Multilevel Knowledge Transmission for Object Detection in Rainy Night Weather Conditions
In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However, most of the CNN-based object detectors have been developed to operate under favorable weather conditions, limiting their ability to accurately d...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 20; no. 9; pp. 11224 - 11232 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However, most of the CNN-based object detectors have been developed to operate under favorable weather conditions, limiting their ability to accurately detect objects in rainy nighttime (RNT) scenes, thereby resulting in low performance. In this work, we introduce a multilevel knowledge transmission network (MKT-Net) to overcome the challenges of detecting objects with the interference of rain and night. Our proposed model accomplishes this objective by collaborating OD with rain removal (RR) and low-illumination enhancement (LE) tasks. Specifically, the MKT-Net is composed of three main subnetworks that share some shallow layers with each other: an OD subnetwork for performing object classification and localization, an RR subnetwork, and an LE subnetwork for generating clear features. To aggregate and transmit multiscale features generated by the RR and LE subnetworks to the OD subnetwork for boosting detection accuracy, we introduce two feature transmission modules with identical architectures. Extensive evaluation on various datasets has demonstrated the effectiveness of our proposed model, which outperformed competing methods by up to 25.43% and 15.26% in mean average precision on a collected RNT dataset and the published rain in driving dataset, respectively, while maintaining high detection speed. |
---|---|
AbstractList | In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However, most of the CNN-based object detectors have been developed to operate under favorable weather conditions, limiting their ability to accurately detect objects in rainy nighttime (RNT) scenes, thereby resulting in low performance. In this work, we introduce a multilevel knowledge transmission network (MKT-Net) to overcome the challenges of detecting objects with the interference of rain and night. Our proposed model accomplishes this objective by collaborating OD with rain removal (RR) and low-illumination enhancement (LE) tasks. Specifically, the MKT-Net is composed of three main subnetworks that share some shallow layers with each other: an OD subnetwork for performing object classification and localization, an RR subnetwork, and an LE subnetwork for generating clear features. To aggregate and transmit multiscale features generated by the RR and LE subnetworks to the OD subnetwork for boosting detection accuracy, we introduce two feature transmission modules with identical architectures. Extensive evaluation on various datasets has demonstrated the effectiveness of our proposed model, which outperformed competing methods by up to 25.43% and 15.26% in mean average precision on a collected RNT dataset and the published rain in driving dataset, respectively, while maintaining high detection speed. |
Author | Huang, Shih-Chia Hoang, Quoc-Viet Le, Trung-Hieu |
Author_xml | – sequence: 1 givenname: Trung-Hieu orcidid: 0000-0001-5766-4199 surname: Le fullname: Le, Trung-Hieu email: hieult.ktmt@utehy.edu.vn organization: Faculty of Information Technology, Hung Yen University of Technology and Education, Hungyen, Vietnam – sequence: 2 givenname: Shih-Chia orcidid: 0000-0002-6896-3415 surname: Huang fullname: Huang, Shih-Chia email: schuang@ntut.edu.tw organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 3 givenname: Quoc-Viet orcidid: 0000-0003-2515-9213 surname: Hoang fullname: Hoang, Quoc-Viet email: viethqict@utehy.edu.vn organization: Faculty of Information Technology, Hung Yen University of Technology and Education, Hungyen, Vietnam |
BookMark | eNpNkEtPwzAQhC1UJNrCnQMHS5xTvHbsxEdUXhWFSqgIblEe69ZV6hQ7BfXfk6gcOM1o9c2udkZk4BqHhFwCmwAwfbOczSac8XgihFZS8hMyBB1DxJhkg85LCZHgTJyRUQgbxkTChB6Sz5d93doav7Gmz675qbFaIV363IWtDcE2jprG00WxwbKld9h20g-to2-5dQf6alfrln5g3q7R02njKtsD4ZycmrwOePGnY_L-cL-cPkXzxeNsejuPSkhkG2ksK6MNqESlykCZQiFKAUaqoioEM6JQiQZIDcas5JyXnYOq4sBjk8runzG5Pu7d-eZrj6HNNs3eu-5kJoCBiLVSvKPYkSp9E4JHk-283eb-kAHL-v6yrr-s7y_766-LXB0jFhH_4TKGNBHiF4PqbeA |
CODEN | ITIICH |
Cites_doi | 10.1109/TII.2022.3233650 10.1109/TII.2022.3232765 10.1109/CVPR.2019.00396 10.l007/978-3-319-46448-0_2 10.1109/CVPR.2018.00263 10.1109/TITS.2018.2872502 10.1109/TIP.2003.819861 10.1109/CVPR52729.2023.00721 10.1109/TPAMI.2022.3167175 10.1109/CVPR.2017.186 10.1109/TIP.2019.2910412 10.1016/B978-0-323-90198-7.00009-4 10.1109/ICCV51070.2023.01205 10.1109/TPAMI.2020.2977911 10.1109/TII.2023.3263274 10.1109/TNNLS.2018.2876865 10.1109/CVPR.2019.00406 10.1109/ACCESS.2020.3007610 10.1109/TITS.2023.3235339 10.1109/CVPR.2018.00082 10.1109/ICCV.2017.324 10.1109/TNNLS.2021.3125679 10.1145/3343031.3351084 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2024.3396552 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 11232 |
ExternalDocumentID | 10_1109_TII_2024_3396552 10541873 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: 113-2918-I-027-002; 112-2221-E-027-090-MY3; 112-2622-E-027-015; 110-2221-E-027-046-MY3; 111-2314-B-002-297 – fundername: Hung Yen University of Technology and Education, Vietnam grantid: UTEHY.L.2024.05 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ACGFS ACIWK AENEX AETIX AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c175t-9ecdf9f167686f1c81b3c31f56bdb30f3b679118fe40c222c8fe1dd2124f85203 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Thu Oct 10 21:52:46 EDT 2024 Wed Sep 11 14:02:58 EDT 2024 Wed Sep 11 06:07:48 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c175t-9ecdf9f167686f1c81b3c31f56bdb30f3b679118fe40c222c8fe1dd2124f85203 |
ORCID | 0000-0001-5766-4199 0000-0002-6896-3415 0000-0003-2515-9213 |
PQID | 3101349662 |
PQPubID | 85507 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TII_2024_3396552 ieee_primary_10541873 proquest_journals_3101349662 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref16 Bochkovskiy (ref22) 2020 ref19 ref18 Wang (ref25) 2022 Gulrajani (ref17) 2017 Lv (ref29) 2018; 220 Wei (ref20) 2018 ref24 ref23 Kingma (ref26) 2014 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref5 Huang (ref6) 2021 |
References_xml | – year: 2022 ident: ref25 article-title: Designing network design strategies through gradient path analysis contributor: fullname: Wang – ident: ref1 doi: 10.1109/TII.2022.3233650 – start-page: 5769 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref17 article-title: Improved training of Wasserstein GANs contributor: fullname: Gulrajani – ident: ref2 doi: 10.1109/TII.2022.3232765 – ident: ref13 doi: 10.1109/CVPR.2019.00396 – year: 2014 ident: ref26 article-title: Adam: A method for stochastic optimization contributor: fullname: Kingma – ident: ref24 doi: 10.l007/978-3-319-46448-0_2 – ident: ref19 doi: 10.1109/CVPR.2018.00263 – ident: ref7 doi: 10.1109/TITS.2018.2872502 – ident: ref14 doi: 10.1109/TIP.2003.819861 – year: 2018 ident: ref20 article-title: Deep retinex decomposition for low-light enhancement contributor: fullname: Wei – volume: 