Plug-and-Play sEMG-Driven Hand Gesture Recognition With Subdomain Adaptation for Exoskeleton Rehabilitation Gloves
Surface electromyography (sEMG)-based hand gesture recognition has garnered widespread attention in rehabilitation robotics due to its noninvasive measurement and intuitive motion decoding. However, affected by various factors such as individual differences, achieving cross-user adaptability and lon...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface electromyography (sEMG)-based hand gesture recognition has garnered widespread attention in rehabilitation robotics due to its noninvasive measurement and intuitive motion decoding. However, affected by various factors such as individual differences, achieving cross-user adaptability and long-term reliability for sEMG classification poses a significant challenge. Existing domain adaptation (DA) methods primarily focus on global distribution alignment to mitigate statistical distribution discrepancies across domains, yielding significant achievements. Nevertheless, these methods often overlook fine-grained category-level subdomain distribution alignment, leading to discriminative structure confusion and subdomain misalignment, which hinder cross-subject and cross-session gesture recognition. To tackle these issues, this article proposes a plug-and-play subdomain adaptation method called PPSDA to enhance the classification performance and generalization ability for gesture recognition across domains. Specifically, handcrafted features are extracted and utilized for source domain supervised training to preserve discriminative structures. Subsequently, source and target domains co-training is performed, wherein the local maximum mean discrepancy (LMMD) is minimized to capture fine-grained information on relevant subdomains for subdomain distribution alignment. To validate the performance of the proposed PPSDA, we recruited 12 healthy subjects and developed an sEMG-driven exoskeleton rehabilitation glove for cross-subject and cross-session evaluations. Extensive experimental results demonstrate the effectiveness and superiority of the proposed PPSDA over existing DA approaches. |
---|---|
AbstractList | Surface electromyography (sEMG)-based hand gesture recognition has garnered widespread attention in rehabilitation robotics due to its noninvasive measurement and intuitive motion decoding. However, affected by various factors such as individual differences, achieving cross-user adaptability and long-term reliability for sEMG classification poses a significant challenge. Existing domain adaptation (DA) methods primarily focus on global distribution alignment to mitigate statistical distribution discrepancies across domains, yielding significant achievements. Nevertheless, these methods often overlook fine-grained category-level subdomain distribution alignment, leading to discriminative structure confusion and subdomain misalignment, which hinder cross-subject and cross-session gesture recognition. To tackle these issues, this article proposes a plug-and-play subdomain adaptation method called PPSDA to enhance the classification performance and generalization ability for gesture recognition across domains. Specifically, handcrafted features are extracted and utilized for source domain supervised training to preserve discriminative structures. Subsequently, source and target domains co-training is performed, wherein the local maximum mean discrepancy (LMMD) is minimized to capture fine-grained information on relevant subdomains for subdomain distribution alignment. To validate the performance of the proposed PPSDA, we recruited 12 healthy subjects and developed an sEMG-driven exoskeleton rehabilitation glove for cross-subject and cross-session evaluations. Extensive experimental results demonstrate the effectiveness and superiority of the proposed PPSDA over existing DA approaches. |
Author | Wang, Yunfei Li, Rui Sun, Jinwei Wang, Xuefu Wang, Qisong Zhang, Meiyan Zhong, Xiao-Cong Liu, Dan |
Author_xml | – sequence: 1 givenname: Xiao-Cong orcidid: 0000-0002-8141-4859 surname: Zhong fullname: Zhong, Xiao-Cong email: zhongxiaocong@hit.edu.cn organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Qisong orcidid: 0000-0002-4974-0275 surname: Wang fullname: Wang, Qisong email: wangqisong@hit.edu.cn organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Dan orcidid: 0000-0001-7536-1482 surname: Liu fullname: Liu, Dan email: liudan@hit.edu.cn organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Xuefu orcidid: 0009-0003-3585-5295 surname: Wang fullname: Wang, Xuefu email: 23s001018@stu.hit.edu.cn organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 5 givenname: Rui orcidid: 0009-0007-1233-5667 surname: Li fullname: Li, Rui email: 1040563936@qq.com organization: Heilongjiang Provincial Hospital, Harbin, China – sequence: 6 givenname: Yunfei orcidid: 0009-0003-9375-4812 surname: Wang fullname: Wang, Yunfei email: 949135779@qq.com organization: Heilongjiang Provincial Hospital, Harbin, China – sequence: 7 givenname: Meiyan orcidid: 0000-0002-6045-3357 surname: Zhang fullname: Zhang, Meiyan email: meiyanzhang@hit.edu.cn organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 8 givenname: Jinwei orcidid: 0000-0002-2194-0574 surname: Sun fullname: Sun, Jinwei email: jwsun@hit.edu.cn organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China |
BookMark | eNpNkM1PwkAQxTdGEwG9e_DQxPPifrT7cSSIQAKRIMZjs223sFh2cbcl8t9bhIOnycx7bybz64Jr66wG4AGjPsZIPq-m8z5BJO7TBBEh8BXo4CThUDJGrkEHISygjBN2C7ohbBFCnMW8A_yiatZQ2QIuKnWMwmg-hi_eHLSNJu00GutQN15HS527tTW1cTb6NPUmem-ywu2UsdGgUPta_Sml89Hox4UvXem67Zd6ozJTmYs8rtxBhztwU6oq6PtL7YGP19FqOIGzt_F0OJjBHPOkhhJRnme0VBllpaICkyLLmCAF4lISjAThSIiC8TKPNc8kZyJhueIEl5rFJaM98HTeu_fuu2n_SLeu8bY9mVIcU0QkpUnrQmdX7l0IXpfp3pud8scUo_RENm3Jpiey6YVsG3k8R4zW-p-dc0Eopr86KHap |
CODEN | IEIMAO |
Cites_doi | 10.1088/1741-2552/ad184f 10.1109/CVPR.2012.6247911 10.1109/ICORR.2013.6650426 10.1145/3240508.3240512 10.1109/MSP.2012.2203480 10.1109/LRA.2021.3140055 10.1109/TNSRE.2019.2896269 10.1109/TIM.2024.3381288 10.1109/TBCAS.2019.2955641 10.1109/TNN.2010.2091281 10.1088/1741-2552/acb7a0 10.1145/3360309 10.1109/LRA.2020.3006824 10.1097/PHM.0b013e31826bcedb 10.1109/TIE.2021.3108726 10.1109/TNSRE.2023.3293334 10.1109/TNSRE.2018.2855561 10.1109/TBME.2003.813539 10.1109/JBHI.2022.3197831 10.1109/TNSRE.2022.3173946 10.1016/j.eswa.2010.09.068 10.7551/mitpress/7503.003.0069 10.1109/ICDM.2017.150 10.1109/TNSRE.2014.2304470 10.1109/IEMBS.2010.5627902 10.1016/j.bspc.2007.11.005 10.1109/TIM.2023.3273651 10.1109/TNSRE.2019.2936622 10.1109/TNNLS.2020.2988928 10.1016/j.neucom.2020.03.009 10.1109/ICBBE.2007.133 10.1016/j.bspc.2007.07.009 10.1109/ROBIO.2011.6181317 10.1109/TBME.2013.2238939 10.1109/ICCV.2013.274 10.1007/978-3-319-58347-1_8 10.1109/ICCV.2011.6126344 10.7551/mitpress/7503.003.0022 10.1109/ICRA48506.2021.9560803 10.1109/MSP.2017.2740460 10.1109/TBME.2021.3117407 10.1109/TNSRE.2011.2163529 10.1609/aaai.v35i1.16169 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3502881 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 10 |
ExternalDocumentID | 10_1109_TIM_2024_3502881 10778231 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: IR2021222 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61471140 funderid: 10.13039/501100001809 – fundername: Future Science and Technology Innovation Team project of HIT grantid: 216506 funderid: 10.13039/501100018550 – fundername: Sci-Tech Innovation Foundation of Harbin grantid: 2016RALGJ001 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c175t-9037cb3fab36fa3812dbb682d0799210827088d67fc4e7b976856ca721fe64f63 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:13:35 EDT 2025 Tue Jul 01 03:07:50 EDT 2025 Wed Aug 27 01:57:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c175t-9037cb3fab36fa3812dbb682d0799210827088d67fc4e7b976856ca721fe64f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6045-3357 0000-0002-4974-0275 0000-0001-7536-1482 0000-0002-8141-4859 0009-0003-9375-4812 0000-0002-2194-0574 0009-0003-3585-5295 0009-0007-1233-5667 |
PQID | 3143029335 |
PQPubID | 85462 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TIM_2024_3502881 ieee_primary_10778231 proquest_journals_3143029335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref30 doi: 10.1088/1741-2552/ad184f – ident: ref41 doi: 10.1109/CVPR.2012.6247911 – ident: ref2 doi: 10.1109/ICORR.2013.6650426 – ident: ref43 doi: 10.1145/3240508.3240512 – ident: ref10 doi: 10.1109/MSP.2012.2203480 – ident: ref3 doi: 10.1109/LRA.2021.3140055 – ident: ref8 doi: 10.1109/TNSRE.2019.2896269 – ident: ref31 doi: 10.1109/TIM.2024.3381288 – ident: ref7 doi: 10.1109/TBCAS.2019.2955641 – ident: ref36 doi: 10.1109/TNN.2010.2091281 – ident: ref38 doi: 10.1088/1741-2552/acb7a0 – ident: ref39 doi: 10.1145/3360309 – ident: ref12 doi: 10.1109/LRA.2020.3006824 – ident: ref1 doi: 10.1097/PHM.0b013e31826bcedb – ident: ref25 doi: 10.1109/TIE.2021.3108726 – ident: ref22 doi: 10.1109/TNSRE.2023.3293334 – ident: ref16 doi: 10.1109/TNSRE.2018.2855561 – ident: ref4 doi: 10.1109/TBME.2003.813539 – ident: ref28 doi: 10.1109/JBHI.2022.3197831 – ident: ref29 doi: 10.1109/TNSRE.2022.3173946 – ident: ref5 doi: 10.1016/j.eswa.2010.09.068 – ident: ref23 doi: 10.7551/mitpress/7503.003.0069 – ident: ref40 doi: 10.1109/ICDM.2017.150 – ident: ref11 doi: 10.1109/TNSRE.2014.2304470 – ident: ref27 doi: 10.1109/IEMBS.2010.5627902 – ident: ref14 doi: 10.1016/j.bspc.2007.11.005 – ident: ref9 doi: 10.1109/TIM.2023.3273651 – ident: ref34 doi: 10.1109/TNSRE.2019.2936622 – ident: ref24 doi: 10.1109/TNNLS.2020.2988928 – ident: ref6 doi: 10.1016/j.neucom.2020.03.009 – ident: ref26 doi: 10.1109/ICBBE.2007.133 – ident: ref32 doi: 10.1016/j.bspc.2007.07.009 – ident: ref13 doi: 10.1109/ROBIO.2011.6181317 – ident: ref33 doi: 10.1109/TBME.2013.2238939 – ident: ref37 doi: 10.1109/ICCV.2013.274 – ident: ref42 doi: 10.1007/978-3-319-58347-1_8 – ident: ref17 doi: 10.1109/ICCV.2011.6126344 – ident: ref19 doi: 10.7551/mitpress/7503.003.0022 – ident: ref35 doi: 10.1109/ICRA48506.2021.9560803 – ident: ref18 doi: 10.1109/MSP.2017.2740460 – ident: ref20 doi: 10.1109/TBME.2021.3117407 – ident: ref15 doi: 10.1109/TNSRE.2011.2163529 – ident: ref21 doi: 10.1609/aaai.v35i1.16169 |
SSID | ssj0007647 |
Score | 2.424064 |
Snippet | Surface electromyography (sEMG)-based hand gesture recognition has garnered widespread attention in rehabilitation robotics due to its noninvasive measurement... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation Adaptation models Alignment Classification Computational modeling Decoding Electromyography Exoskeletons Feature extraction Gesture recognition Gloves Hand gesture recognition Misalignment Motors Plug & play Rehabilitation rehabilitation gloves Rehabilitation robots Robotics Statistical methods subdomain adaptation surface electromyography (sEMG) Target recognition Training Transfer learning |
Title | Plug-and-Play sEMG-Driven Hand Gesture Recognition With Subdomain Adaptation for Exoskeleton Rehabilitation Gloves |
URI | https://ieeexplore.ieee.org/document/10778231 https://www.proquest.com/docview/3143029335 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9VAEB9sQdCDH7Xi0yp78OJhn9lks5s9lva1T6GlSIu9hf20pTUpLwm0_es72STyVARvYcnCsLMz85udL4CPnIWs73hKZfCScs84VUYLmjORWhZCoVzMtjgWyzP-9Tw_H4vVYy2M9z4mn_l5_xlj-a62Xf9UhhIuZR-22oAN9NyGYq1falcKPjTIZCjBCAummGSiPp9-OUJPMOXzLEdzWrDfbFAcqvKXJo7m5eA5HE-EDVklV_OuNXN7_0fPxv-m_AU8G4Em2R1uxkt45KsteLrWfnALHsf0T9u8gtXJdfeD6srRk2t9R5rF0SHdX_WKkCxxlRwixd3Kk29TulFdke-X7QVBvePqn_qyIrtO3wxhfYI4mCxu6-YKTRpCS9y13g2cxLTRZhvODhane0s6TmOgFiFGS1WSSWuyoE0mgkZDnzpjRJG6RCqFjmORStRYTshguZcGYU6RC6vRwwxe8CCy17BZ1ZV_A0RpZwIzqii84pLnmqGSFdYWJrGaWTuDTxN_ypuh6UYZnZVElcjLsudlOfJyBtv9ca_9N5z0DHYmjpajWDZlhugwQYCT5W__se0dPEn7Cb_xkWUHNttV598j7GjNh3jdHgAcFtRZ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYIeeJSiLhTwgQsHL3Hi2PGxgm230F1VaCt6i2zHLlVLUm0SCfj1TJwELSAkbpEVSyOPZ-YbzwvgNWc-6TqeUumdpNwxTpXRgqZMxJZ5n6kiZFssxfyMfzhPz4di9VAL45wLyWdu2n2GWH5R2bZ7KkMJl7ILW92GO2j407gv1_qleKXgfYtMhjKMwGCMSkbq7ep4gb5gzKdJigY1Y79ZoTBW5S9dHAzM4UNYjqT1eSVX07YxU_vjj66N_037I3gwQE1y0N-Nx3DLlTuwvdGAcAfuhgRQWz-B9el1e0F1WdDTa_2d1LPFEX2_7lQhmeMqOUKK27Ujn8aEo6okny-bLwQ1T1F91ZclOSj0TR_YJ4iEyexbVV-hUUNwibs2-4GTkDha78LZ4Wz1bk6HeQzUIshoqIoSaU3itUmE12jq48IYkcVFJJVC1zGLJeqsQkhvuZMGgU6WCqvRx_ROcC-Sp7BVVqXbA6J0YTwzKsuc4pKnmqGaFdZmJrKaWTuBNyN_8pu-7UYe3JVI5cjLvONlPvByArvdcW_815_0BPZHjuaDYNZ5gvgwQoiTpM_-se0V3JuvFif5yfHy43O4H3fzfsOTyz5sNevWvUAQ0piX4er9BFvU16M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plug-and-Play+sEMG-Driven+Hand+Gesture+Recognition+With+Subdomain+Adaptation+for+Exoskeleton+Rehabilitation+Gloves&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhong%2C+Xiao-Cong&rft.au=Wang%2C+Qisong&rft.au=Liu%2C+Dan&rft.au=Wang%2C+Xuefu&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3502881&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3502881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |