Machine Learning Approaches for Neuroblastoma Risk Prediction and Stratification
Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more...
Saved in:
Published in | Critical reviews in oncogenesis Vol. 30; no. 1; p. 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
2025
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods. However, challenges like limited data size, model interpretability, data variability, and difficulties in clinical integration hinder broader adoption. Additionally, ethical concerns related to bias and privacy must be addressed. Future work should focus on improving data quality, enhancing model transparency, and conducting thorough clinical validation. With these advancements, ML has the potential to revolutionize neuroblastoma care by refining early diagnosis, risk assessment, and therapeutic decision-making. |
---|---|
AbstractList | Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods. However, challenges like limited data size, model interpretability, data variability, and difficulties in clinical integration hinder broader adoption. Additionally, ethical concerns related to bias and privacy must be addressed. Future work should focus on improving data quality, enhancing model transparency, and conducting thorough clinical validation. With these advancements, ML has the potential to revolutionize neuroblastoma care by refining early diagnosis, risk assessment, and therapeutic decision-making. |
Author | Gupta, Manoj Kumar Vadde, Ramakrishna |
Author_xml | – sequence: 1 givenname: Ramakrishna surname: Vadde fullname: Vadde, Ramakrishna organization: Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa - 516003, Andhra Pradesh, India – sequence: 2 givenname: Manoj Kumar surname: Gupta fullname: Gupta, Manoj Kumar organization: Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39819432$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tOwzAURL0oog_4BfAPpNiJH_GyioAiBVoVWFfXjxRDY0dOisTfEwSsRjojjc7M0STE4BC6pmRJBeU3VfLDzn1ugomHZU5yRrhgTE7QjJSqyJSQfIrmff9Oxk7S4hxNC1VSxYp8hraPYN58cLh2kIIPB7zquhRH6HrcxISf3ClFfYR-iC3gne8_8DY5683gY8AQLH4eEgy-8QZ-0AU6a-DYu8u_XKDXu9uXap3Vm_uHalVnhko2ZHw0LBoqNNGlGF0ICCGJFoppcAKUpVY6apVsCC-sVhKMZLTkFojVZa7zBbr63e1OunV23yXfQvra_1_LvwHcGFSR |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1615/CritRevOncog.2024056447 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
ExternalDocumentID | 39819432 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 2P0 5GY 5RE ABJNI ALMA_UNASSIGNED_HOLDINGS BGJ BUPDA CGR CUY CVF EBS ECM EIF EJD F5P H5D HZ~ NPM O9- UDS |
ID | FETCH-LOGICAL-c174t-54473f16b0b861940a6670b694bae6a9d1d7e1d97f053db97ac74185da0db82b2 |
ISSN | 0893-9675 |
IngestDate | Sat May 03 02:04:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c174t-54473f16b0b861940a6670b694bae6a9d1d7e1d97f053db97ac74185da0db82b2 |
PMID | 39819432 |
ParticipantIDs | pubmed_primary_39819432 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Critical reviews in oncogenesis |
PublicationTitleAlternate | Crit Rev Oncog |
PublicationYear | 2025 |
SSID | ssj0024713 |
Score | 2.3589976 |
SecondaryResourceType | review_article |
Snippet | Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 15 |
SubjectTerms | Humans Machine Learning Neuroblastoma - diagnosis Neuroblastoma - etiology Neuroblastoma - therapy Prognosis Risk Assessment - methods |
Title | Machine Learning Approaches for Neuroblastoma Risk Prediction and Stratification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39819432 |
Volume | 30 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9OYexF_P6WPPg2ql27ps2jiDqE6Rib7G0kTTpU1g6pPvjXe0madZtO1JdSGlZuuV-vd9e73yF0FjB463ux75BYCAfeEMLhXAKWm1z6QSOhns7ptu9Jq9-8GwSDsohdd5fk_Dz--Lav5D9ahWugV9Ul-wfNTm8KF-Ac9AtH0DAcf6Xjtq6ElJYkdaR8St0hJTXLQl0zb3Dwj_NszOpdVUXeeVVfZnJbhKzJaVW1UKkgS1tgZyAUfKUqMZKlcTZSxvFp6ok_Ksul9cTG7EWNq0-nhv72bWJ80zZLs-e6ruaezTJ4wUyWoTBG1HcoMVNOrOUsvqjMIsSYQdOh-cU6E01koeTvyvcHJTIE6OBSBOCUhbO_gG2ejLXSfAouS9OkQH9eXaDNtksVVIEAQk1EVWkcS8IYmrnZ9k8VhX8g38US6Wqoau-4EIBoR6S3gdaLCAJfGjhsohWZbqFqu6iR2EadAhXYogKXqMCACjyHCqxQgUtUYEAFnkfFDurfXPeuWk4xN8OJIb7MnQDk9ZMG4S6PVJLKZYSELie0yZkkjIqGCGVD0DABCyw4DVmsOYwEcwWPPO7totU0S-U-wj7xPRkKN4khTnelhPjc53EkwHEVlHjRAdozezGcGHKUod2lw6UrR6hWIuwYrSXwNMoTcO1yfqrV9AlIsE7v |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Approaches+for+Neuroblastoma+Risk+Prediction+and+Stratification&rft.jtitle=Critical+reviews+in+oncogenesis&rft.au=Vadde%2C+Ramakrishna&rft.au=Gupta%2C+Manoj+Kumar&rft.date=2025-01-01&rft.issn=0893-9675&rft.volume=30&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1615%2FCritRevOncog.2024056447&rft_id=info%3Apmid%2F39819432&rft_id=info%3Apmid%2F39819432&rft.externalDocID=39819432 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9675&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9675&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9675&client=summon |