220 volume-title: Proc. Brit. Mach. Vis. Conf. year: 2018 ident: ref29 article-title: MBLLEN: Low-light image/video enhancement using CNNs contributor: fullname: Lv – ident: ref21 doi: 10.1109/CVPR52729.2023.00721 – ident: ref30 doi: 10.1109/TPAMI.2022.3167175 – ident: ref18 doi: 10.1109/CVPR.2017.186 – ident: ref8 doi: 10.1109/TIP.2019.2910412 – start-page: 283 volume-title: Principles and Labs for Deep Learning year: 2021 ident: ref6 doi: 10.1016/B978-0-323-90198-7.00009-4 contributor: fullname: Huang – ident: ref28 doi: 10.1109/ICCV51070.2023.01205 – ident: ref11 doi: 10.1109/TPAMI.2020.2977911 – ident: ref3 doi: 10.1109/TII.2023.3263274 – ident: ref4 doi: 10.1109/TNNLS.2018.2876865 – ident: ref9 doi: 10.1109/CVPR.2019.00396 – ident: ref27 doi: 10.1109/CVPR.2019.00406 – ident: ref10 doi: 10.1109/ACCESS.2020.3007610 – ident: ref5 doi: 10.1109/TITS.2023.3235339 – ident: ref15 doi: 10.1109/CVPR.2018.00082 – year: 2020 ident: ref22 article-title: YOLOv4: Optimal speed and accuracy of object detection contributor: fullname: Bochkovskiy – ident: ref23 doi: 10.1109/ICCV.2017.324 – ident: ref12 doi: 10.1109/TNNLS.2021.3125679 – ident: ref16 doi: 10.1145/3343031.3351084 |
SSID | ssj0037039 |
Score | 2.446435 |
Snippet | In recent years, deep convolutional neural networks (CNNs) have been widely applied and have gained considerable success in object detection (OD). However,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 11224 |
SubjectTerms | Artificial neural networks Convolutional neural network (CNN) Datasets Detectors Feature extraction Loss measurement low illumination Meteorology Night object detection (OD) Object recognition Rain rain removal (RR) rainy nighttime (RNT) Task analysis Training Weather |
Title | Multilevel Knowledge Transmission for Object Detection in Rainy Night Weather Conditions |
URI | https://ieeexplore.ieee.org/document/10541873 https://www.proquest.com/docview/3101349662 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLQ4ITPxKPqFC1IMrSim5R7NgSAqUI0gF-PWcnkQoIic1SHrLuznffPY3QOZc0l0bmAaGaBEwRHcgiLQLOGLEmV4LGrt_5firGc3a74IumWd33whhjfPGZCd3S5_KLpV65UBmccM6iNKEd1EmkrJu1WrVLQXSlH47Ko4DGhLY5SSIvZ5MJeIIxCymVgvP4mw3yl6r80sTevIx20LTdWF1V8hyuKhXqzx8zG_-981203QBNfFVLxh7aMOU-2lobP3iAFr779sWVDeG7NraGvfUC7rswGgZIix-Ui9Xga1P5sq0SP5XYpYU-8NR59vixRpF4uHTpbyfGPTQf3cyG46C5aSHQAB-qQBpdWGkjAc6HsJEGLEs1jSwXqlCUWKpEAloxtYYRDYhCwyoqCjB7zKYciH2IuuWyNEcIR8ZoDiYuZ5rBQ6LSOOEa_KqYWiUT20cXLe2z13qgRuYdESIz4FPm-JQ1fOqjniPl2ns1Ffto0HIra47cewY41Y1aFCI-_uOzE7Tp_l5XiA1Qt3pbmVOAFJU686L0BTl-yB8 |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbAwpDjxo_GIeKilUJYiukW1Y0sIlCJIB_j1nJ1EKiAkNktJFOvufPfd0wAnQrGxsmocUWZoxDU1kcrTPBKcU2fHWrLE9zvfDWT3gd-MxKhuVg-9MNbaUHxm234Zcvn5xEx9qAxPuOBx2mHzsIjAOpVVu1ajeBkKrwrjUUUcsYSyJitJ1dmw10NfMOFtxpQUIvlmhcK1Kr90cTAw12swaLZW1ZU8t6elbpvPH1Mb_733dVitoSY5r2RjA-ZssQkrMwMIt2AU-m9ffOEQ6TfRNRLsF_LfB9IIglpyr320hlzaMhRuFeSpID4x9EEG3rcnjxWOJBcTnwD3grwND9dXw4tuVN-1EBkEEGWkrMmdcrFE90O62CCaZYbFTkida0Yd07KDejF1llODmMLgKs5zNHzcpQKJvQMLxaSwu0Bia41AIzfmhuNDqtOkIwx6VglzWnVcC04b2mev1UiNLLgiVGXIp8zzKav51IJtT8qZ9yoqtuCg4VZWH7r3DJGqH7YoZbL3x2fHsNQd3t1mt71Bfx-W_Z-qerEDWCjfpvYQAUapj4JYfQHb8Mtq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Knowledge+Transmission+for+Object+Detection+in+Rainy+Night+Weather+Conditions&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Le%2C+Trung-Hieu&rft.au=Huang%2C+Shih-Chia&rft.au=Hoang%2C+Quoc-Viet&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=20&rft.issue=9&rft.spage=11224&rft.epage=11232&rft_id=info:doi/10.1109%2FTII.2024.3396552&rft.externalDocID=10541873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |