Data-driven lithofacies classification of marine shale based on deep learning approaches

Shale lithofacies control hydrocarbon generation potential, reservoir properties, and anisotropy, thereby determining the distribution of shale “sweet spots” and guiding the selection of horizontal well target windows. Consequently, predicting shale lithofacies is crucial for the detailed evaluation...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 242; p. 105902
Main Authors Xue, Yufang, Luo, Bing, Chen, Yalin, Qin, Jun, Chen, Lanpu, Yi, Yuhao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shale lithofacies control hydrocarbon generation potential, reservoir properties, and anisotropy, thereby determining the distribution of shale “sweet spots” and guiding the selection of horizontal well target windows. Consequently, predicting shale lithofacies is crucial for the detailed evaluation, efficient exploration, and development of shale reservoirs. However, predicting lithofacies within the Wujiaping Formation of the Permian in the Hongxing area, eastern Sichuan Basin, presents significant challenges due to complex mineral compositions and strong heterogeneity. In this study, we classified the shale and its interlayers within the reservoir into five lithofacies based on total organic carbon content and mineral assemblages, with MF4 identified as the favorable lithofacies. Additionally, six logging curves (GR, AC, DEN, CNL, CAL, and LLD) were selected as input features to train and test deep learning models for automatic lithofacies prediction. To investigate the applicability of deep learning models for lithofacies identifications using well logs, six models were employed, including CNN, CNN-LSTM, CNN-BiLSTM, CNN-GRU, CNN-BiGRU, and Transformer. Notably, the Transformer model outperformed the others, achieving an Accuracy of 0.8776 and Precision of 0.9152 in shale lithofacies identification. Specifically, for the favorable lithofacies MF4, the Transformer model yielded the highest prediction performance, with F1−score of 0.89. This study demonstrates that deep learning models can effectively identify the shale lithofacies from conventional well logs, providing valuable technical insights for developing practical approaches to identify lithofacies. •Six deep learning models were employed to automatically classify and predict marine shale lithofacies.•State-of-the-art Transformer outperformed others with an Accuracy of 0.8776 and Precision of 0.9152.•Deep learning models can effectively identify shale lithofacies, providing deep insights for practical applications.
AbstractList Shale lithofacies control hydrocarbon generation potential, reservoir properties, and anisotropy, thereby determining the distribution of shale “sweet spots” and guiding the selection of horizontal well target windows. Consequently, predicting shale lithofacies is crucial for the detailed evaluation, efficient exploration, and development of shale reservoirs. However, predicting lithofacies within the Wujiaping Formation of the Permian in the Hongxing area, eastern Sichuan Basin, presents significant challenges due to complex mineral compositions and strong heterogeneity. In this study, we classified the shale and its interlayers within the reservoir into five lithofacies based on total organic carbon content and mineral assemblages, with MF4 identified as the favorable lithofacies. Additionally, six logging curves (GR, AC, DEN, CNL, CAL, and LLD) were selected as input features to train and test deep learning models for automatic lithofacies prediction. To investigate the applicability of deep learning models for lithofacies identifications using well logs, six models were employed, including CNN, CNN-LSTM, CNN-BiLSTM, CNN-GRU, CNN-BiGRU, and Transformer. Notably, the Transformer model outperformed the others, achieving an Accuracy of 0.8776 and Precision of 0.9152 in shale lithofacies identification. Specifically, for the favorable lithofacies MF4, the Transformer model yielded the highest prediction performance, with F1−score of 0.89. This study demonstrates that deep learning models can effectively identify the shale lithofacies from conventional well logs, providing valuable technical insights for developing practical approaches to identify lithofacies. •Six deep learning models were employed to automatically classify and predict marine shale lithofacies.•State-of-the-art Transformer outperformed others with an Accuracy of 0.8776 and Precision of 0.9152.•Deep learning models can effectively identify shale lithofacies, providing deep insights for practical applications.
ArticleNumber 105902
Author Xue, Yufang
Chen, Yalin
Yi, Yuhao
Qin, Jun
Chen, Lanpu
Luo, Bing
Author_xml – sequence: 1
  givenname: Yufang
  surname: Xue
  fullname: Xue, Yufang
  email: yfxcug@163.com
  organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China
– sequence: 2
  givenname: Bing
  surname: Luo
  fullname: Luo, Bing
  organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China
– sequence: 3
  givenname: Yalin
  surname: Chen
  fullname: Chen, Yalin
  organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China
– sequence: 4
  givenname: Jun
  surname: Qin
  fullname: Qin, Jun
  organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China
– sequence: 5
  givenname: Lanpu
  surname: Chen
  fullname: Chen, Lanpu
  organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China
– sequence: 6
  givenname: Yuhao
  surname: Yi
  fullname: Yi, Yuhao
  organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China
BookMark eNqFkM1qwzAQhHVIoUnaRyjoBZyuLP-eSkl_IdBLC72JtbRKZFzJSCbQt69Dcu9pYZeZnflWbOGDJ8buBGwEiOq-3_Q4jnsKmxzyct6VLeQLtoQ2r7K2KcU1W6XUA4CQUCzZ9xNOmJnojuT54KZDsKgdJa4HTMlZp3FywfNg-Q9G54mnAw7EO0xk-HwwRCMfCKN3fs_n3zGgPlC6YVcWh0S3l7lmXy_Pn9u3bPfx-r593GVa1MWUSS1rYW2h61Y3UFXUYmlrknkH0JQasIPCFAYLbLXUjbWy6oByUdXSFFbXcs3Ks6-OIaVIVo3RzVF_lQB1QqJ6dUGiTkjUGcmsezjraA53dBRVmnt7TcZF0pMywf3j8Ae19HJE
Cites_doi 10.1093/gji/ggac371
10.1016/j.jngse.2022.104500
10.1007/s13202-021-01157-7
10.1016/j.uncres.2022.09.002
10.1190/geo2022-0782.1
10.1007/s13202-018-0508-6
10.1016/j.ptlrs.2021.05.009
10.1190/geo2018-0685.1
10.1021/acs.energyfuels.0c04131
10.1016/j.petrol.2022.110610
10.1016/j.egyr.2023.06.026
10.1016/j.jappgeo.2022.104605
10.1190/geo2020-0121.1
10.2118/218419-PA
10.3390/en16062581
10.1016/j.jappgeo.2022.104865
10.1306/02072220067
10.1016/j.marpetgeo.2019.06.028
10.1016/j.petrol.2021.108816
10.1016/j.petrol.2016.05.017
10.1306/08031817416
10.1109/ACCESS.2023.3349216
10.1109/LGRS.2021.3053383
10.1306/12162121035
10.1029/2021RG000742
10.1016/j.ptlrs.2024.01.011
10.1016/j.earscirev.2023.104509
10.1190/geo2019-0435.1
10.1190/geo2019-0375.1
10.1016/j.petsci.2022.11.027
10.1016/j.jclepro.2021.126257
10.1306/03112221015
10.1016/j.ptlrs.2024.01.007
10.1016/j.geoen.2023.212587
10.1016/j.petrol.2021.109345
10.1016/j.petrol.2022.110541
10.1016/j.petrol.2008.05.004
10.1016/j.petrol.2021.109631
10.1016/j.petrol.2014.06.013
10.1016/j.petsci.2023.09.011
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2025.105902
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jappgeo_2025_105902
S0926985125002836
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AAYXX
CITATION
EFLBG
ID FETCH-LOGICAL-c174t-3c371ff4c79c8066e9a5f7e32b0085c0ab04d4da4a9c3c8ff36b0e21673d4fc73
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Wed Sep 03 16:44:04 EDT 2025
Sat Aug 30 17:16:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Transformer
Shale lithofacies
Automatic identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c174t-3c371ff4c79c8066e9a5f7e32b0085c0ab04d4da4a9c3c8ff36b0e21673d4fc73
ParticipantIDs crossref_primary_10_1016_j_jappgeo_2025_105902
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2025_105902
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Min, XinPing, HongMing (bb0125) 2023; 66
An, Du, Ma (bb0010) 2023; 243
Liu, Yang, Ren (bb0120) 2021; 86
Wu, Geng, Shi (bb0200) 2020; 85
Zheng, Hou, Chen (bb0225) 2022; 215
Bao, Zhao, Liang (bb0015) 2023; 28
Han, Wang, Zhang (bb0055) 2024; 89
He, Ding, Jiang (bb0060) 2016; 145
Dong, Zhong, Cui (bb0035) 2023; 20
Yu, Ma (bb0215) 2021; 59
Ren, Zhang, Yu (bb0150) 2024; 29
Li, Cao, Yang (bb0115) 2025; 90
Pan, Huang, Guo (bb0140) 2022; 208
Sircar, Yadav, Rayavarapu (bb0170) 2021; 6
Bo, Haoli, Xiaofei (bb0025) 2019; 103
Tang, White (bb0180) 2008; 61
Sun, Nie, Dang (bb0175) 2021; 35
Sang, Yuan, Han (bb0155) 2023; 232
Yan, Xu, Sun (bb0205) 2024; 21
Li, Li, Liu (bb0105) 2022; 207
Li, Xia, Liu (bb0110) 2023; 61
Cui, Yang, Li (bb0030) 2022; 2
Jiang, Sun, Lyu (bb0080) 2024; 233
Lawal, Yang, He (bb0100) 2024; 12
Khan, Kirmani (bb0085) 2024; 9
Wang, Yang (bb0190) 2022; 106
Wei, Duan, Yan (bb0195) 2021; 294
Sfidari, Kadkhodaie-Ilkhchi, Rahimpour-Bbonab (bb0165) 2014; 121
Hou, Lian, Zhao (bb0075) 2024; 9
Okeugo, Onuoha, Ekwe (bb0135) 2019; 9
Falivene, Auchter, Pires De Lima (bb0040) 2022; 106
Kumar, Seelam, Rao (bb0095) 2022; 199
Zou, Zhao, Cong (bb0230) 2021; 41
Tomski, Sen, Hess (bb0185) 2022; 106
Ali, Jamil, Zaheer (bb0005) 2022; 14
Yang, Xu, Hao (bb0210) 2019; 109
Niu, Lu, Sun (bb0130) 2023; 10
Bellani, Verma, Khatri (bb0020) 2021; 11
Feng, Mejer Hansen, Grana (bb0050) 2020; 85
Kim (bb0090) 2022; 100
Zhang, Alkhalifah (bb0220) 2019; 84
Feng (bb0045) 2021; 205
He, Gu, Xue (bb0065) 2022; 214
Hou, Xiao, Lei (bb0070) 2023; 16
Santos, Roisenberg, Nascimento (bb0160) 2022; 19
Park, Jeong, Emelyanova (bb0145) 2022; 208
Dong (10.1016/j.jappgeo.2025.105902_bb0035) 2023; 20
Tomski (10.1016/j.jappgeo.2025.105902_bb0185) 2022; 106
Sang (10.1016/j.jappgeo.2025.105902_bb0155) 2023; 232
He (10.1016/j.jappgeo.2025.105902_bb0060) 2016; 145
Kumar (10.1016/j.jappgeo.2025.105902_bb0095) 2022; 199
Bao (10.1016/j.jappgeo.2025.105902_bb0015) 2023; 28
Khan (10.1016/j.jappgeo.2025.105902_bb0085) 2024; 9
Sircar (10.1016/j.jappgeo.2025.105902_bb0170) 2021; 6
Okeugo (10.1016/j.jappgeo.2025.105902_bb0135) 2019; 9
Li (10.1016/j.jappgeo.2025.105902_bb0105) 2022; 207
Tang (10.1016/j.jappgeo.2025.105902_bb0180) 2008; 61
Bellani (10.1016/j.jappgeo.2025.105902_bb0020) 2021; 11
Jiang (10.1016/j.jappgeo.2025.105902_bb0080) 2024; 233
Yu (10.1016/j.jappgeo.2025.105902_bb0215) 2021; 59
Liu (10.1016/j.jappgeo.2025.105902_bb0120) 2021; 86
Li (10.1016/j.jappgeo.2025.105902_bb0110) 2023; 61
Santos (10.1016/j.jappgeo.2025.105902_bb0160) 2022; 19
Feng (10.1016/j.jappgeo.2025.105902_bb0045) 2021; 205
Yan (10.1016/j.jappgeo.2025.105902_bb0205) 2024; 21
Falivene (10.1016/j.jappgeo.2025.105902_bb0040) 2022; 106
Pan (10.1016/j.jappgeo.2025.105902_bb0140) 2022; 208
Ren (10.1016/j.jappgeo.2025.105902_bb0150) 2024; 29
Zou (10.1016/j.jappgeo.2025.105902_bb0230) 2021; 41
Niu (10.1016/j.jappgeo.2025.105902_bb0130) 2023; 10
Wang (10.1016/j.jappgeo.2025.105902_bb0190) 2022; 106
Wei (10.1016/j.jappgeo.2025.105902_bb0195) 2021; 294
Li (10.1016/j.jappgeo.2025.105902_bb0115) 2025; 90
Kim (10.1016/j.jappgeo.2025.105902_bb0090) 2022; 100
Hou (10.1016/j.jappgeo.2025.105902_bb0075) 2024; 9
Zhang (10.1016/j.jappgeo.2025.105902_bb0220) 2019; 84
Min (10.1016/j.jappgeo.2025.105902_bb0125) 2023; 66
Sun (10.1016/j.jappgeo.2025.105902_bb0175) 2021; 35
Ali (10.1016/j.jappgeo.2025.105902_bb0005) 2022; 14
He (10.1016/j.jappgeo.2025.105902_bb0065) 2022; 214
An (10.1016/j.jappgeo.2025.105902_bb0010) 2023; 243
Bo (10.1016/j.jappgeo.2025.105902_bb0025) 2019; 103
Cui (10.1016/j.jappgeo.2025.105902_bb0030) 2022; 2
Lawal (10.1016/j.jappgeo.2025.105902_bb0100) 2024; 12
Park (10.1016/j.jappgeo.2025.105902_bb0145) 2022; 208
Sfidari (10.1016/j.jappgeo.2025.105902_bb0165) 2014; 121
Wu (10.1016/j.jappgeo.2025.105902_bb0200) 2020; 85
Yang (10.1016/j.jappgeo.2025.105902_bb0210) 2019; 109
Feng (10.1016/j.jappgeo.2025.105902_bb0050) 2020; 85
Hou (10.1016/j.jappgeo.2025.105902_bb0070) 2023; 16
Zheng (10.1016/j.jappgeo.2025.105902_bb0225) 2022; 215
Han (10.1016/j.jappgeo.2025.105902_bb0055) 2024; 89
References_xml – volume: 84
  start-page: R741
  year: 2019
  end-page: R751
  ident: bb0220
  article-title: Regularized elastic full-waveform inversion using deep learning
  publication-title: Geophysics
– volume: 2
  start-page: 72
  year: 2022
  end-page: 84
  ident: bb0030
  article-title: Identification of lithofacies and prediction of mineral composition in shales – a case study of the Shahejie Formation in the Bozhong Sag
  publication-title: Unconvent. Resour.
– volume: 243
  year: 2023
  ident: bb0010
  article-title: Current state and future directions for deep learning based automatic seismic fault interpretation: a systematic review
  publication-title: Earth Sci. Rev.
– volume: 121
  start-page: 87
  year: 2014
  end-page: 102
  ident: bb0165
  article-title: A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: a case study from the south Pars gas field, the Persian Gulf basin
  publication-title: J. Pet. Sci. Eng.
– volume: 59
  year: 2021
  ident: bb0215
  article-title: Deep learning for geophysics: current and future trends
  publication-title: Rev. Geophys.
– volume: 20
  start-page: 1411
  year: 2023
  end-page: 1428
  ident: bb0035
  article-title: A deep kernel method for lithofacies identification using conventional well logs
  publication-title: Pet. Sci.
– volume: 106
  start-page: 1653
  year: 2022
  end-page: 1678
  ident: bb0190
  article-title: Quantitative classification and analysis of porosity within different lithofacies of the Upper Ordovician-lower Silurian shales, China
  publication-title: AAPG Bull.
– volume: 85
  start-page: M97
  year: 2020
  end-page: M105
  ident: bb0050
  article-title: An unsupervised deep-learning method for porosity estimation based on poststack seismic data
  publication-title: Geophysics
– volume: 208
  year: 2022
  ident: bb0140
  article-title: Lithofacies types, reservoir characteristics, and hydrocarbon potential of the lacustrine organic-rich fine-grained rocks affected by tephra of the permian Lucaogou formation, Santanghu basin, western China
  publication-title: J. Pet. Sci. Eng.
– volume: 100
  year: 2022
  ident: bb0090
  article-title: Lithofacies classification integrating conventional approaches and machine learning technique
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 85
  start-page: WA27
  year: 2020
  end-page: WA39
  ident: bb0200
  article-title: Building realistic structure models to train convolutional neural networks for seismic structural interpretation
  publication-title: Geophysics
– volume: 66
  start-page: 2592
  year: 2023
  end-page: 2610
  ident: bb0125
  article-title: Prediction case of core parameters of shale gas reservoirs through deep transformer transfer learning
  publication-title: Chin. J. Geophys.
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: bb0160
  article-title: Deep recurrent neural networks approach to sedimentary facies classification using well logs
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 29
  start-page: 2148
  year: 2024
  end-page: 2164
  ident: bb0150
  article-title: Heterogeneous domain adaptation framework for logging lithofacies identification
  publication-title: SPE J.
– volume: 233
  year: 2024
  ident: bb0080
  article-title: Machine learning (ML) for fluvial lithofacies identification from well logs: a hybrid classification model integrating lithofacies characteristics, logging data distributions, and ML models applicability
  publication-title: Geoenergy Sci. Eng.
– volume: 10
  start-page: 213
  year: 2023
  end-page: 227
  ident: bb0130
  article-title: A review of the application of data-driven technology in shale gas production evaluation
  publication-title: Energy Rep.
– volume: 28
  start-page: 71
  year: 2023
  end-page: 82
  ident: bb0015
  article-title: Enrichment and high yield of shale gas in the Permian Wujiaping Formation in Hongxing area of eastern Sichuan and its exploration implications
  publication-title: China Petrol. Explor.
– volume: 109
  start-page: 394
  year: 2019
  end-page: 407
  ident: bb0210
  article-title: Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sichuan Basin, China; implications for shale gas accumulation mechanism
  publication-title: Mar. Pet. Geol.
– volume: 294
  year: 2021
  ident: bb0195
  article-title: Shale gas: will it become a new type of clean energy in China? — a perspective of development potential
  publication-title: J. Clean. Prod.
– volume: 232
  start-page: 940
  year: 2023
  end-page: 957
  ident: bb0155
  article-title: Porosity prediction using semi-supervised learning with biased well log data for improving estimation accuracy and reducing prediction uncertainty
  publication-title: Geophys. J. Int.
– volume: 11
  start-page: 2127
  year: 2021
  end-page: 2141
  ident: bb0020
  article-title: Shale gas: a step toward sustainable energy future
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 103
  start-page: 405
  year: 2019
  end-page: 432
  ident: bb0025
  article-title: Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, Northeast China
  publication-title: AAPG Bull.
– volume: 21
  start-page: 1135
  year: 2024
  end-page: 1148
  ident: bb0205
  article-title: A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm
  publication-title: Pet. Sci.
– volume: 9
  start-page: 97
  year: 2019
  end-page: 110
  ident: bb0135
  article-title: Application of crossplot and prestack seismic-based impedance inversion for discrimination of lithofacies and fluid prediction in an old producing field, Eastern Niger Delta Basin
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 41
  start-page: 1
  year: 2021
  end-page: 14
  ident: bb0230
  article-title: Development progress, potential and prospect of shale gas in China
  publication-title: Nat. Gas Ind.
– volume: 145
  start-page: 238
  year: 2016
  end-page: 255
  ident: bb0060
  article-title: Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: a case study from the Es3L shale in the Jiyang Depression, Bohai Bay Basin, Eastern China
  publication-title: J. Pet. Sci. Eng.
– volume: 14
  start-page: 87
  year: 2022
  end-page: 103
  ident: bb0005
  article-title: Exploration and development of shale gas in China: a review
  publication-title: Iran. J. Earth Sci.
– volume: 6
  start-page: 379
  year: 2021
  end-page: 391
  ident: bb0170
  article-title: Application of machine learning and artificial intelligence in oil and gas industry
  publication-title: Petrol. Res.
– volume: 199
  year: 2022
  ident: bb0095
  article-title: Lithology prediction from well log data using machine learning techniques: a case study from Talcher coalfield, Eastern India
  publication-title: J. Appl. Geophys.
– volume: 12
  start-page: 19035
  year: 2024
  end-page: 19058
  ident: bb0100
  article-title: Machine learning in oil and gas exploration: a review
  publication-title: IEEE Access.
– volume: 90
  start-page: IM15-IM34
  year: 2025
  ident: bb0115
  article-title: Intelligent prestack multitrace seismic inversion constrained by probabilistic geologic information
  publication-title: Geophysics
– volume: 9
  start-page: 393
  year: 2024
  end-page: 408
  ident: bb0085
  article-title: A systematic approach of predicting the lithology from applicability of deep neural networks based on conventional well logs
  publication-title: Petrol. Res.
– volume: 207
  year: 2022
  ident: bb0105
  article-title: Single-well lithofacies identification based on logging response and convolutional neural network
  publication-title: J. Appl. Geophys.
– volume: 86
  start-page: R31
  year: 2021
  end-page: R44
  ident: bb0120
  article-title: Deep-learning seismic full-waveform inversion for realistic structural models
  publication-title: Geophysics
– volume: 61
  start-page: 88
  year: 2008
  end-page: 93
  ident: bb0180
  article-title: Multivariate statistical log log-facies classification on a shallow marine reservoir
  publication-title: J. Pet. Sci. Eng.
– volume: 106
  start-page: 2203
  year: 2022
  end-page: 2223
  ident: bb0185
  article-title: Unconventional reservoir characterization by seismic inversion and machine learning of the Bakken Formation
  publication-title: Aapg Bull.
– volume: 208
  year: 2022
  ident: bb0145
  article-title: Data-driven sequence labeling methods incorporating the long-range spatial variation of geological data for lithofacies sequence estimation
  publication-title: J. Pet. Sci. Eng.
– volume: 106
  start-page: 1357
  year: 2022
  end-page: 1372
  ident: bb0040
  article-title: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: turbidite deposits (Gulf of Mexico and North Sea)
  publication-title: Bulletin
– volume: 205
  year: 2021
  ident: bb0045
  article-title: Uncertainty analysis in well log classification by Bayesian long short-term memory networks
  publication-title: J. Pet. Sci. Eng.
– volume: 16
  year: 2023
  ident: bb0070
  article-title: Machine learning algorithms for lithofacies classification of the Gulong Shale from the Songliao Basin, China
  publication-title: Energies
– volume: 9
  start-page: 165
  year: 2024
  end-page: 175
  ident: bb0075
  article-title: Identification of carbonate sedimentary facies from well logs with machine learning
  publication-title: Petrol. Res.
– volume: 89
  start-page: JM1
  year: 2024
  end-page: JM11
  ident: bb0055
  article-title: Prediction of igneous lithology and lithofacies based on ensemble learning with data optimization
  publication-title: Geophysics
– volume: 61
  start-page: 1
  year: 2023
  end-page: 15
  ident: bb0110
  article-title: Missing sonic logs generation for gas hydrate-bearing sediments via hybrid networks combining deep learning with rock physics modeling
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 35
  start-page: 6359
  year: 2021
  end-page: 6379
  ident: bb0175
  article-title: Shale gas exploration and development in China: current status, geological challenges, and future directions
  publication-title: Energy Fuels
– volume: 214
  year: 2022
  ident: bb0065
  article-title: Log interpretation for lithofacies classification with a robust learning model using stacked generalization
  publication-title: J. Petrol. Sci. Eng.
– volume: 215
  year: 2022
  ident: bb0225
  article-title: Application of machine learning in the identification of fluvial-lacustrine lithofacies from well logs: a case study from Sichuan Basin, China
  publication-title: J. Pet. Sci. Eng.
– volume: 232
  start-page: 940
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105902_bb0155
  article-title: Porosity prediction using semi-supervised learning with biased well log data for improving estimation accuracy and reducing prediction uncertainty
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggac371
– volume: 100
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0090
  article-title: Lithofacies classification integrating conventional approaches and machine learning technique
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2022.104500
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105902_bb0110
  article-title: Missing sonic logs generation for gas hydrate-bearing sediments via hybrid networks combining deep learning with rock physics modeling
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 87
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0005
  article-title: Exploration and development of shale gas in China: a review
  publication-title: Iran. J. Earth Sci.
– volume: 11
  start-page: 2127
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105902_bb0020
  article-title: Shale gas: a step toward sustainable energy future
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-021-01157-7
– volume: 2
  start-page: 72
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0030
  article-title: Identification of lithofacies and prediction of mineral composition in shales – a case study of the Shahejie Formation in the Bozhong Sag
  publication-title: Unconvent. Resour.
  doi: 10.1016/j.uncres.2022.09.002
– volume: 89
  start-page: JM1
  year: 2024
  ident: 10.1016/j.jappgeo.2025.105902_bb0055
  article-title: Prediction of igneous lithology and lithofacies based on ensemble learning with data optimization
  publication-title: Geophysics
  doi: 10.1190/geo2022-0782.1
– volume: 9
  start-page: 97
  year: 2019
  ident: 10.1016/j.jappgeo.2025.105902_bb0135
  article-title: Application of crossplot and prestack seismic-based impedance inversion for discrimination of lithofacies and fluid prediction in an old producing field, Eastern Niger Delta Basin
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-018-0508-6
– volume: 90
  start-page: IM15-IM34
  year: 2025
  ident: 10.1016/j.jappgeo.2025.105902_bb0115
  article-title: Intelligent prestack multitrace seismic inversion constrained by probabilistic geologic information
  publication-title: Geophysics
– volume: 66
  start-page: 2592
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105902_bb0125
  article-title: Prediction case of core parameters of shale gas reservoirs through deep transformer transfer learning
  publication-title: Chin. J. Geophys.
– volume: 6
  start-page: 379
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105902_bb0170
  article-title: Application of machine learning and artificial intelligence in oil and gas industry
  publication-title: Petrol. Res.
  doi: 10.1016/j.ptlrs.2021.05.009
– volume: 84
  start-page: R741
  year: 2019
  ident: 10.1016/j.jappgeo.2025.105902_bb0220
  article-title: Regularized elastic full-waveform inversion using deep learning
  publication-title: Geophysics
  doi: 10.1190/geo2018-0685.1
– volume: 35
  start-page: 6359
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105902_bb0175
  article-title: Shale gas exploration and development in China: current status, geological challenges, and future directions
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c04131
– volume: 215
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0225
  article-title: Application of machine learning in the identification of fluvial-lacustrine lithofacies from well logs: a case study from Sichuan Basin, China
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110610
– volume: 10
  start-page: 213
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105902_bb0130
  article-title: A review of the application of data-driven technology in shale gas production evaluation
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.06.026
– volume: 199
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0095
  article-title: Lithology prediction from well log data using machine learning techniques: a case study from Talcher coalfield, Eastern India
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2022.104605
– volume: 85
  start-page: M97
  year: 2020
  ident: 10.1016/j.jappgeo.2025.105902_bb0050
  article-title: An unsupervised deep-learning method for porosity estimation based on poststack seismic data
  publication-title: Geophysics
  doi: 10.1190/geo2020-0121.1
– volume: 29
  start-page: 2148
  year: 2024
  ident: 10.1016/j.jappgeo.2025.105902_bb0150
  article-title: Heterogeneous domain adaptation framework for logging lithofacies identification
  publication-title: SPE J.
  doi: 10.2118/218419-PA
– volume: 16
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105902_bb0070
  article-title: Machine learning algorithms for lithofacies classification of the Gulong Shale from the Songliao Basin, China
  publication-title: Energies
  doi: 10.3390/en16062581
– volume: 207
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0105
  article-title: Single-well lithofacies identification based on logging response and convolutional neural network
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2022.104865
– volume: 106
  start-page: 1653
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0190
  article-title: Quantitative classification and analysis of porosity within different lithofacies of the Upper Ordovician-lower Silurian shales, China
  publication-title: AAPG Bull.
  doi: 10.1306/02072220067
– volume: 109
  start-page: 394
  year: 2019
  ident: 10.1016/j.jappgeo.2025.105902_bb0210
  article-title: Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sichuan Basin, China; implications for shale gas accumulation mechanism
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2019.06.028
– volume: 205
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105902_bb0045
  article-title: Uncertainty analysis in well log classification by Bayesian long short-term memory networks
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108816
– volume: 145
  start-page: 238
  year: 2016
  ident: 10.1016/j.jappgeo.2025.105902_bb0060
  article-title: Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: a case study from the Es3L shale in the Jiyang Depression, Bohai Bay Basin, Eastern China
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2016.05.017
– volume: 103
  start-page: 405
  year: 2019
  ident: 10.1016/j.jappgeo.2025.105902_bb0025
  article-title: Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, Northeast China
  publication-title: AAPG Bull.
  doi: 10.1306/08031817416
– volume: 12
  start-page: 19035
  year: 2024
  ident: 10.1016/j.jappgeo.2025.105902_bb0100
  article-title: Machine learning in oil and gas exploration: a review
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3349216
– volume: 28
  start-page: 71
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105902_bb0015
  article-title: Enrichment and high yield of shale gas in the Permian Wujiaping Formation in Hongxing area of eastern Sichuan and its exploration implications
  publication-title: China Petrol. Explor.
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0160
  article-title: Deep recurrent neural networks approach to sedimentary facies classification using well logs
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2021.3053383
– volume: 106
  start-page: 2203
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0185
  article-title: Unconventional reservoir characterization by seismic inversion and machine learning of the Bakken Formation
  publication-title: Aapg Bull.
  doi: 10.1306/12162121035
– volume: 59
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105902_bb0215
  article-title: Deep learning for geophysics: current and future trends
  publication-title: Rev. Geophys.
  doi: 10.1029/2021RG000742
– volume: 9
  start-page: 393
  year: 2024
  ident: 10.1016/j.jappgeo.2025.105902_bb0085
  article-title: A systematic approach of predicting the lithology from applicability of deep neural networks based on conventional well logs
  publication-title: Petrol. Res.
  doi: 10.1016/j.ptlrs.2024.01.011
– volume: 243
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105902_bb0010
  article-title: Current state and future directions for deep learning based automatic seismic fault interpretation: a systematic review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2023.104509
– volume: 86
  start-page: R31
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105902_bb0120
  article-title: Deep-learning seismic full-waveform inversion for realistic structural models
  publication-title: Geophysics
  doi: 10.1190/geo2019-0435.1
– volume: 85
  start-page: WA27
  year: 2020
  ident: 10.1016/j.jappgeo.2025.105902_bb0200
  article-title: Building realistic structure models to train convolutional neural networks for seismic structural interpretation
  publication-title: Geophysics
  doi: 10.1190/geo2019-0375.1
– volume: 20
  start-page: 1411
  year: 2023
  ident: 10.1016/j.jappgeo.2025.105902_bb0035
  article-title: A deep kernel method for lithofacies identification using conventional well logs
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2022.11.027
– volume: 294
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105902_bb0195
  article-title: Shale gas: will it become a new type of clean energy in China? — a perspective of development potential
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126257
– volume: 106
  start-page: 1357
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0040
  article-title: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: turbidite deposits (Gulf of Mexico and North Sea)
  publication-title: Bulletin
  doi: 10.1306/03112221015
– volume: 9
  start-page: 165
  year: 2024
  ident: 10.1016/j.jappgeo.2025.105902_bb0075
  article-title: Identification of carbonate sedimentary facies from well logs with machine learning
  publication-title: Petrol. Res.
  doi: 10.1016/j.ptlrs.2024.01.007
– volume: 233
  year: 2024
  ident: 10.1016/j.jappgeo.2025.105902_bb0080
  article-title: Machine learning (ML) for fluvial lithofacies identification from well logs: a hybrid classification model integrating lithofacies characteristics, logging data distributions, and ML models applicability
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2023.212587
– volume: 208
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0145
  article-title: Data-driven sequence labeling methods incorporating the long-range spatial variation of geological data for lithofacies sequence estimation
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109345
– volume: 214
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0065
  article-title: Log interpretation for lithofacies classification with a robust learning model using stacked generalization
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110541
– volume: 61
  start-page: 88
  year: 2008
  ident: 10.1016/j.jappgeo.2025.105902_bb0180
  article-title: Multivariate statistical log log-facies classification on a shallow marine reservoir
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2008.05.004
– volume: 208
  year: 2022
  ident: 10.1016/j.jappgeo.2025.105902_bb0140
  article-title: Lithofacies types, reservoir characteristics, and hydrocarbon potential of the lacustrine organic-rich fine-grained rocks affected by tephra of the permian Lucaogou formation, Santanghu basin, western China
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109631
– volume: 121
  start-page: 87
  year: 2014
  ident: 10.1016/j.jappgeo.2025.105902_bb0165
  article-title: A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: a case study from the south Pars gas field, the Persian Gulf basin
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2014.06.013
– volume: 21
  start-page: 1135
  year: 2024
  ident: 10.1016/j.jappgeo.2025.105902_bb0205
  article-title: A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2023.09.011
– volume: 41
  start-page: 1
  year: 2021
  ident: 10.1016/j.jappgeo.2025.105902_bb0230
  article-title: Development progress, potential and prospect of shale gas in China
  publication-title: Nat. Gas Ind.
SSID ssj0001304
Score 2.422904
Snippet Shale lithofacies control hydrocarbon generation potential, reservoir properties, and anisotropy, thereby determining the distribution of shale “sweet spots”...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105902
SubjectTerms Automatic identification
Deep learning
Shale lithofacies
Transformer
Title Data-driven lithofacies classification of marine shale based on deep learning approaches
URI https://dx.doi.org/10.1016/j.jappgeo.2025.105902
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywpmkcN07GqlAVEF2gUrfI8aMPiTZqw8pv5y5x1CIkBsYktpR8se77Et99R8g9BxXMo0x5ocJtRpUITzLNvIAr3LYDhgyw3vl1HI0m_HnamzbIoK6FwbRKF_urmF5Ga3fGd2j6-WLhv3UTFiUgGIDEkSTRdptzgau887VL84AYXVpIwWAPR--qePxlZynzfFbWALIedrxN3N-VX_y0xznDE3LsxCLtV_dzShpmdUaO9iwEz8n0QRbS0xsMWhQk9XxtJTzGliqUxZgHVEJP15Z-SKz0o9s5cAJF9tIULmhjcup6R8xobTFuthdkMnx8H4w81y3BU_BVUSDYIrCWK5GoGISESWTPChOyDGWV6sqsyzXXkstEhSq2NoyyrmFBJELNrRLhJWmu1itzRagE0RDExjAjGI-YkAZt1A1aoelABnGLdGqM0rwyxUjrbLFl6kBNEdS0ArVF4hrJ9MfbTSFw_z31-v9Tb8ghHlWVg7ekWWw-zR1IiCJrl2ukTQ76Ty-j8Tc76sXk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JboMwFHxKk0PbQ9VVTVcfeiUEY7ZjlDYizXJpIuWGjDFZpCYoof9fPzBtqko99IqxBAOaGfB7Y4Anplwwc2Nh2AKXGUXgGZwm1LCYwGU7pZAW9juPxm44Za8zZ1aDbtULg2WVmvtLTi_YWh8xNZpmtlyab-2AuoEyDErEUSTdA2hgOpVTh0anPwjHX4SsaLpIkVLnGzjhu5HHXLVWPMvmRRsgdXDT20D_YPklUXuy0zuFE-0XSae8pDOoyfU5HO-lCF7A7Jnn3Ei2yFtEuerFJuXqTnZEoDPGUqACfbJJyTvHZj-yWyhZIChgCVEDiZQZ0dtHzEmVMi53lzDtvUy6oaE3TDCE-rDIEW_PSlMmvED4ykvIgDupJ20ao7MSbR63WcISznggbOGnqe3GbUkt17MTlgrPvoL6erOW10C48g2WLyWVHmUu9bjEJHWJaWiJxS2_Ca0KoygrczGiqmBsFWlQIwQ1KkFtgl8hGf14wJHi7r-n3vx_6iMchpPRMBr2x4NbOMKRspHwDur59kPeK0eRxw_6jfkEF4bIlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+lithofacies+classification+of+marine+shale+based+on+deep+learning+approaches&rft.jtitle=Journal+of+applied+geophysics&rft.au=Xue%2C+Yufang&rft.au=Luo%2C+Bing&rft.au=Chen%2C+Yalin&rft.au=Qin%2C+Jun&rft.date=2025-11-01&rft.issn=0926-9851&rft.volume=242&rft.spage=105902&rft_id=info:doi/10.1016%2Fj.jappgeo.2025.105902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2025_105902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon