Plug-and-Play sEMG-Driven Hand Gesture Recognition With Subdomain Adaptation for Exoskeleton Rehabilitation Gloves

Surface electromyography (sEMG)-based hand gesture recognition has garnered widespread attention in rehabilitation robotics due to its noninvasive measurement and intuitive motion decoding. However, affected by various factors such as individual differences, achieving cross-user adaptability and lon...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 10
Main Authors Zhong, Xiao-Cong, Wang, Qisong, Liu, Dan, Wang, Xuefu, Li, Rui, Wang, Yunfei, Zhang, Meiyan, Sun, Jinwei
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface electromyography (sEMG)-based hand gesture recognition has garnered widespread attention in rehabilitation robotics due to its noninvasive measurement and intuitive motion decoding. However, affected by various factors such as individual differences, achieving cross-user adaptability and long-term reliability for sEMG classification poses a significant challenge. Existing domain adaptation (DA) methods primarily focus on global distribution alignment to mitigate statistical distribution discrepancies across domains, yielding significant achievements. Nevertheless, these methods often overlook fine-grained category-level subdomain distribution alignment, leading to discriminative structure confusion and subdomain misalignment, which hinder cross-subject and cross-session gesture recognition. To tackle these issues, this article proposes a plug-and-play subdomain adaptation method called PPSDA to enhance the classification performance and generalization ability for gesture recognition across domains. Specifically, handcrafted features are extracted and utilized for source domain supervised training to preserve discriminative structures. Subsequently, source and target domains co-training is performed, wherein the local maximum mean discrepancy (LMMD) is minimized to capture fine-grained information on relevant subdomains for subdomain distribution alignment. To validate the performance of the proposed PPSDA, we recruited 12 healthy subjects and developed an sEMG-driven exoskeleton rehabilitation glove for cross-subject and cross-session evaluations. Extensive experimental results demonstrate the effectiveness and superiority of the proposed PPSDA over existing DA approaches.
AbstractList Surface electromyography (sEMG)-based hand gesture recognition has garnered widespread attention in rehabilitation robotics due to its noninvasive measurement and intuitive motion decoding. However, affected by various factors such as individual differences, achieving cross-user adaptability and long-term reliability for sEMG classification poses a significant challenge. Existing domain adaptation (DA) methods primarily focus on global distribution alignment to mitigate statistical distribution discrepancies across domains, yielding significant achievements. Nevertheless, these methods often overlook fine-grained category-level subdomain distribution alignment, leading to discriminative structure confusion and subdomain misalignment, which hinder cross-subject and cross-session gesture recognition. To tackle these issues, this article proposes a plug-and-play subdomain adaptation method called PPSDA to enhance the classification performance and generalization ability for gesture recognition across domains. Specifically, handcrafted features are extracted and utilized for source domain supervised training to preserve discriminative structures. Subsequently, source and target domains co-training is performed, wherein the local maximum mean discrepancy (LMMD) is minimized to capture fine-grained information on relevant subdomains for subdomain distribution alignment. To validate the performance of the proposed PPSDA, we recruited 12 healthy subjects and developed an sEMG-driven exoskeleton rehabilitation glove for cross-subject and cross-session evaluations. Extensive experimental results demonstrate the effectiveness and superiority of the proposed PPSDA over existing DA approaches.
Author Wang, Yunfei
Li, Rui
Sun, Jinwei
Wang, Xuefu
Wang, Qisong
Zhang, Meiyan
Zhong, Xiao-Cong
Liu, Dan
Author_xml – sequence: 1
  givenname: Xiao-Cong
  orcidid: 0000-0002-8141-4859
  surname: Zhong
  fullname: Zhong, Xiao-Cong
  email: zhongxiaocong@hit.edu.cn
  organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Qisong
  orcidid: 0000-0002-4974-0275
  surname: Wang
  fullname: Wang, Qisong
  email: wangqisong@hit.edu.cn
  organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Dan
  orcidid: 0000-0001-7536-1482
  surname: Liu
  fullname: Liu, Dan
  email: liudan@hit.edu.cn
  organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Xuefu
  orcidid: 0009-0003-3585-5295
  surname: Wang
  fullname: Wang, Xuefu
  email: 23s001018@stu.hit.edu.cn
  organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 5
  givenname: Rui
  orcidid: 0009-0007-1233-5667
  surname: Li
  fullname: Li, Rui
  email: 1040563936@qq.com
  organization: Heilongjiang Provincial Hospital, Harbin, China
– sequence: 6
  givenname: Yunfei
  orcidid: 0009-0003-9375-4812
  surname: Wang
  fullname: Wang, Yunfei
  email: 949135779@qq.com
  organization: Heilongjiang Provincial Hospital, Harbin, China
– sequence: 7
  givenname: Meiyan
  orcidid: 0000-0002-6045-3357
  surname: Zhang
  fullname: Zhang, Meiyan
  email: meiyanzhang@hit.edu.cn
  organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 8
  givenname: Jinwei
  orcidid: 0000-0002-2194-0574
  surname: Sun
  fullname: Sun, Jinwei
  email: jwsun@hit.edu.cn
  organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
BookMark eNpNkM1PwkAQxTdGEwG9e_DQxPPifrT7cSSIQAKRIMZjs223sFh2cbcl8t9bhIOnycx7bybz64Jr66wG4AGjPsZIPq-m8z5BJO7TBBEh8BXo4CThUDJGrkEHISygjBN2C7ohbBFCnMW8A_yiatZQ2QIuKnWMwmg-hi_eHLSNJu00GutQN15HS527tTW1cTb6NPUmem-ywu2UsdGgUPta_Sml89Hox4UvXem67Zd6ozJTmYs8rtxBhztwU6oq6PtL7YGP19FqOIGzt_F0OJjBHPOkhhJRnme0VBllpaICkyLLmCAF4lISjAThSIiC8TKPNc8kZyJhueIEl5rFJaM98HTeu_fuu2n_SLeu8bY9mVIcU0QkpUnrQmdX7l0IXpfp3pud8scUo_RENm3Jpiey6YVsG3k8R4zW-p-dc0Eopr86KHap
CODEN IEIMAO
Cites_doi 10.1088/1741-2552/ad184f
10.1109/CVPR.2012.6247911
10.1109/ICORR.2013.6650426
10.1145/3240508.3240512
10.1109/MSP.2012.2203480
10.1109/LRA.2021.3140055
10.1109/TNSRE.2019.2896269
10.1109/TIM.2024.3381288
10.1109/TBCAS.2019.2955641
10.1109/TNN.2010.2091281
10.1088/1741-2552/acb7a0
10.1145/3360309
10.1109/LRA.2020.3006824
10.1097/PHM.0b013e31826bcedb
10.1109/TIE.2021.3108726
10.1109/TNSRE.2023.3293334
10.1109/TNSRE.2018.2855561
10.1109/TBME.2003.813539
10.1109/JBHI.2022.3197831
10.1109/TNSRE.2022.3173946
10.1016/j.eswa.2010.09.068
10.7551/mitpress/7503.003.0069
10.1109/ICDM.2017.150
10.1109/TNSRE.2014.2304470
10.1109/IEMBS.2010.5627902
10.1016/j.bspc.2007.11.005
10.1109/TIM.2023.3273651
10.1109/TNSRE.2019.2936622
10.1109/TNNLS.2020.2988928
10.1016/j.neucom.2020.03.009
10.1109/ICBBE.2007.133
10.1016/j.bspc.2007.07.009
10.1109/ROBIO.2011.6181317
10.1109/TBME.2013.2238939
10.1109/ICCV.2013.274
10.1007/978-3-319-58347-1_8
10.1109/ICCV.2011.6126344
10.7551/mitpress/7503.003.0022
10.1109/ICRA48506.2021.9560803
10.1109/MSP.2017.2740460
10.1109/TBME.2021.3117407
10.1109/TNSRE.2011.2163529
10.1609/aaai.v35i1.16169
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3502881
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2024_3502881
10778231
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: IR2021222
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61471140
  funderid: 10.13039/501100001809
– fundername: Future Science and Technology Innovation Team project of HIT
  grantid: 216506
  funderid: 10.13039/501100018550
– fundername: Sci-Tech Innovation Foundation of Harbin
  grantid: 2016RALGJ001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c175t-9037cb3fab36fa3812dbb682d0799210827088d67fc4e7b976856ca721fe64f63
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:13:35 EDT 2025
Tue Jul 01 03:07:50 EDT 2025
Wed Aug 27 01:57:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c175t-9037cb3fab36fa3812dbb682d0799210827088d67fc4e7b976856ca721fe64f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6045-3357
0000-0002-4974-0275
0000-0001-7536-1482
0000-0002-8141-4859
0009-0003-9375-4812
0000-0002-2194-0574
0009-0003-3585-5295
0009-0007-1233-5667
PQID 3143029335
PQPubID 85462
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIM_2024_3502881
ieee_primary_10778231
proquest_journals_3143029335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref30
  doi: 10.1088/1741-2552/ad184f
– ident: ref41
  doi: 10.1109/CVPR.2012.6247911
– ident: ref2
  doi: 10.1109/ICORR.2013.6650426
– ident: ref43
  doi: 10.1145/3240508.3240512
– ident: ref10
  doi: 10.1109/MSP.2012.2203480
– ident: ref3
  doi: 10.1109/LRA.2021.3140055
– ident: ref8
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref31
  doi: 10.1109/TIM.2024.3381288
– ident: ref7
  doi: 10.1109/TBCAS.2019.2955641
– ident: ref36
  doi: 10.1109/TNN.2010.2091281
– ident: ref38
  doi: 10.1088/1741-2552/acb7a0
– ident: ref39
  doi: 10.1145/3360309
– ident: ref12
  doi: 10.1109/LRA.2020.3006824
– ident: ref1
  doi: 10.1097/PHM.0b013e31826bcedb
– ident: ref25
  doi: 10.1109/TIE.2021.3108726
– ident: ref22
  doi: 10.1109/TNSRE.2023.3293334
– ident: ref16
  doi: 10.1109/TNSRE.2018.2855561
– ident: ref4
  doi: 10.1109/TBME.2003.813539
– ident: ref28
  doi: 10.1109/JBHI.2022.3197831
– ident: ref29
  doi: 10.1109/TNSRE.2022.3173946
– ident: ref5
  doi: 10.1016/j.eswa.2010.09.068
– ident: ref23
  doi: 10.7551/mitpress/7503.003.0069
– ident: ref40
  doi: 10.1109/ICDM.2017.150
– ident: ref11
  doi: 10.1109/TNSRE.2014.2304470
– ident: ref27
  doi: 10.1109/IEMBS.2010.5627902
– ident: ref14
  doi: 10.1016/j.bspc.2007.11.005
– ident: ref9
  doi: 10.1109/TIM.2023.3273651
– ident: ref34
  doi: 10.1109/TNSRE.2019.2936622
– ident: ref24
  doi: 10.1109/TNNLS.2020.2988928
– ident: ref6
  doi: 10.1016/j.neucom.2020.03.009
– ident: ref26
  doi: 10.1109/ICBBE.2007.133
– ident: ref32
  doi: 10.1016/j.bspc.2007.07.009
– ident: ref13
  doi: 10.1109/ROBIO.2011.6181317
– ident: ref33
  doi: 10.1109/TBME.2013.2238939
– ident: ref37
  doi: 10.1109/ICCV.2013.274
– ident: ref42
  doi: 10.1007/978-3-319-58347-1_8
– ident: ref17
  doi: 10.1109/ICCV.2011.6126344
– ident: ref19
  doi: 10.7551/mitpress/7503.003.0022
– ident: ref35
  doi: 10.1109/ICRA48506.2021.9560803
– ident: ref18
  doi: 10.1109/MSP.2017.2740460
– ident: ref20
  doi: 10.1109/TBME.2021.3117407
– ident: ref15
  doi: 10.1109/TNSRE.2011.2163529
– ident: ref21
  doi: 10.1609/aaai.v35i1.16169
SSID ssj0007647
Score 2.424064
Snippet Surface electromyography (sEMG)-based hand gesture recognition has garnered widespread attention in rehabilitation robotics due to its noninvasive measurement...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation
Adaptation models
Alignment
Classification
Computational modeling
Decoding
Electromyography
Exoskeletons
Feature extraction
Gesture recognition
Gloves
Hand gesture recognition
Misalignment
Motors
Plug & play
Rehabilitation
rehabilitation gloves
Rehabilitation robots
Robotics
Statistical methods
subdomain adaptation
surface electromyography (sEMG)
Target recognition
Training
Transfer learning
Title Plug-and-Play sEMG-Driven Hand Gesture Recognition With Subdomain Adaptation for Exoskeleton Rehabilitation Gloves
URI https://ieeexplore.ieee.org/document/10778231
https://www.proquest.com/docview/3143029335
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9VAEB9sQdCDH7Xi0yp78OJhn9lks5s9lva1T6GlSIu9hf20pTUpLwm0_es72STyVARvYcnCsLMz85udL4CPnIWs73hKZfCScs84VUYLmjORWhZCoVzMtjgWyzP-9Tw_H4vVYy2M9z4mn_l5_xlj-a62Xf9UhhIuZR-22oAN9NyGYq1falcKPjTIZCjBCAummGSiPp9-OUJPMOXzLEdzWrDfbFAcqvKXJo7m5eA5HE-EDVklV_OuNXN7_0fPxv-m_AU8G4Em2R1uxkt45KsteLrWfnALHsf0T9u8gtXJdfeD6srRk2t9R5rF0SHdX_WKkCxxlRwixd3Kk29TulFdke-X7QVBvePqn_qyIrtO3wxhfYI4mCxu6-YKTRpCS9y13g2cxLTRZhvODhane0s6TmOgFiFGS1WSSWuyoE0mgkZDnzpjRJG6RCqFjmORStRYTshguZcGYU6RC6vRwwxe8CCy17BZ1ZV_A0RpZwIzqii84pLnmqGSFdYWJrGaWTuDTxN_ypuh6UYZnZVElcjLsudlOfJyBtv9ca_9N5z0DHYmjpajWDZlhugwQYCT5W__se0dPEn7Cb_xkWUHNttV598j7GjNh3jdHgAcFtRZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYIeeJSiLhTwgQsHL3Hi2PGxgm230F1VaCt6i2zHLlVLUm0SCfj1TJwELSAkbpEVSyOPZ-YbzwvgNWc-6TqeUumdpNwxTpXRgqZMxJZ5n6kiZFssxfyMfzhPz4di9VAL45wLyWdu2n2GWH5R2bZ7KkMJl7ILW92GO2j407gv1_qleKXgfYtMhjKMwGCMSkbq7ep4gb5gzKdJigY1Y79ZoTBW5S9dHAzM4UNYjqT1eSVX07YxU_vjj66N_037I3gwQE1y0N-Nx3DLlTuwvdGAcAfuhgRQWz-B9el1e0F1WdDTa_2d1LPFEX2_7lQhmeMqOUKK27Ujn8aEo6okny-bLwQ1T1F91ZclOSj0TR_YJ4iEyexbVV-hUUNwibs2-4GTkDha78LZ4Wz1bk6HeQzUIshoqIoSaU3itUmE12jq48IYkcVFJJVC1zGLJeqsQkhvuZMGgU6WCqvRx_ROcC-Sp7BVVqXbA6J0YTwzKsuc4pKnmqGaFdZmJrKaWTuBNyN_8pu-7UYe3JVI5cjLvONlPvByArvdcW_815_0BPZHjuaDYNZ5gvgwQoiTpM_-se0V3JuvFif5yfHy43O4H3fzfsOTyz5sNevWvUAQ0piX4er9BFvU16M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plug-and-Play+sEMG-Driven+Hand+Gesture+Recognition+With+Subdomain+Adaptation+for+Exoskeleton+Rehabilitation+Gloves&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhong%2C+Xiao-Cong&rft.au=Wang%2C+Qisong&rft.au=Liu%2C+Dan&rft.au=Wang%2C+Xuefu&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3502881&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3502881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon