Lithology recognition and porosity prediction from well logs based on Convolutional Neural Networks and sliding window
Predicting the lithology and porosity of borehole rocks based on wireline logging data holds significant importance. The sampling interval of the logs is relatively small, so the log values within a specific range above and below the target depth contain effective information about the borehole rock...
Saved in:
Published in | Journal of applied geophysics Vol. 242; p. 105905 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting the lithology and porosity of borehole rocks based on wireline logging data holds significant importance. The sampling interval of the logs is relatively small, so the log values within a specific range above and below the target depth contain effective information about the borehole rock at the target depth. This paper proposes a method that combines a deep sliding window with a convolutional neural network. In this approach, multiple logging curves within the sliding window serve as inputs, and the convolutional neural network extracts valuable information from these logging curves. Subsequently, the borehole lithology and porosity at the window center are predicted based on the extracted information. As the window slides vertically, it enables the rapid prediction of lithology and porosity for the entire wellbore. Based on the practical application in an oil field in the east of China, it was determined that the optimal length of the sliding window is 1.125 m. The accuracy rate of the proposed convolutional network model for lithology prediction can exceed 94.4 %, and the accuracy rate for porosity prediction is 94.9 %. The prediction speed is notably fast, making it applicable with precision to lithology or porosity predictions in numerous oil fields and new wells.
•Propose sliding window method to extract rock properties from well logs at the window center.•Combine sliding window and CNN to predict lithology and porosity at the window center.•Enable rapid, precise lithology and porosity prediction for the whole wellbore.•Achieve optimal window length of 1.125 m with 94.4 % lithology and 94.9 % porosity accuracy. |
---|---|
AbstractList | Predicting the lithology and porosity of borehole rocks based on wireline logging data holds significant importance. The sampling interval of the logs is relatively small, so the log values within a specific range above and below the target depth contain effective information about the borehole rock at the target depth. This paper proposes a method that combines a deep sliding window with a convolutional neural network. In this approach, multiple logging curves within the sliding window serve as inputs, and the convolutional neural network extracts valuable information from these logging curves. Subsequently, the borehole lithology and porosity at the window center are predicted based on the extracted information. As the window slides vertically, it enables the rapid prediction of lithology and porosity for the entire wellbore. Based on the practical application in an oil field in the east of China, it was determined that the optimal length of the sliding window is 1.125 m. The accuracy rate of the proposed convolutional network model for lithology prediction can exceed 94.4 %, and the accuracy rate for porosity prediction is 94.9 %. The prediction speed is notably fast, making it applicable with precision to lithology or porosity predictions in numerous oil fields and new wells.
•Propose sliding window method to extract rock properties from well logs at the window center.•Combine sliding window and CNN to predict lithology and porosity at the window center.•Enable rapid, precise lithology and porosity prediction for the whole wellbore.•Achieve optimal window length of 1.125 m with 94.4 % lithology and 94.9 % porosity accuracy. |
ArticleNumber | 105905 |
Author | Wang, Yunjuan Wang, Xixin Wang, Kaiyu Fu, Ying |
Author_xml | – sequence: 1 givenname: Yunjuan surname: Wang fullname: Wang, Yunjuan organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, Wuhan 430100, China – sequence: 2 givenname: Xixin surname: Wang fullname: Wang, Xixin email: wangxixin86@hotmail.com organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, Wuhan 430100, China – sequence: 3 givenname: Kaiyu surname: Wang fullname: Wang, Kaiyu organization: Institute of Petroleum Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China – sequence: 4 givenname: Ying surname: Fu fullname: Fu, Ying organization: Institute of Petroleum Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China |
BookMark | eNqFkMtOwzAQRb0oEi3wCUj-gRbbjZNmhVDFS6pgA2vLj3FwSO3IThv173Efe2Zzpau5VzNnhiY-eEDonpIFJbR8aBet7PsGwoIRxrPHa8InaEpqVs7rFafXaJZSSwihS1JM0X7jhp_QheaAI-jQeDe44LH0BvchhuSGA-4jGKdPvo1hi0foOpwjCSuZwODsr4Pfh2533JEd_oBdPMkwhvibTm2pc8b5Bo_OmzDeoisruwR3F71B3y_PX-u3-ebz9X39tJlrWhXDvKy0Wi2ZNZpyUuUhxCgoleSWGKZWtQKmeGVKKCrLrKxYUUpbl0uiKJgcvUH83KvzLymCFX10WxkPghJxBCZacQEmjsDEGVjOPZ5zkI_bO4giaQdeZxAZ0yBMcP80_AECXX6V |
Cites_doi | 10.1016/j.cageo.2010.08.008 10.1007/s10596-021-10059-w 10.1016/j.cageo.2015.03.013 10.1016/j.jhydrol.2023.129493 10.1016/j.petlm.2017.09.009 10.1029/2021WR031865 10.1016/j.advwatres.2020.103619 10.1016/j.petrol.2018.11.023 10.1007/s11242-018-1039-9 10.1190/geo2018-0646.1 10.1162/neco.1989.1.4.541 10.1016/j.petrol.2019.106336 10.1190/INT-2018-0235.1 10.1016/j.petrol.2018.03.034 10.1007/s00521-017-2850-x |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jappgeo.2025.105905 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jappgeo_2025_105905 S0926985125002861 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c174t-67cb832fdc150777700dbe6ba5f0d2b89be2b57d6e47f2fa7246af9630b1edb83 |
IEDL.DBID | .~1 |
ISSN | 0926-9851 |
IngestDate | Wed Aug 27 16:40:58 EDT 2025 Sat Aug 30 17:17:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Depth sliding window Convolutional Neural Networks Well logs Lithology prediction Porosity prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c174t-67cb832fdc150777700dbe6ba5f0d2b89be2b57d6e47f2fa7246af9630b1edb83 |
ParticipantIDs | crossref_primary_10_1016_j_jappgeo_2025_105905 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2025_105905 |
PublicationCentury | 2000 |
PublicationDate | November 2025 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied geophysics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Harris, Grunsky (bb0030) 2015; 80 Tahmasebi, Kamrava, Bai (bb0140) 2020; 142 He, Bi, Zeng (bb0035) 2014; 1 Yuan, Zhang, Zhang (bb0160) 2015; 39 Song, Zhang, Mukerji, Wang (bb0130) 2023; 620 Song, Mukerji, Hou (bb0120) 2021; 60 Elkatatny, Mahmoud, Tariq (bb0015) 2018; 30 Scherer, Müller, Behnke (bb0100) 2010 Jungmann, Kopal, Clauser (bb0050) 2011; 37 Lecun, Boser, Denker (bb0065) 1989; 1 Li, Zhou (bb0070) 2008; 01 Ren, Hou, Song (bb0095) 2019; 182 Wu, Liang, Shi (bb0155) 2019; 84 Song, Mukerji, Hou (bb0115) 2021 Gramstad, Nickel (bb0025) 2018; 2019 Li, Tan, Xu (bb0075) 2010; 32 Song, Mukerji, Hou, Zhang, Lyu (bb0125) 2022; 58 Song, Mukerji, Hou (bb0110) 2021 Bai, Xue, Pan (bb0005) 2012; S2 Wang, Yang, Zhao (bb0150) 2018; 166 Imamverdiyev, Sukhostat (bb0045) 2019; 174 Zeiler, Fergus (bb0165) 2014 Taigman, Yang, Ranzato (bb0145) 2014 Karras, Aila, Laine (bb0055) 2017 Glorot, Bordes, Bengio (bb0020) 2011 Redmon, Divvala, Girshick (bb0090) 2016 Zhao, Wang, Tang (bb0170) 2016; 37 Ranzato, Huang, Boureau (bb0085) 2007 Shi, Wu, Fomel (bb0105) 2019; 7 Mosser, Dubrule, Blunt (bb0080) 2018; 125 Szegedy, Ioffe, Vanhoucke (bb0135) 2017; 2017 Elkatatny, Mahmoud (bb0010) 2018; 4 He, Zhang, Ren (bb0040) 2015 Kingma, Ba (bb0060) 2014 Elkatatny (10.1016/j.jappgeo.2025.105905_bb0010) 2018; 4 Redmon (10.1016/j.jappgeo.2025.105905_bb0090) 2016 Li (10.1016/j.jappgeo.2025.105905_bb0070) 2008; 01 Zeiler (10.1016/j.jappgeo.2025.105905_bb0165) 2014 Harris (10.1016/j.jappgeo.2025.105905_bb0030) 2015; 80 Gramstad (10.1016/j.jappgeo.2025.105905_bb0025) 2018; 2019 Li (10.1016/j.jappgeo.2025.105905_bb0075) 2010; 32 Taigman (10.1016/j.jappgeo.2025.105905_bb0145) 2014 Song (10.1016/j.jappgeo.2025.105905_bb0125) 2022; 58 Szegedy (10.1016/j.jappgeo.2025.105905_bb0135) 2017; 2017 He (10.1016/j.jappgeo.2025.105905_bb0035) 2014; 1 Wu (10.1016/j.jappgeo.2025.105905_bb0155) 2019; 84 Elkatatny (10.1016/j.jappgeo.2025.105905_bb0015) 2018; 30 Karras (10.1016/j.jappgeo.2025.105905_bb0055) 2017 He (10.1016/j.jappgeo.2025.105905_bb0040) 2015 Song (10.1016/j.jappgeo.2025.105905_bb0130) 2023; 620 Song (10.1016/j.jappgeo.2025.105905_bb0110) 2021 Song (10.1016/j.jappgeo.2025.105905_bb0120) 2021; 60 Imamverdiyev (10.1016/j.jappgeo.2025.105905_bb0045) 2019; 174 Kingma (10.1016/j.jappgeo.2025.105905_bb0060) 2014 Scherer (10.1016/j.jappgeo.2025.105905_bb0100) 2010 Lecun (10.1016/j.jappgeo.2025.105905_bb0065) 1989; 1 Jungmann (10.1016/j.jappgeo.2025.105905_bb0050) 2011; 37 Ranzato (10.1016/j.jappgeo.2025.105905_bb0085) 2007 Bai (10.1016/j.jappgeo.2025.105905_bb0005) 2012; S2 Shi (10.1016/j.jappgeo.2025.105905_bb0105) 2019; 7 Wang (10.1016/j.jappgeo.2025.105905_bb0150) 2018; 166 Tahmasebi (10.1016/j.jappgeo.2025.105905_bb0140) 2020; 142 Glorot (10.1016/j.jappgeo.2025.105905_bb0020) 2011 Song (10.1016/j.jappgeo.2025.105905_bb0115) 2021 Zhao (10.1016/j.jappgeo.2025.105905_bb0170) 2016; 37 Mosser (10.1016/j.jappgeo.2025.105905_bb0080) 2018; 125 Ren (10.1016/j.jappgeo.2025.105905_bb0095) 2019; 182 Yuan (10.1016/j.jappgeo.2025.105905_bb0160) 2015; 39 |
References_xml | – start-page: 779 year: 2016 end-page: 788 ident: bb0090 article-title: You only look once: unified, real-time object detection publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 620 start-page: 129493 year: 2023 ident: bb0130 article-title: Gansim-surrogate: an integrated framework for stochastic conditional geomodelling publication-title: J. Hydrol. – volume: 4 start-page: 178 year: 2018 end-page: 186 ident: bb0010 article-title: Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique publication-title: Petroleum – volume: 142 start-page: 103619 year: 2020 end-page: 103642 ident: bb0140 article-title: Machine learning in geo- and environmental sciences: from small to large scale publication-title: Adv. Water Resour. – start-page: 1 year: 2007 end-page: 8 ident: bb0085 article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – year: 2017 ident: bb0055 article-title: Progressive Growing of GANs for Improved Quality, Stability, and Variation – start-page: 818 year: 2014 end-page: 833 ident: bb0165 article-title: Visualizing and understanding convolutional networks publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – start-page: 92 year: 2010 end-page: 101 ident: bb0100 article-title: Evaluation of pooling operations in convolutional architectures for object recognition publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 125 start-page: 81 year: 2018 end-page: 103 ident: bb0080 article-title: Stochastic reconstruction of an oolitic limestone by generative adversarial networks publication-title: Transp. Porous Media – volume: 2019 start-page: 1956 year: 2018 end-page: 1960 ident: bb0025 article-title: Automated interpretation of top and base salt using deep convolutional networks publication-title: 2018 SEG International Exposition and Annual Meeting – volume: S2 start-page: 10 year: 2012 ident: bb0005 article-title: Multi-methods combined identify lithology of glutenite publication-title: J. Jilin Univ. (Earth Sci. Ed.) – volume: 1 start-page: 5 year: 2014 ident: bb0035 article-title: Fracture identification in conventional log through KNN classification algorithm based on slope of logging curve——a case study of reef F facies reservoir in Puguang gasfield publication-title: Sino-Glob. Energy – year: 2014 ident: bb0060 article-title: Adam: A Method for Stochastic Optimization – start-page: 1 year: 2021 end-page: 32 ident: bb0115 article-title: GANsim: conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs) publication-title: Math. Geosci. – volume: 60 start-page: 1 year: 2021 end-page: 11 ident: bb0120 article-title: Bridging the gap between geophysics and geology with generative adversarial networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 84 start-page: IM35 year: 2019 end-page: IM45 ident: bb0155 article-title: FaultSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation publication-title: Geophysics – volume: 01 start-page: 9 year: 2008 end-page: 109 ident: bb0070 article-title: Study and application of natural gamma logging response characteristics of sandy conglomerate in Dongying depression publication-title: J. Oil Gas Technol. – start-page: 1251 year: 2021 end-page: 1273 ident: bb0110 article-title: Geological facies modeling based on progressive growing of generative adversarial networks (GANs) publication-title: Comput. Geosci. – volume: 166 start-page: 157 year: 2018 end-page: 174 ident: bb0150 article-title: Lithology identification using an optimized KNN clustering method based on entropy-weighed cosine distance in Mesozoic strata of Gaoqing field, Jiyang depression publication-title: J. Pet. Sci. Eng. – volume: 58 year: 2022 ident: bb0125 article-title: GANSim-3D for conditional geomodeling: theory and field application publication-title: Water Resour. Res. – start-page: 1701 year: 2014 end-page: 1708 ident: bb0145 article-title: DeepFace: closing the gap to human-level perfofrmance in face verification publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 30 start-page: 2673 year: 2018 end-page: 2683 ident: bb0015 article-title: New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network publication-title: Neural Comput. & Applic. – volume: 37 start-page: 732 year: 2016 end-page: 737 ident: bb0170 article-title: Logging identification method for lithology: a case study of Baikouquan Formation in Wellblock Fengnan, Junggar Basin publication-title: Xinjiang Petrol. Geol. – volume: 39 start-page: 5 year: 2015 ident: bb0160 article-title: Permeability prediction using support vector machine based on reservoir classification publication-title: Well Logging Technol. – volume: 37 start-page: 541 year: 2011 end-page: 553 ident: bb0050 article-title: Multi-class supervised classification of electrical borehole wall images using texture features publication-title: Comput. Geosci. – volume: 80 start-page: 9 year: 2015 end-page: 25 ident: bb0030 article-title: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data publication-title: Comput. Geosci. – volume: 182 year: 2019 ident: bb0095 article-title: Lithology identification using well logs: a method by integrating artificial neural networks and sedimentary patterns publication-title: J. Pet. Sci. Eng. – volume: 2017 start-page: 1 year: 2017 end-page: 12 ident: bb0135 article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning publication-title: 31st AAAI Conference on Artificial Intelligence – volume: 32 start-page: 7 year: 2010 ident: bb0075 article-title: Lithological identification of conglomerate reservoirs base on decision method publication-title: J. Oil Gas Technol. – start-page: 291 year: 2011 end-page: 296 ident: bb0020 article-title: Deep sparse recti er neural networks (ReLU) publication-title: International Conference on Articial Intelligence and Statistics – start-page: 1026 year: 2015 end-page: 1034 ident: bb0040 article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification publication-title: IEEE Int. Conf. Comput. Vis. – volume: 7 start-page: SE113 year: 2019 end-page: SE122 ident: bb0105 article-title: Saltseg: automatic 3D salt segmentation using a deep convolutional neural network publication-title: Interpretation – volume: 174 start-page: 216 year: 2019 end-page: 228 ident: bb0045 article-title: Lithological facies classification using deep convolutional neural network publication-title: J. Pet. Sci. Eng. – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: bb0065 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. – start-page: 1701 year: 2014 ident: 10.1016/j.jappgeo.2025.105905_bb0145 article-title: DeepFace: closing the gap to human-level perfofrmance in face verification publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 37 start-page: 541 issue: 4 year: 2011 ident: 10.1016/j.jappgeo.2025.105905_bb0050 article-title: Multi-class supervised classification of electrical borehole wall images using texture features publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.08.008 – year: 2014 ident: 10.1016/j.jappgeo.2025.105905_bb0060 – start-page: 1251 year: 2021 ident: 10.1016/j.jappgeo.2025.105905_bb0110 article-title: Geological facies modeling based on progressive growing of generative adversarial networks (GANs) publication-title: Comput. Geosci. doi: 10.1007/s10596-021-10059-w – volume: 2019 start-page: 1956 year: 2018 ident: 10.1016/j.jappgeo.2025.105905_bb0025 article-title: Automated interpretation of top and base salt using deep convolutional networks – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.jappgeo.2025.105905_bb0135 article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning – volume: 80 start-page: 9 year: 2015 ident: 10.1016/j.jappgeo.2025.105905_bb0030 article-title: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.03.013 – volume: 1 start-page: 5 year: 2014 ident: 10.1016/j.jappgeo.2025.105905_bb0035 article-title: Fracture identification in conventional log through KNN classification algorithm based on slope of logging curve——a case study of reef F facies reservoir in Puguang gasfield publication-title: Sino-Glob. Energy – start-page: 1026 year: 2015 ident: 10.1016/j.jappgeo.2025.105905_bb0040 article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification publication-title: IEEE Int. Conf. Comput. Vis. – volume: S2 start-page: 10 year: 2012 ident: 10.1016/j.jappgeo.2025.105905_bb0005 article-title: Multi-methods combined identify lithology of glutenite publication-title: J. Jilin Univ. (Earth Sci. Ed.) – volume: 32 start-page: 7 issue: 3 year: 2010 ident: 10.1016/j.jappgeo.2025.105905_bb0075 article-title: Lithological identification of conglomerate reservoirs base on decision method publication-title: J. Oil Gas Technol. – volume: 620 start-page: 129493 year: 2023 ident: 10.1016/j.jappgeo.2025.105905_bb0130 article-title: Gansim-surrogate: an integrated framework for stochastic conditional geomodelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129493 – volume: 4 start-page: 178 issue: 2 year: 2018 ident: 10.1016/j.jappgeo.2025.105905_bb0010 article-title: Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique publication-title: Petroleum doi: 10.1016/j.petlm.2017.09.009 – start-page: 1 year: 2007 ident: 10.1016/j.jappgeo.2025.105905_bb0085 article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 39 start-page: 5 issue: 4 year: 2015 ident: 10.1016/j.jappgeo.2025.105905_bb0160 article-title: Permeability prediction using support vector machine based on reservoir classification publication-title: Well Logging Technol. – year: 2017 ident: 10.1016/j.jappgeo.2025.105905_bb0055 – start-page: 779 year: 2016 ident: 10.1016/j.jappgeo.2025.105905_bb0090 article-title: You only look once: unified, real-time object detection publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – start-page: 291 year: 2011 ident: 10.1016/j.jappgeo.2025.105905_bb0020 article-title: Deep sparse recti er neural networks (ReLU) – volume: 58 issue: 7 year: 2022 ident: 10.1016/j.jappgeo.2025.105905_bb0125 article-title: GANSim-3D for conditional geomodeling: theory and field application publication-title: Water Resour. Res. doi: 10.1029/2021WR031865 – start-page: 92 year: 2010 ident: 10.1016/j.jappgeo.2025.105905_bb0100 article-title: Evaluation of pooling operations in convolutional architectures for object recognition – start-page: 1 year: 2021 ident: 10.1016/j.jappgeo.2025.105905_bb0115 article-title: GANsim: conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs) publication-title: Math. Geosci. – volume: 37 start-page: 732 issue: 6 year: 2016 ident: 10.1016/j.jappgeo.2025.105905_bb0170 article-title: Logging identification method for lithology: a case study of Baikouquan Formation in Wellblock Fengnan, Junggar Basin publication-title: Xinjiang Petrol. Geol. – volume: 01 start-page: 9 year: 2008 ident: 10.1016/j.jappgeo.2025.105905_bb0070 article-title: Study and application of natural gamma logging response characteristics of sandy conglomerate in Dongying depression publication-title: J. Oil Gas Technol. – volume: 142 start-page: 103619 year: 2020 ident: 10.1016/j.jappgeo.2025.105905_bb0140 article-title: Machine learning in geo- and environmental sciences: from small to large scale publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103619 – volume: 174 start-page: 216 year: 2019 ident: 10.1016/j.jappgeo.2025.105905_bb0045 article-title: Lithological facies classification using deep convolutional neural network publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.11.023 – volume: 125 start-page: 81 issue: 1 year: 2018 ident: 10.1016/j.jappgeo.2025.105905_bb0080 article-title: Stochastic reconstruction of an oolitic limestone by generative adversarial networks publication-title: Transp. Porous Media doi: 10.1007/s11242-018-1039-9 – volume: 60 start-page: 1 year: 2021 ident: 10.1016/j.jappgeo.2025.105905_bb0120 article-title: Bridging the gap between geophysics and geology with generative adversarial networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 84 start-page: IM35 issue: 3 year: 2019 ident: 10.1016/j.jappgeo.2025.105905_bb0155 article-title: FaultSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation publication-title: Geophysics doi: 10.1190/geo2018-0646.1 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.jappgeo.2025.105905_bb0065 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 182 year: 2019 ident: 10.1016/j.jappgeo.2025.105905_bb0095 article-title: Lithology identification using well logs: a method by integrating artificial neural networks and sedimentary patterns publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.106336 – volume: 7 start-page: SE113 issue: 3 year: 2019 ident: 10.1016/j.jappgeo.2025.105905_bb0105 article-title: Saltseg: automatic 3D salt segmentation using a deep convolutional neural network publication-title: Interpretation doi: 10.1190/INT-2018-0235.1 – volume: 166 start-page: 157 year: 2018 ident: 10.1016/j.jappgeo.2025.105905_bb0150 article-title: Lithology identification using an optimized KNN clustering method based on entropy-weighed cosine distance in Mesozoic strata of Gaoqing field, Jiyang depression publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.03.034 – start-page: 818 year: 2014 ident: 10.1016/j.jappgeo.2025.105905_bb0165 article-title: Visualizing and understanding convolutional networks – volume: 30 start-page: 2673 issue: 9 year: 2018 ident: 10.1016/j.jappgeo.2025.105905_bb0015 article-title: New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-017-2850-x |
SSID | ssj0001304 |
Score | 2.4229672 |
Snippet | Predicting the lithology and porosity of borehole rocks based on wireline logging data holds significant importance. The sampling interval of the logs is... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 105905 |
SubjectTerms | Convolutional Neural Networks Depth sliding window Lithology prediction Porosity prediction Well logs |
Title | Lithology recognition and porosity prediction from well logs based on Convolutional Neural Networks and sliding window |
URI | https://dx.doi.org/10.1016/j.jappgeo.2025.105905 |
Volume | 242 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQXdqh6lOlD-Sha0hInTgeESqiL5YWiS3ys4IhRJCCWPrbe3aSQqWqQ7NEse6S6Hy-75zcA6HbxFAjmZJet8u4R3QivQRQwiNG8SgUUgrXveFlFA_H5HESTRqoX-fC2LDKyvaXNt1Z62rEr6Tp59Op_xqwMGbgMACIA0i6LRAh1Gp553Mb5gE22pWQAmLPUm-zePxZZ8bz_N3lAIaR7XjLbBe73_BpB3MGR-iwchZxr3yfY9TQ2Qk62CkheIpWz9PCGbAN_o4FmmeYZwqDZ20jsjY4X9i_MW7cZpNg-70OA8sSWwxTGMb782xVKSE80FbscCcXIr50dwN_1MIcXsMmfr4-Q-PB_Vt_6FW9FDwJe47Ci6kUsHiNktYDhCMIlNCx4JEJVCgSJnQoIqpiTagJDachibmB1RmIrlbAeo6a2TzTFwgTKsOAyiRgiSKKAplmigeSw2ybuyhpoU4twTQvS2akdSzZLK1EnlqRp6XIWyip5Zz-mPsUzPrfrJf_Z71C-_aqzCu8Rs1i8aFvwMEoRNtpUBvt9R6ehqMvWSjUTA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb4JAFJ4YPbQ9NF1Tu86hVwQpMHA0pkbrcqkm3sisjR6AKNX47_tmAGuTpodyIRnmAXkz831v4C0IPYeKKB4JbrXbEbU8GXIrBJawPCWo7zLOmaneMJ4E_Zn3NvfnNdStYmG0W2WJ_QWmG7QuW-xSm3a2WNjvTuQGERgMQOJAknoL1NDZqfw6anQGw_5kD8gA0yaLFPS3tMB3II-9bC1pln2YMEDX10VvI13I7jeKOqCd3hk6Le1F3Cle6RzVZHKBTg6yCF6izWiRGwzb4b07UJpgmggMxrV2ytrhbKV_yJh2HVCC9Sc7DCJrrGlMYGjvpsmmnIfwQJ20w5yMl_ja3A1MUs10eAv7-HR7hWa912m3b5XlFCwO247cCghnsH6V4NoIhMNxBJMBo75yhMvCiEmX-UQE0iPKVZS4XkAVLFCHtaUA0WtUT9JE3iDsEe46hIdOFApPEOgmI0EdTmHA1YsfNlGr0mCcFVkz4sqdbBmXKo-1yuNC5U0UVnqOfwx_DMj-t-jt_0Wf0FF_Oh7Fo8FkeIeO9ZUizPAe1fPVp3wAeyNnj-V8-gKmH9b9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithology+recognition+and+porosity+prediction+from+well+logs+based+on+Convolutional+Neural+Networks+and+sliding+window&rft.jtitle=Journal+of+applied+geophysics&rft.au=Wang%2C+Yunjuan&rft.au=Wang%2C+Xixin&rft.au=Wang%2C+Kaiyu&rft.au=Fu%2C+Ying&rft.date=2025-11-01&rft.issn=0926-9851&rft.volume=242&rft.spage=105905&rft_id=info:doi/10.1016%2Fj.jappgeo.2025.105905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2025_105905 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |