
  email: hieult.ktmt@utehy.edu.vn
  organization: Faculty of Information Technology, Hung Yen University of Technology and Education, Hungyen, Vietnam
– sequence: 2
  givenname: Shih-Chia
  orcidid: 0000-0002-6896-3415
  surname: Huang
  fullname: Huang, Shih-Chia
  email: schuang@ntut.edu.tw
  organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
– sequence: 3
  givenname: Quoc-Viet
  orcidid: 0000-0003-2515-9213
  surname: Hoang
  fullname: Hoang, Quoc-Viet
  email: viethqict@utehy.edu.vn
  organization: Faculty of Information Technology, Hung Yen University of Technology and Education, Hungyen, Vietnam
BookMark eNpNkEtPwzAQhC1UJNrCnQMHS5xTvHbsxEdUXhWFSqgIblEe69ZV6hQ7BfXfk6gcOM1o9c2udkZk4BqHhFwCmwAwfbOczSac8XgihFZS8hMyBB1DxJhkg85LCZHgTJyRUQgbxkTChB6Sz5d93doav7Gmz675qbFaIV363IWtDcE2jprG00WxwbKld9h20g-to2-5dQf6alfrln5g3q7R02njKtsD4ZycmrwOePGnY_L-cL-cPkXzxeNsejuPSkhkG2ksK6MNqESlykCZQiFKAUaqoioEM6JQiQZIDcas5JyXnYOq4sBjk8runzG5Pu7d-eZrj6HNNs3eu-5kJoCBiLVSvKPYkSp9E4JHk-283eb-kAHL-v6yrr-s7y_766-LXB0jFhH_4TKGNBHiF4PqbeA
CODEN ITIICH
Cites_doi 10.1109/TII.2022.3233650
10.1109/TII.2022.3232765
10.1109/CVPR.2019.00396
10.l007/978-3-319-46448-0_2
10.1109/CVPR.2018.00263
10.1109/TITS.2018.2872502
10.1109/TIP.2003.819861
10.1109/CVPR52729.2023.00721
10.1109/TPAMI.2022.3167175
10.1109/CVPR.2017.186
10.1109/TIP.2019.2910412
10.1016/B978-0-323-90198-7.00009-4
10.1109/ICCV51070.2023.01205
10.1109/TPAMI.2020.2977911
10.1109/TII.2023.3263274
10.1109/TNNLS.2018.2876865
10.1109/CVPR.2019.00406
10.1109/ACCESS.2020.3007610
10.1109/TITS.2023.3235339
10.1109/CVPR.2018.00082
10.1109/ICCV.2017.324
10.1109/TNNLS.2021.3125679
10.1145/3343031.3351084
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3396552
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 11232
ExternalDocumentID 10_1109_TII_2024_3396552
10541873
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: 113-2918-I-027-002; 112-2221-E-027-090-MY3; 112-2622-E-027-015; 110-2221-E-027-046-MY3; 111-2314-B-002-297
– fundername: Hung Yen University of Technology and Education, Vietnam
  grantid: UTEHY.L.2024.05
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFS
ACIWK
AENEX
AETIX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c175t-9ecdf9f167686f1c81b3c31f56bdb30f3b679118fe40c222c8fe1dd2124f85203
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Thu Oct 10 21:52:46 EDT 2024
Wed Sep 11 14:02:58 EDT 2024
Wed Sep 11 06:07:48 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c175t-9ecdf9f167686f1c81b3c31f56bdb30f3b679118fe40c222c8fe1dd2124f85203
ORCID 0000-0001-5766-4199
0000-0002-6896-3415
0000-0003-2515-9213
PQID 3101349662
PQPubID 85507
PageCount 9
ParticipantIDs crossref_primary_10_1109_TII_2024_3396552
ieee_primary_10541873
proquest_journals_3101349662
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref16
Bochkovskiy (ref22) 2020
ref19
ref18
Wang (ref25) 2022
Gulrajani (ref17) 2017
Lv (ref29) 2018; 220
Wei (ref20) 2018
ref24
ref23
Kingma (ref26) 2014
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref5
Huang (ref6) 2021
References_xml – year: 2022
  ident: ref25
  article-title: Designing network design strategies through gradient path analysis
  contributor:
    fullname: Wang
– ident: ref1
  doi: 10.1109/TII.2022.3233650
– start-page: 5769
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref17
  article-title: Improved training of Wasserstein GANs
  contributor:
    fullname: Gulrajani
– ident: ref2
  doi: 10.1109/TII.2022.3232765
– ident: ref13
  doi: 10.1109/CVPR.2019.00396
– year: 2014
  ident: ref26
  article-title: Adam: A method for stochastic optimization
  contributor:
    fullname: Kingma
– ident: ref24
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref19
  doi: 10.1109/CVPR.2018.00263
– ident: ref7
  doi: 10.1109/TITS.2018.2872502
– ident: ref14
  doi: 10.1109/TIP.2003.819861
– year: 2018
  ident: ref20
  article-title: Deep retinex decomposition for low-light enhancement
  contributor:
    fullname: Wei
– volume: 220
  volume-title: Proc. Brit. Mach. Vis. Conf.
  year: 2018
  ident: ref29
  article-title: MBLLEN: Low-light image/video enhancement using CNNs
  contributor:
    fullname: Lv
– ident: ref21
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref30
  doi: 10.1109/TPAMI.2022.3167175
– ident: ref18
  doi: 10.1109/CVPR.2017.186
– ident: ref8
  doi: 10.1109/TIP.2019.2910412
– start-page: 283
  volume-title: Principles and Labs for Deep Learning
  year: 2021
  ident: ref6
  doi: 10.1016/B978-0-323-90198-7.00009-4
  contributor:
    fullname: Huang
– ident: ref28
  doi: 10.1109/ICCV51070.2023.01205
– ident: ref11
  doi: 10.1109/TPAMI.2020.2977911
– ident: ref3
  doi: 10.1109/TII.2023.3263274
– ident: ref4
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref9
  doi: 10.1109/CVPR.2019.00396
– ident: ref27
  doi: 10.1109/CVPR.2019.00406
– ident: ref10
  doi: 10.1109/ACCESS.2020.3007610
– ident: ref5
  doi: 10.1109/TITS.2023.3235339
– ident: ref15
  doi: 10.1109/CVPR.2018.00082
– year: 2020
  ident: ref22
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  contributor:
    fullname: Bochkovskiy
– ident: ref23
  doi: 10.1109/ICCV.2017.324
– ident: ref12
  doi: 10.1109/TNNLS.2021.3125679
– ident: ref16
  doi: 10.1145/3343031.3351084
SSID ssj0037039
Score 2.446435
Snippet In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 11224
SubjectTerms Artificial neural networks
Convolutional neural network (CNN)
Datasets
Detectors
Feature extraction
Loss measurement
low illumination
Meteorology
Night
object detection (OD)
Object recognition
Rain
rain removal (RR)
rainy nighttime (RNT)
Task analysis
Training
Weather
Title Multilevel Knowledge Transmission for Object Detection in Rainy Night Weather Conditions
URI https://ieeexplore.ieee.org/document/10541873
https://www.proquest.com/docview/3101349662
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLQ4ITPxKPqFC1IMrSim5R7NgSAqUI0gF-PWcnkQoIic1SHrLuznffPY3QOZc0l0bmAaGaBEwRHcgiLQLOGLEmV4LGrt_5firGc3a74IumWd33whhjfPGZCd3S5_KLpV65UBmccM6iNKEd1EmkrJu1WrVLQXSlH47Ko4DGhLY5SSIvZ5MJeIIxCymVgvP4mw3yl6r80sTevIx20LTdWF1V8hyuKhXqzx8zG_-981203QBNfFVLxh7aMOU-2lobP3iAFr779sWVDeG7NraGvfUC7rswGgZIix-Ui9Xga1P5sq0SP5XYpYU-8NR59vixRpF4uHTpbyfGPTQf3cyG46C5aSHQAB-qQBpdWGkjAc6HsJEGLEs1jSwXqlCUWKpEAloxtYYRDYhCwyoqCjB7zKYciH2IuuWyNEcIR8ZoDiYuZ5rBQ6LSOOEa_KqYWiUT20cXLe2z13qgRuYdESIz4FPm-JQ1fOqjniPl2ns1Ffto0HIra47cewY41Y1aFCI-_uOzE7Tp_l5XiA1Qt3pbmVOAFJU686L0BTl-yB8
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbAwpDjxo_GIeKilUJYiukW1Y0sIlCJIB_j1nJ1EKiAkNktJFOvufPfd0wAnQrGxsmocUWZoxDU1kcrTPBKcU2fHWrLE9zvfDWT3gd-MxKhuVg-9MNbaUHxm234Zcvn5xEx9qAxPuOBx2mHzsIjAOpVVu1ajeBkKrwrjUUUcsYSyJitJ1dmw10NfMOFtxpQUIvlmhcK1Kr90cTAw12swaLZW1ZU8t6elbpvPH1Mb_733dVitoSY5r2RjA-ZssQkrMwMIt2AU-m9ffOEQ6TfRNRLsF_LfB9IIglpyr320hlzaMhRuFeSpID4x9EEG3rcnjxWOJBcTnwD3grwND9dXw4tuVN-1EBkEEGWkrMmdcrFE90O62CCaZYbFTkida0Yd07KDejF1llODmMLgKs5zNHzcpQKJvQMLxaSwu0Bia41AIzfmhuNDqtOkIwx6VglzWnVcC04b2mev1UiNLLgiVGXIp8zzKav51IJtT8qZ9yoqtuCg4VZWH7r3DJGqH7YoZbL3x2fHsNQd3t1mt71Bfx-W_Z-qerEDWCjfpvYQAUapj4JYfQHb8Mtq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Knowledge+Transmission+for+Object+Detection+in+Rainy+Night+Weather+Conditions&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Le%2C+Trung-Hieu&rft.au=Huang%2C+Shih-Chia&rft.au=Hoang%2C+Quoc-Viet&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=20&rft.issue=9&rft.spage=11224&rft.epage=11232&rft_id=info:doi/10.1109%2FTII.2024.3396552&rft.externalDocID=10541873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon