Machine Learning Approaches for Neuroblastoma Risk Prediction and Stratification

Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more...

Full description

Saved in:
Bibliographic Details
Published inCritical reviews in oncogenesis Vol. 30; no. 1; p. 15
Main Authors Vadde, Ramakrishna, Gupta, Manoj Kumar
Format Journal Article
LanguageEnglish
Published United States 2025
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods. However, challenges like limited data size, model interpretability, data variability, and difficulties in clinical integration hinder broader adoption. Additionally, ethical concerns related to bias and privacy must be addressed. Future work should focus on improving data quality, enhancing model transparency, and conducting thorough clinical validation. With these advancements, ML has the potential to revolutionize neuroblastoma care by refining early diagnosis, risk assessment, and therapeutic decision-making.
AbstractList Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods. However, challenges like limited data size, model interpretability, data variability, and difficulties in clinical integration hinder broader adoption. Additionally, ethical concerns related to bias and privacy must be addressed. Future work should focus on improving data quality, enhancing model transparency, and conducting thorough clinical validation. With these advancements, ML has the potential to revolutionize neuroblastoma care by refining early diagnosis, risk assessment, and therapeutic decision-making.
Author Gupta, Manoj Kumar
Vadde, Ramakrishna
Author_xml – sequence: 1
  givenname: Ramakrishna
  surname: Vadde
  fullname: Vadde, Ramakrishna
  organization: Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa - 516003, Andhra Pradesh, India
– sequence: 2
  givenname: Manoj Kumar
  surname: Gupta
  fullname: Gupta, Manoj Kumar
  organization: Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39819432$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAURL0oog_4BfAPpNiJH_GyioAiBVoVWFfXjxRDY0dOisTfEwSsRjojjc7M0STE4BC6pmRJBeU3VfLDzn1ugomHZU5yRrhgTE7QjJSqyJSQfIrmff9Oxk7S4hxNC1VSxYp8hraPYN58cLh2kIIPB7zquhRH6HrcxISf3ClFfYR-iC3gne8_8DY5683gY8AQLH4eEgy-8QZ-0AU6a-DYu8u_XKDXu9uXap3Vm_uHalVnhko2ZHw0LBoqNNGlGF0ICCGJFoppcAKUpVY6apVsCC-sVhKMZLTkFojVZa7zBbr63e1OunV23yXfQvra_1_LvwHcGFSR
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1615/CritRevOncog.2024056447
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
ExternalDocumentID 39819432
Genre Journal Article
Review
GroupedDBID ---
0R~
2P0
5GY
5RE
ABJNI
ALMA_UNASSIGNED_HOLDINGS
BGJ
BUPDA
CGR
CUY
CVF
EBS
ECM
EIF
EJD
F5P
H5D
HZ~
NPM
O9-
UDS
ID FETCH-LOGICAL-c174t-54473f16b0b861940a6670b694bae6a9d1d7e1d97f053db97ac74185da0db82b2
ISSN 0893-9675
IngestDate Sat May 03 02:04:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c174t-54473f16b0b861940a6670b694bae6a9d1d7e1d97f053db97ac74185da0db82b2
PMID 39819432
ParticipantIDs pubmed_primary_39819432
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Critical reviews in oncogenesis
PublicationTitleAlternate Crit Rev Oncog
PublicationYear 2025
SSID ssj0024713
Score 2.3589976
SecondaryResourceType review_article
Snippet Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By...
SourceID pubmed
SourceType Index Database
StartPage 15
SubjectTerms Humans
Machine Learning
Neuroblastoma - diagnosis
Neuroblastoma - etiology
Neuroblastoma - therapy
Prognosis
Risk Assessment - methods
Title Machine Learning Approaches for Neuroblastoma Risk Prediction and Stratification
URI https://www.ncbi.nlm.nih.gov/pubmed/39819432
Volume 30
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9OYexF_P6WPPg2ql27ps2jiDqE6Rib7G0kTTpU1g6pPvjXe0madZtO1JdSGlZuuV-vd9e73yF0FjB463ux75BYCAfeEMLhXAKWm1z6QSOhns7ptu9Jq9-8GwSDsohdd5fk_Dz--Lav5D9ahWugV9Ul-wfNTm8KF-Ac9AtH0DAcf6Xjtq6ElJYkdaR8St0hJTXLQl0zb3Dwj_NszOpdVUXeeVVfZnJbhKzJaVW1UKkgS1tgZyAUfKUqMZKlcTZSxvFp6ok_Ksul9cTG7EWNq0-nhv72bWJ80zZLs-e6ruaezTJ4wUyWoTBG1HcoMVNOrOUsvqjMIsSYQdOh-cU6E01koeTvyvcHJTIE6OBSBOCUhbO_gG2ejLXSfAouS9OkQH9eXaDNtksVVIEAQk1EVWkcS8IYmrnZ9k8VhX8g38US6Wqoau-4EIBoR6S3gdaLCAJfGjhsohWZbqFqu6iR2EadAhXYogKXqMCACjyHCqxQgUtUYEAFnkfFDurfXPeuWk4xN8OJIb7MnQDk9ZMG4S6PVJLKZYSELie0yZkkjIqGCGVD0DABCyw4DVmsOYwEcwWPPO7totU0S-U-wj7xPRkKN4khTnelhPjc53EkwHEVlHjRAdozezGcGHKUod2lw6UrR6hWIuwYrSXwNMoTcO1yfqrV9AlIsE7v
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Approaches+for+Neuroblastoma+Risk+Prediction+and+Stratification&rft.jtitle=Critical+reviews+in+oncogenesis&rft.au=Vadde%2C+Ramakrishna&rft.au=Gupta%2C+Manoj+Kumar&rft.date=2025-01-01&rft.issn=0893-9675&rft.volume=30&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1615%2FCritRevOncog.2024056447&rft_id=info%3Apmid%2F39819432&rft_id=info%3Apmid%2F39819432&rft.externalDocID=39819432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9675&client=summon