A dusty magnetospheric stream as the physical mechanism responsible for stellar occultations: Interpretation of the TESS light curve of the pre-transitional disk system UX Tau A
Context . Recent observations of the object UX Tau A containing a pre-transitional disk suggest that the inner disk is misaligned and precessing with respect to the outer disk. These motions lead to a highly dynamic environment that changes the reservoir of dust feeding the star. One of the effects...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 696; p. A46 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.04.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Context . Recent observations of the object UX Tau A containing a pre-transitional disk suggest that the inner disk is misaligned and precessing with respect to the outer disk. These motions lead to a highly dynamic environment that changes the reservoir of dust feeding the star. One of the effects of this is seen in the features of the Transiting Exoplanet Survey Satellite (TESS) optical light curve (LC), resembling dips of variable depth changing within the timescale of the inner disk dust replenishment.
Aims . For this work we interpreted the TESS LC corresponding to a time window around the date a spectrum was taken with the James Webb Space Telescope (JWST). The spectrum was taken in the mid-infrared, clearly a range tracing the emission of dust. Compared with previous spectra, the most recent spectrum suggests a strong decrease in the amount of dust in the inner disk; the observed spectral energy distribution shows a very small infrared excess.
Methods . The physical modeled flux comes from stellar radiation occulted by a sheet of evaporating dust following the magnetospheric field ( B ⋆ ) lines. A grid of stream configurations were taken where the gas component explains the JWST spectrum and the H α profiles.
Results . Our quest to find a reasonable interpretation of the LC requires a tuning of the values associated with the truncation radius, the inclination of the disk with respect to the line of sight and the maximum size of the dusty grains.
Conclusions . We conclude that the dust evaporation accretion flow is able to explain the typical depths of the LC features periodically changing with the stellar rotational period. We conclude that the dust evaporation accretion flow is able to explain the dips observed in the UX Tau A TESS light curve, most notably the large amplitude dips up to Δ mag ∼ 0.7 mag, while the lower level variability events (Δ mag ≤ 0.2 mag) in the LC could also be accounted for by the periodic modulation caused by a hot surface spot. We also suggest that winds and warps are unlikely mechanisms for UX Tau A’s variability. |
---|---|
AbstractList | Context . Recent observations of the object UX Tau A containing a pre-transitional disk suggest that the inner disk is misaligned and precessing with respect to the outer disk. These motions lead to a highly dynamic environment that changes the reservoir of dust feeding the star. One of the effects of this is seen in the features of the Transiting Exoplanet Survey Satellite (TESS) optical light curve (LC), resembling dips of variable depth changing within the timescale of the inner disk dust replenishment.
Aims . For this work we interpreted the TESS LC corresponding to a time window around the date a spectrum was taken with the James Webb Space Telescope (JWST). The spectrum was taken in the mid-infrared, clearly a range tracing the emission of dust. Compared with previous spectra, the most recent spectrum suggests a strong decrease in the amount of dust in the inner disk; the observed spectral energy distribution shows a very small infrared excess.
Methods . The physical modeled flux comes from stellar radiation occulted by a sheet of evaporating dust following the magnetospheric field ( B ⋆ ) lines. A grid of stream configurations were taken where the gas component explains the JWST spectrum and the H α profiles.
Results . Our quest to find a reasonable interpretation of the LC requires a tuning of the values associated with the truncation radius, the inclination of the disk with respect to the line of sight and the maximum size of the dusty grains.
Conclusions . We conclude that the dust evaporation accretion flow is able to explain the typical depths of the LC features periodically changing with the stellar rotational period. We conclude that the dust evaporation accretion flow is able to explain the dips observed in the UX Tau A TESS light curve, most notably the large amplitude dips up to Δ mag ∼ 0.7 mag, while the lower level variability events (Δ mag ≤ 0.2 mag) in the LC could also be accounted for by the periodic modulation caused by a hot surface spot. We also suggest that winds and warps are unlikely mechanisms for UX Tau A’s variability. |
Author | Bouvier, Jerome Nagel, Erick |
Author_xml | – sequence: 1 givenname: Erick surname: Nagel fullname: Nagel, Erick – sequence: 2 givenname: Jerome orcidid: 0000-0002-7450-6712 surname: Bouvier fullname: Bouvier, Jerome |
BookMark | eNo9kM9OAjEQhxuDiYA-gZd5gZV2210Wb4SgkpB4ABNvm6Gdsqv7L20x4bF8QxdRTpOZ-c03yTdig6ZtiLF7wR8ET8SEc66iVKZiEvNYJVKmyRUbCiXjiE9VOmDDS-KGjbz_6NtYZHLIvudgDj4cocZ9Q6H1XUGu1OCDI6wBPYSCoCuOvtRYQU26wKb0NTjyXdv4clcR2Nb1B1RV6KDV-lAFDGW_fIRVE8h1js4DaO0vbrvcbKAq90UAfXBf9D_vg1Fw2FNP6f6dKf0n-GPPruHtHbZ4gPktu7ZYebr7q2O2fVpuFy_R-vV5tZivIy2mKkRWJtbwDKWINaHETCUoFZqYpjY2xqidMAk3aIycST1DaySfYUbZbmaVSOWYyTNWu9Z7RzbvXFmjO-aC5yfp-UlpflKaX6TLH6vye84 |
Cites_doi | 10.1051/0004-6361/201425475 10.1051/0004-6361/201014184 10.1093/mnras/stt365 10.3847/1538-4357/ad3447 10.1088/0004-637X/733/1/50 10.1086/155591 10.1093/mnras/stx2999 10.3847/1538-3881/aacead 10.1093/mnras/stad1946 10.1088/0004-637X/767/2/112 10.1093/mnras/stab3677 10.1016/j.newast.2018.01.011 10.1088/0004-637X/805/2/149 10.1051/0004-6361/201833979 10.1093/mnras/stae1534 10.1093/mnras/staa402 10.1051/0004-6361/202348707 10.1088/0004-637X/717/1/441 10.1093/mnras/stt945 10.3847/2041-8213/ad76a5 10.3847/1538-4357/ac9eb1 10.1051/0004-6361/202142070 10.1088/0004-637X/748/1/71 10.1051/0004-6361/202038594 10.1051/0004-6361/202450121 10.1051/0004-6361/202140646 10.1086/174104 10.1051/0004-6361/202450085 10.1051/0004-6361/201936565 10.3847/1538-4357/acac84 10.3847/0004-637X/828/1/42 10.1051/0004-6361/202346446 10.1051/0004-6361/202245039 10.3847/2041-8213/ad7f51 10.1088/0004-637X/728/1/49 10.1093/mnras/199.4.883 10.1086/167585 10.1051/0004-6361/201834263 10.1093/mnras/sts670 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1051/0004-6361/202453365 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202453365 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 |
ID | FETCH-LOGICAL-c174t-f35fd08a312cea3a845a34ad2e7f2ddd4b1d50dadd393c9afd309a8e8b9f4163 |
ISSN | 0004-6361 |
IngestDate | Tue Jul 01 05:20:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c174t-f35fd08a312cea3a845a34ad2e7f2ddd4b1d50dadd393c9afd309a8e8b9f4163 |
ORCID | 0000-0002-7450-6712 |
OpenAccessLink | https://www.aanda.org/10.1051/0004-6361/202453365/pdf |
ParticipantIDs | crossref_primary_10_1051_0004_6361_202453365 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-4-00 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-4-00 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2025 |
References | Pinilla (R30) 2024; 686 Sicilia-Aguilar (R36) 2020; 633 Nagel (R29) 2024; 688 Gaidos (R12) 2024; 966 Romanova (R33) 2013; 430 Blandford (R3) 1982; 199 Mathis (R23) 1977; 217 Alencar (R2) 2018; 620 Bouvier (R5) 1999; 349 Wojtczak (R40) 2024; 689 Thanathibodee (R39) 2023; 944 Ribas (R31) 2024; 532 Tessore (R38) 2023; 671 Roggero (R32) 2021; 651 Doi (R7) 2024; 974 Hartmann (R14) 1994; 426 Kulkarni (R19) 2013; 433 Ingleby (R16) 2015; 805 Ingleby (R15) 2013; 767 Konigl (R18) 1989; 342 Kurosawa (R20) 2013; 431 Alencar (R1) 2010; 519 Nagel (R26) 2019; 625 Nagel (R27) 2020; 643 Nagel (R28) 2023; 524 McGinnis (R24) 2015; 577 Soulain (R13) 2023; 674 Kesseli (R17) 2016; 828 Romanova (R34) 2018; 62 Xu (R41) 2018; 474 Morales-Calderón (R25) 2011; 733 Takasao (R37) 2022; 941 Li (R21) 2022; 510 Flaherty (R11) 2012; 748 Liffman (R22) 2020; 493 R35 Espaillat (R8) 2010; 717 Cody (R6) 2018; 156 Espaillat (R9) 2011; 728 Espaillat (R10) 2024; 973 Bohn (R4) 2022; 658 |
References_xml | – volume: 577 start-page: A11 year: 2015 ident: R24 publication-title: A&A doi: 10.1051/0004-6361/201425475 – volume: 519 start-page: A88 year: 2010 ident: R1 publication-title: A&A doi: 10.1051/0004-6361/201014184 – volume: 431 start-page: 2673 year: 2013 ident: R20 publication-title: MNRAS doi: 10.1093/mnras/stt365 – volume: 966 start-page: 167 year: 2024 ident: R12 publication-title: ApJ doi: 10.3847/1538-4357/ad3447 – volume: 733 start-page: 50 year: 2011 ident: R25 publication-title: ApJ doi: 10.1088/0004-637X/733/1/50 – volume: 217 start-page: 425 year: 1977 ident: R23 publication-title: ApJ doi: 10.1086/155591 – volume: 474 start-page: 4795 year: 2018 ident: R41 publication-title: MNRAS doi: 10.1093/mnras/stx2999 – volume: 156 start-page: 71 year: 2018 ident: R6 publication-title: AJ doi: 10.3847/1538-3881/aacead – volume: 524 start-page: 1997 year: 2023 ident: R28 publication-title: MNRAS doi: 10.1093/mnras/stad1946 – volume: 767 start-page: 112 year: 2013 ident: R15 publication-title: ApJ doi: 10.1088/0004-637X/767/2/112 – volume: 510 start-page: 5246 year: 2022 ident: R21 publication-title: MNRAS doi: 10.1093/mnras/stab3677 – volume: 62 start-page: 94 year: 2018 ident: R34 publication-title: New Astron. doi: 10.1016/j.newast.2018.01.011 – volume: 805 start-page: 149 year: 2015 ident: R16 publication-title: ApJ doi: 10.1088/0004-637X/805/2/149 – volume: 625 start-page: A45 year: 2019 ident: R26 publication-title: A&A doi: 10.1051/0004-6361/201833979 – volume: 532 start-page: 1752 year: 2024 ident: R31 publication-title: MNRAS doi: 10.1093/mnras/stae1534 – ident: R35 – volume: 493 start-page: 4022 year: 2020 ident: R22 publication-title: MNRAS doi: 10.1093/mnras/staa402 – volume: 686 start-page: A135 year: 2024 ident: R30 publication-title: A&A doi: 10.1051/0004-6361/202348707 – volume: 717 start-page: 441 year: 2010 ident: R8 publication-title: ApJ doi: 10.1088/0004-637X/717/1/441 – volume: 433 start-page: 3048 year: 2013 ident: R19 publication-title: MNRAS doi: 10.1093/mnras/stt945 – volume: 973 start-page: L16 year: 2024 ident: R10 publication-title: ApJ doi: 10.3847/2041-8213/ad76a5 – volume: 941 start-page: 73 year: 2022 ident: R37 publication-title: ApJ doi: 10.3847/1538-4357/ac9eb1 – volume: 658 start-page: A183 year: 2022 ident: R4 publication-title: A&A doi: 10.1051/0004-6361/202142070 – volume: 748 start-page: 71 year: 2012 ident: R11 publication-title: ApJ doi: 10.1088/0004-637X/748/1/71 – volume: 349 start-page: 619 year: 1999 ident: R5 publication-title: A&A – volume: 643 start-page: A157 year: 2020 ident: R27 publication-title: A&A doi: 10.1051/0004-6361/202038594 – volume: 689 start-page: A124 year: 2024 ident: R40 publication-title: A&A doi: 10.1051/0004-6361/202450121 – volume: 651 start-page: A44 year: 2021 ident: R32 publication-title: A&A doi: 10.1051/0004-6361/202140646 – volume: 426 start-page: 669 year: 1994 ident: R14 publication-title: ApJ doi: 10.1086/174104 – volume: 688 start-page: A61 year: 2024 ident: R29 publication-title: A&A doi: 10.1051/0004-6361/202450085 – volume: 633 start-page: A37 year: 2020 ident: R36 publication-title: A&A doi: 10.1051/0004-6361/201936565 – volume: 944 start-page: 90 year: 2023 ident: R39 publication-title: ApJ doi: 10.3847/1538-4357/acac84 – volume: 828 start-page: 42 year: 2016 ident: R17 publication-title: ApJ doi: 10.3847/0004-637X/828/1/42 – volume: 674 start-page: A203 year: 2023 ident: R13 publication-title: A&A doi: 10.1051/0004-6361/202346446 – volume: 671 start-page: A129 year: 2023 ident: R38 publication-title: A&A doi: 10.1051/0004-6361/202245039 – volume: 974 start-page: L25 year: 2024 ident: R7 publication-title: ApJ doi: 10.3847/2041-8213/ad7f51 – volume: 728 start-page: 49 year: 2011 ident: R9 publication-title: ApJ doi: 10.1088/0004-637X/728/1/49 – volume: 199 start-page: 883 year: 1982 ident: R3 publication-title: MNRAS doi: 10.1093/mnras/199.4.883 – volume: 342 start-page: 208 year: 1989 ident: R18 publication-title: ApJ doi: 10.1086/167585 – volume: 620 start-page: A195 year: 2018 ident: R2 publication-title: A&A doi: 10.1051/0004-6361/201834263 – volume: 430 start-page: 699 year: 2013 ident: R33 publication-title: MNRAS doi: 10.1093/mnras/sts670 |
SSID | ssj0002183 |
Score | 2.4727526 |
Snippet | Context . Recent observations of the object UX Tau A containing a pre-transitional disk suggest that the inner disk is misaligned and precessing with respect... |
SourceID | crossref |
SourceType | Index Database |
StartPage | A46 |
Title | A dusty magnetospheric stream as the physical mechanism responsible for stellar occultations: Interpretation of the TESS light curve of the pre-transitional disk system UX Tau A |
Volume | 696 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKIiQuCBbQ8qk5IC4hu0nslIRbhICFw4pDKvVWObaDVmob1CYrLQf-0_5DPJ7EmxaEWC5R6lZOpXma8UzevGHslZSVkiZWYWwyEYpYizA3AmdoJDoSKkNNFGRbnE1PZ-LLPJ1PJlcj1lLXVsfqxx_7Sv7HqnbN2hW7ZG9gWb-pXbD31r72ai1sr_9k4yLAuRuXwUp-W5u22aJEwLly_R9yhRNkXB_UYImVwS5fHIqxGYixS5L83mIridwEjUIhDqrhYalgj5HY0wlKHNOxxKQ-UN3mwtMMkFDSYug77-uLGmnrJBUdzOZBKbu-cjqo3m6xDt-sSAJK4if6s64STEJco0rFmXV9y8F3XzcYNR2GdmLqeO2Fvo6RpCP6y-CbRTjlJM1-bMgdC47c2L5I2fvraT72uAV9-VsksM6GqJO0KTa-4Ftmzmk0xa7y9l5E9DxF94Y-jfENvVjgNgu_yS12O7GZCQ7N-PT5pw_-eOKkjIueOwhdpfGJXzvxm4wOQ6NTTXmf3evTESgIWw_YxKwP2ZE3DLyGYmSWQ3bnK909ZFcFOPDBLviAwAdyCxYTMIAPPPhgBD6w4IMefDAG3zvYhR40tdsOoQcOeuCgN6zvQw8QekDQg9kcLPSgeMTKjx_K96dhP_8jVDZPbsOap7WOMsnjRBnJZSZSyYXUiXlbJ1prUcU6jbSN0DznKpe15lEuM5NVeY15xmN2sG7W5ohBZJy2HI424CLNs9xME8PtqlbS5hz6CXsz2GHxnVReFn-x_dOb_fwZu3sN-OfsoN105oU9yrbVSweeXxtYoJU |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dusty+magnetospheric+stream+as+the+physical+mechanism+responsible+for+stellar+occultations%3A+Interpretation+of+the+TESS+light+curve+of+the+pre-transitional+disk+system+UX+Tau+A&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Nagel%2C+Erick&rft.au=Bouvier%2C+Jerome&rft.date=2025-04-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=696&rft.spage=A46&rft_id=info:doi/10.1051%2F0004-6361%2F202453365&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202453365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |