Lithology recognition and porosity prediction from well logs based on Convolutional Neural Networks and sliding window

Predicting the lithology and porosity of borehole rocks based on wireline logging data holds significant importance. The sampling interval of the logs is relatively small, so the log values within a specific range above and below the target depth contain effective information about the borehole rock...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 242; p. 105905
Main Authors Wang, Yunjuan, Wang, Xixin, Wang, Kaiyu, Fu, Ying
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting the lithology and porosity of borehole rocks based on wireline logging data holds significant importance. The sampling interval of the logs is relatively small, so the log values within a specific range above and below the target depth contain effective information about the borehole rock at the target depth. This paper proposes a method that combines a deep sliding window with a convolutional neural network. In this approach, multiple logging curves within the sliding window serve as inputs, and the convolutional neural network extracts valuable information from these logging curves. Subsequently, the borehole lithology and porosity at the window center are predicted based on the extracted information. As the window slides vertically, it enables the rapid prediction of lithology and porosity for the entire wellbore. Based on the practical application in an oil field in the east of China, it was determined that the optimal length of the sliding window is 1.125 m. The accuracy rate of the proposed convolutional network model for lithology prediction can exceed 94.4 %, and the accuracy rate for porosity prediction is 94.9 %. The prediction speed is notably fast, making it applicable with precision to lithology or porosity predictions in numerous oil fields and new wells. •Propose sliding window method to extract rock properties from well logs at the window center.•Combine sliding window and CNN to predict lithology and porosity at the window center.•Enable rapid, precise lithology and porosity prediction for the whole wellbore.•Achieve optimal window length of 1.125 m with 94.4 % lithology and 94.9 % porosity accuracy.
AbstractList Predicting the lithology and porosity of borehole rocks based on wireline logging data holds significant importance. The sampling interval of the logs is relatively small, so the log values within a specific range above and below the target depth contain effective information about the borehole rock at the target depth. This paper proposes a method that combines a deep sliding window with a convolutional neural network. In this approach, multiple logging curves within the sliding window serve as inputs, and the convolutional neural network extracts valuable information from these logging curves. Subsequently, the borehole lithology and porosity at the window center are predicted based on the extracted information. As the window slides vertically, it enables the rapid prediction of lithology and porosity for the entire wellbore. Based on the practical application in an oil field in the east of China, it was determined that the optimal length of the sliding window is 1.125 m. The accuracy rate of the proposed convolutional network model for lithology prediction can exceed 94.4 %, and the accuracy rate for porosity prediction is 94.9 %. The prediction speed is notably fast, making it applicable with precision to lithology or porosity predictions in numerous oil fields and new wells. •Propose sliding window method to extract rock properties from well logs at the window center.•Combine sliding window and CNN to predict lithology and porosity at the window center.•Enable rapid, precise lithology and porosity prediction for the whole wellbore.•Achieve optimal window length of 1.125 m with 94.4 % lithology and 94.9 % porosity accuracy.
ArticleNumber 105905
Author Wang, Yunjuan
Wang, Xixin
Wang, Kaiyu
Fu, Ying
Author_xml – sequence: 1
  givenname: Yunjuan
  surname: Wang
  fullname: Wang, Yunjuan
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, Wuhan 430100, China
– sequence: 2
  givenname: Xixin
  surname: Wang
  fullname: Wang, Xixin
  email: wangxixin86@hotmail.com
  organization: Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, Wuhan 430100, China
– sequence: 3
  givenname: Kaiyu
  surname: Wang
  fullname: Wang, Kaiyu
  organization: Institute of Petroleum Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China
– sequence: 4
  givenname: Ying
  surname: Fu
  fullname: Fu, Ying
  organization: Institute of Petroleum Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China
BookMark eNqFkMtOwzAQRb0oEi3wCUj-gRbbjZNmhVDFS6pgA2vLj3FwSO3IThv173Efe2Zzpau5VzNnhiY-eEDonpIFJbR8aBet7PsGwoIRxrPHa8InaEpqVs7rFafXaJZSSwihS1JM0X7jhp_QheaAI-jQeDe44LH0BvchhuSGA-4jGKdPvo1hi0foOpwjCSuZwODsr4Pfh2533JEd_oBdPMkwhvibTm2pc8b5Bo_OmzDeoisruwR3F71B3y_PX-u3-ebz9X39tJlrWhXDvKy0Wi2ZNZpyUuUhxCgoleSWGKZWtQKmeGVKKCrLrKxYUUpbl0uiKJgcvUH83KvzLymCFX10WxkPghJxBCZacQEmjsDEGVjOPZ5zkI_bO4giaQdeZxAZ0yBMcP80_AECXX6V
Cites_doi 10.1016/j.cageo.2010.08.008
10.1007/s10596-021-10059-w
10.1016/j.cageo.2015.03.013
10.1016/j.jhydrol.2023.129493
10.1016/j.petlm.2017.09.009
10.1029/2021WR031865
10.1016/j.advwatres.2020.103619
10.1016/j.petrol.2018.11.023
10.1007/s11242-018-1039-9
10.1190/geo2018-0646.1
10.1162/neco.1989.1.4.541
10.1016/j.petrol.2019.106336
10.1190/INT-2018-0235.1
10.1016/j.petrol.2018.03.034
10.1007/s00521-017-2850-x
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2025.105905
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jappgeo_2025_105905
S0926985125002861
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c174t-67cb832fdc150777700dbe6ba5f0d2b89be2b57d6e47f2fa7246af9630b1edb83
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Wed Aug 27 16:40:58 EDT 2025
Sat Aug 30 17:17:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Depth sliding window
Convolutional Neural Networks
Well logs
Lithology prediction
Porosity prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c174t-67cb832fdc150777700dbe6ba5f0d2b89be2b57d6e47f2fa7246af9630b1edb83
ParticipantIDs crossref_primary_10_1016_j_jappgeo_2025_105905
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2025_105905
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Harris, Grunsky (bb0030) 2015; 80
Tahmasebi, Kamrava, Bai (bb0140) 2020; 142
He, Bi, Zeng (bb0035) 2014; 1
Yuan, Zhang, Zhang (bb0160) 2015; 39
Song, Zhang, Mukerji, Wang (bb0130) 2023; 620
Song, Mukerji, Hou (bb0120) 2021; 60
Elkatatny, Mahmoud, Tariq (bb0015) 2018; 30
Scherer, Müller, Behnke (bb0100) 2010
Jungmann, Kopal, Clauser (bb0050) 2011; 37
Lecun, Boser, Denker (bb0065) 1989; 1
Li, Zhou (bb0070) 2008; 01
Ren, Hou, Song (bb0095) 2019; 182
Wu, Liang, Shi (bb0155) 2019; 84
Song, Mukerji, Hou (bb0115) 2021
Gramstad, Nickel (bb0025) 2018; 2019
Li, Tan, Xu (bb0075) 2010; 32
Song, Mukerji, Hou, Zhang, Lyu (bb0125) 2022; 58
Song, Mukerji, Hou (bb0110) 2021
Bai, Xue, Pan (bb0005) 2012; S2
Wang, Yang, Zhao (bb0150) 2018; 166
Imamverdiyev, Sukhostat (bb0045) 2019; 174
Zeiler, Fergus (bb0165) 2014
Taigman, Yang, Ranzato (bb0145) 2014
Karras, Aila, Laine (bb0055) 2017
Glorot, Bordes, Bengio (bb0020) 2011
Redmon, Divvala, Girshick (bb0090) 2016
Zhao, Wang, Tang (bb0170) 2016; 37
Ranzato, Huang, Boureau (bb0085) 2007
Shi, Wu, Fomel (bb0105) 2019; 7
Mosser, Dubrule, Blunt (bb0080) 2018; 125
Szegedy, Ioffe, Vanhoucke (bb0135) 2017; 2017
Elkatatny, Mahmoud (bb0010) 2018; 4
He, Zhang, Ren (bb0040) 2015
Kingma, Ba (bb0060) 2014
Elkatatny (10.1016/j.jappgeo.2025.105905_bb0010) 2018; 4
Redmon (10.1016/j.jappgeo.2025.105905_bb0090) 2016
Li (10.1016/j.jappgeo.2025.105905_bb0070) 2008; 01
Zeiler (10.1016/j.jappgeo.2025.105905_bb0165) 2014
Harris (10.1016/j.jappgeo.2025.105905_bb0030) 2015; 80
Gramstad (10.1016/j.jappgeo.2025.105905_bb0025) 2018; 2019
Li (10.1016/j.jappgeo.2025.105905_bb0075) 2010; 32
Taigman (10.1016/j.jappgeo.2025.105905_bb0145) 2014
Song (10.1016/j.jappgeo.2025.105905_bb0125) 2022; 58
Szegedy (10.1016/j.jappgeo.2025.105905_bb0135) 2017; 2017
He (10.1016/j.jappgeo.2025.105905_bb0035) 2014; 1
Wu (10.1016/j.jappgeo.2025.105905_bb0155) 2019; 84
Elkatatny (10.1016/j.jappgeo.2025.105905_bb0015) 2018; 30
Karras (10.1016/j.jappgeo.2025.105905_bb0055) 2017
He (10.1016/j.jappgeo.2025.105905_bb0040) 2015
Song (10.1016/j.jappgeo.2025.105905_bb0130) 2023; 620
Song (10.1016/j.jappgeo.2025.105905_bb0110) 2021
Song (10.1016/j.jappgeo.2025.105905_bb0120) 2021; 60
Imamverdiyev (10.1016/j.jappgeo.2025.105905_bb0045) 2019; 174
Kingma (10.1016/j.jappgeo.2025.105905_bb0060) 2014
Scherer (10.1016/j.jappgeo.2025.105905_bb0100) 2010
Lecun (10.1016/j.jappgeo.2025.105905_bb0065) 1989; 1
Jungmann (10.1016/j.jappgeo.2025.105905_bb0050) 2011; 37
Ranzato (10.1016/j.jappgeo.2025.105905_bb0085) 2007
Bai (10.1016/j.jappgeo.2025.105905_bb0005) 2012; S2
Shi (10.1016/j.jappgeo.2025.105905_bb0105) 2019; 7
Wang (10.1016/j.jappgeo.2025.105905_bb0150) 2018; 166
Tahmasebi (10.1016/j.jappgeo.2025.105905_bb0140) 2020; 142
Glorot (10.1016/j.jappgeo.2025.105905_bb0020) 2011
Song (10.1016/j.jappgeo.2025.105905_bb0115) 2021
Zhao (10.1016/j.jappgeo.2025.105905_bb0170) 2016; 37
Mosser (10.1016/j.jappgeo.2025.105905_bb0080) 2018; 125
Ren (10.1016/j.jappgeo.2025.105905_bb0095) 2019; 182
Yuan (10.1016/j.jappgeo.2025.105905_bb0160) 2015; 39
References_xml – start-page: 779
  year: 2016
  end-page: 788
  ident: bb0090
  article-title: You only look once: unified, real-time object detection
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 620
  start-page: 129493
  year: 2023
  ident: bb0130
  article-title: Gansim-surrogate: an integrated framework for stochastic conditional geomodelling
  publication-title: J. Hydrol.
– volume: 4
  start-page: 178
  year: 2018
  end-page: 186
  ident: bb0010
  article-title: Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique
  publication-title: Petroleum
– volume: 142
  start-page: 103619
  year: 2020
  end-page: 103642
  ident: bb0140
  article-title: Machine learning in geo- and environmental sciences: from small to large scale
  publication-title: Adv. Water Resour.
– start-page: 1
  year: 2007
  end-page: 8
  ident: bb0085
  article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– year: 2017
  ident: bb0055
  article-title: Progressive Growing of GANs for Improved Quality, Stability, and Variation
– start-page: 818
  year: 2014
  end-page: 833
  ident: bb0165
  article-title: Visualizing and understanding convolutional networks
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– start-page: 92
  year: 2010
  end-page: 101
  ident: bb0100
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 125
  start-page: 81
  year: 2018
  end-page: 103
  ident: bb0080
  article-title: Stochastic reconstruction of an oolitic limestone by generative adversarial networks
  publication-title: Transp. Porous Media
– volume: 2019
  start-page: 1956
  year: 2018
  end-page: 1960
  ident: bb0025
  article-title: Automated interpretation of top and base salt using deep convolutional networks
  publication-title: 2018 SEG International Exposition and Annual Meeting
– volume: S2
  start-page: 10
  year: 2012
  ident: bb0005
  article-title: Multi-methods combined identify lithology of glutenite
  publication-title: J. Jilin Univ. (Earth Sci. Ed.)
– volume: 1
  start-page: 5
  year: 2014
  ident: bb0035
  article-title: Fracture identification in conventional log through KNN classification algorithm based on slope of logging curve——a case study of reef F facies reservoir in Puguang gasfield
  publication-title: Sino-Glob. Energy
– year: 2014
  ident: bb0060
  article-title: Adam: A Method for Stochastic Optimization
– start-page: 1
  year: 2021
  end-page: 32
  ident: bb0115
  article-title: GANsim: conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs)
  publication-title: Math. Geosci.
– volume: 60
  start-page: 1
  year: 2021
  end-page: 11
  ident: bb0120
  article-title: Bridging the gap between geophysics and geology with generative adversarial networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 84
  start-page: IM35
  year: 2019
  end-page: IM45
  ident: bb0155
  article-title: FaultSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation
  publication-title: Geophysics
– volume: 01
  start-page: 9
  year: 2008
  end-page: 109
  ident: bb0070
  article-title: Study and application of natural gamma logging response characteristics of sandy conglomerate in Dongying depression
  publication-title: J. Oil Gas Technol.
– start-page: 1251
  year: 2021
  end-page: 1273
  ident: bb0110
  article-title: Geological facies modeling based on progressive growing of generative adversarial networks (GANs)
  publication-title: Comput. Geosci.
– volume: 166
  start-page: 157
  year: 2018
  end-page: 174
  ident: bb0150
  article-title: Lithology identification using an optimized KNN clustering method based on entropy-weighed cosine distance in Mesozoic strata of Gaoqing field, Jiyang depression
  publication-title: J. Pet. Sci. Eng.
– volume: 58
  year: 2022
  ident: bb0125
  article-title: GANSim-3D for conditional geomodeling: theory and field application
  publication-title: Water Resour. Res.
– start-page: 1701
  year: 2014
  end-page: 1708
  ident: bb0145
  article-title: DeepFace: closing the gap to human-level perfofrmance in face verification
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 30
  start-page: 2673
  year: 2018
  end-page: 2683
  ident: bb0015
  article-title: New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network
  publication-title: Neural Comput. & Applic.
– volume: 37
  start-page: 732
  year: 2016
  end-page: 737
  ident: bb0170
  article-title: Logging identification method for lithology: a case study of Baikouquan Formation in Wellblock Fengnan, Junggar Basin
  publication-title: Xinjiang Petrol. Geol.
– volume: 39
  start-page: 5
  year: 2015
  ident: bb0160
  article-title: Permeability prediction using support vector machine based on reservoir classification
  publication-title: Well Logging Technol.
– volume: 37
  start-page: 541
  year: 2011
  end-page: 553
  ident: bb0050
  article-title: Multi-class supervised classification of electrical borehole wall images using texture features
  publication-title: Comput. Geosci.
– volume: 80
  start-page: 9
  year: 2015
  end-page: 25
  ident: bb0030
  article-title: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data
  publication-title: Comput. Geosci.
– volume: 182
  year: 2019
  ident: bb0095
  article-title: Lithology identification using well logs: a method by integrating artificial neural networks and sedimentary patterns
  publication-title: J. Pet. Sci. Eng.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 12
  ident: bb0135
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  publication-title: 31st AAAI Conference on Artificial Intelligence
– volume: 32
  start-page: 7
  year: 2010
  ident: bb0075
  article-title: Lithological identification of conglomerate reservoirs base on decision method
  publication-title: J. Oil Gas Technol.
– start-page: 291
  year: 2011
  end-page: 296
  ident: bb0020
  article-title: Deep sparse recti er neural networks (ReLU)
  publication-title: International Conference on Articial Intelligence and Statistics
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bb0040
  article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification
  publication-title: IEEE Int. Conf. Comput. Vis.
– volume: 7
  start-page: SE113
  year: 2019
  end-page: SE122
  ident: bb0105
  article-title: Saltseg: automatic 3D salt segmentation using a deep convolutional neural network
  publication-title: Interpretation
– volume: 174
  start-page: 216
  year: 2019
  end-page: 228
  ident: bb0045
  article-title: Lithological facies classification using deep convolutional neural network
  publication-title: J. Pet. Sci. Eng.
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: bb0065
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– start-page: 1701
  year: 2014
  ident: 10.1016/j.jappgeo.2025.105905_bb0145
  article-title: DeepFace: closing the gap to human-level perfofrmance in face verification
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 37
  start-page: 541
  issue: 4
  year: 2011
  ident: 10.1016/j.jappgeo.2025.105905_bb0050
  article-title: Multi-class supervised classification of electrical borehole wall images using texture features
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.08.008
– year: 2014
  ident: 10.1016/j.jappgeo.2025.105905_bb0060
– start-page: 1251
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105905_bb0110
  article-title: Geological facies modeling based on progressive growing of generative adversarial networks (GANs)
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-021-10059-w
– volume: 2019
  start-page: 1956
  year: 2018
  ident: 10.1016/j.jappgeo.2025.105905_bb0025
  article-title: Automated interpretation of top and base salt using deep convolutional networks
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.jappgeo.2025.105905_bb0135
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
– volume: 80
  start-page: 9
  year: 2015
  ident: 10.1016/j.jappgeo.2025.105905_bb0030
  article-title: Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.03.013
– volume: 1
  start-page: 5
  year: 2014
  ident: 10.1016/j.jappgeo.2025.105905_bb0035
  article-title: Fracture identification in conventional log through KNN classification algorithm based on slope of logging curve——a case study of reef F facies reservoir in Puguang gasfield
  publication-title: Sino-Glob. Energy
– start-page: 1026
  year: 2015
  ident: 10.1016/j.jappgeo.2025.105905_bb0040
  article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification
  publication-title: IEEE Int. Conf. Comput. Vis.
– volume: S2
  start-page: 10
  year: 2012
  ident: 10.1016/j.jappgeo.2025.105905_bb0005
  article-title: Multi-methods combined identify lithology of glutenite
  publication-title: J. Jilin Univ. (Earth Sci. Ed.)
– volume: 32
  start-page: 7
  issue: 3
  year: 2010
  ident: 10.1016/j.jappgeo.2025.105905_bb0075
  article-title: Lithological identification of conglomerate reservoirs base on decision method
  publication-title: J. Oil Gas Technol.
– volume: 620
  start-page: 129493
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105905_bb0130
  article-title: Gansim-surrogate: an integrated framework for stochastic conditional geomodelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129493
– volume: 4
  start-page: 178
  issue: 2
  year: 2018
  ident: 10.1016/j.jappgeo.2025.105905_bb0010
  article-title: Development of new correlations for the oil formation volume factor in oil reservoirs using artificial intelligent white box technique
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2017.09.009
– start-page: 1
  year: 2007
  ident: 10.1016/j.jappgeo.2025.105905_bb0085
  article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 39
  start-page: 5
  issue: 4
  year: 2015
  ident: 10.1016/j.jappgeo.2025.105905_bb0160
  article-title: Permeability prediction using support vector machine based on reservoir classification
  publication-title: Well Logging Technol.
– year: 2017
  ident: 10.1016/j.jappgeo.2025.105905_bb0055
– start-page: 779
  year: 2016
  ident: 10.1016/j.jappgeo.2025.105905_bb0090
  article-title: You only look once: unified, real-time object detection
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– start-page: 291
  year: 2011
  ident: 10.1016/j.jappgeo.2025.105905_bb0020
  article-title: Deep sparse recti er neural networks (ReLU)
– volume: 58
  issue: 7
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105905_bb0125
  article-title: GANSim-3D for conditional geomodeling: theory and field application
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR031865
– start-page: 92
  year: 2010
  ident: 10.1016/j.jappgeo.2025.105905_bb0100
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
– start-page: 1
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105905_bb0115
  article-title: GANsim: conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs)
  publication-title: Math. Geosci.
– volume: 37
  start-page: 732
  issue: 6
  year: 2016
  ident: 10.1016/j.jappgeo.2025.105905_bb0170
  article-title: Logging identification method for lithology: a case study of Baikouquan Formation in Wellblock Fengnan, Junggar Basin
  publication-title: Xinjiang Petrol. Geol.
– volume: 01
  start-page: 9
  year: 2008
  ident: 10.1016/j.jappgeo.2025.105905_bb0070
  article-title: Study and application of natural gamma logging response characteristics of sandy conglomerate in Dongying depression
  publication-title: J. Oil Gas Technol.
– volume: 142
  start-page: 103619
  year: 2020
  ident: 10.1016/j.jappgeo.2025.105905_bb0140
  article-title: Machine learning in geo- and environmental sciences: from small to large scale
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103619
– volume: 174
  start-page: 216
  year: 2019
  ident: 10.1016/j.jappgeo.2025.105905_bb0045
  article-title: Lithological facies classification using deep convolutional neural network
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.11.023
– volume: 125
  start-page: 81
  issue: 1
  year: 2018
  ident: 10.1016/j.jappgeo.2025.105905_bb0080
  article-title: Stochastic reconstruction of an oolitic limestone by generative adversarial networks
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-018-1039-9
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105905_bb0120
  article-title: Bridging the gap between geophysics and geology with generative adversarial networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 84
  start-page: IM35
  issue: 3
  year: 2019
  ident: 10.1016/j.jappgeo.2025.105905_bb0155
  article-title: FaultSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation
  publication-title: Geophysics
  doi: 10.1190/geo2018-0646.1
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.jappgeo.2025.105905_bb0065
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 182
  year: 2019
  ident: 10.1016/j.jappgeo.2025.105905_bb0095
  article-title: Lithology identification using well logs: a method by integrating artificial neural networks and sedimentary patterns
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106336
– volume: 7
  start-page: SE113
  issue: 3
  year: 2019
  ident: 10.1016/j.jappgeo.2025.105905_bb0105
  article-title: Saltseg: automatic 3D salt segmentation using a deep convolutional neural network
  publication-title: Interpretation
  doi: 10.1190/INT-2018-0235.1
– volume: 166
  start-page: 157
  year: 2018
  ident: 10.1016/j.jappgeo.2025.105905_bb0150
  article-title: Lithology identification using an optimized KNN clustering method based on entropy-weighed cosine distance in Mesozoic strata of Gaoqing field, Jiyang depression
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.03.034
– start-page: 818
  year: 2014
  ident: 10.1016/j.jappgeo.2025.105905_bb0165
  article-title: Visualizing and understanding convolutional networks
– volume: 30
  start-page: 2673
  issue: 9
  year: 2018
  ident: 10.1016/j.jappgeo.2025.105905_bb0015
  article-title: New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-017-2850-x
SSID ssj0001304
Score 2.4229672
Snippet Predicting the lithology and porosity of borehole rocks based on wireline logging data holds significant importance. The sampling interval of the logs is...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105905
SubjectTerms Convolutional Neural Networks
Depth sliding window
Lithology prediction
Porosity prediction
Well logs
Title Lithology recognition and porosity prediction from well logs based on Convolutional Neural Networks and sliding window
URI https://dx.doi.org/10.1016/j.jappgeo.2025.105905
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQXdqh6lOlD-Sha0hInTgeESqiL5YWiS3ys4IhRJCCWPrbe3aSQqWqQ7NEse6S6Hy-75zcA6HbxFAjmZJet8u4R3QivQRQwiNG8SgUUgrXveFlFA_H5HESTRqoX-fC2LDKyvaXNt1Z62rEr6Tp59Op_xqwMGbgMACIA0i6LRAh1Gp553Mb5gE22pWQAmLPUm-zePxZZ8bz_N3lAIaR7XjLbBe73_BpB3MGR-iwchZxr3yfY9TQ2Qk62CkheIpWz9PCGbAN_o4FmmeYZwqDZ20jsjY4X9i_MW7cZpNg-70OA8sSWwxTGMb782xVKSE80FbscCcXIr50dwN_1MIcXsMmfr4-Q-PB_Vt_6FW9FDwJe47Ci6kUsHiNktYDhCMIlNCx4JEJVCgSJnQoIqpiTagJDachibmB1RmIrlbAeo6a2TzTFwgTKsOAyiRgiSKKAplmigeSw2ybuyhpoU4twTQvS2akdSzZLK1EnlqRp6XIWyip5Zz-mPsUzPrfrJf_Z71C-_aqzCu8Rs1i8aFvwMEoRNtpUBvt9R6ehqMvWSjUTA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb4JAFJ4YPbQ9NF1Tu86hVwQpMHA0pkbrcqkm3sisjR6AKNX47_tmAGuTpodyIRnmAXkz831v4C0IPYeKKB4JbrXbEbU8GXIrBJawPCWo7zLOmaneMJ4E_Zn3NvfnNdStYmG0W2WJ_QWmG7QuW-xSm3a2WNjvTuQGERgMQOJAknoL1NDZqfw6anQGw_5kD8gA0yaLFPS3tMB3II-9bC1pln2YMEDX10VvI13I7jeKOqCd3hk6Le1F3Cle6RzVZHKBTg6yCF6izWiRGwzb4b07UJpgmggMxrV2ytrhbKV_yJh2HVCC9Sc7DCJrrGlMYGjvpsmmnIfwQJ20w5yMl_ja3A1MUs10eAv7-HR7hWa912m3b5XlFCwO247cCghnsH6V4NoIhMNxBJMBo75yhMvCiEmX-UQE0iPKVZS4XkAVLFCHtaUA0WtUT9JE3iDsEe46hIdOFApPEOgmI0EdTmHA1YsfNlGr0mCcFVkz4sqdbBmXKo-1yuNC5U0UVnqOfwx_DMj-t-jt_0Wf0FF_Oh7Fo8FkeIeO9ZUizPAe1fPVp3wAeyNnj-V8-gKmH9b9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithology+recognition+and+porosity+prediction+from+well+logs+based+on+Convolutional+Neural+Networks+and+sliding+window&rft.jtitle=Journal+of+applied+geophysics&rft.au=Wang%2C+Yunjuan&rft.au=Wang%2C+Xixin&rft.au=Wang%2C+Kaiyu&rft.au=Fu%2C+Ying&rft.date=2025-11-01&rft.issn=0926-9851&rft.volume=242&rft.spage=105905&rft_id=info:doi/10.1016%2Fj.jappgeo.2025.105905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2025_105905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon