Data-driven lithofacies classification of marine shale based on deep learning approaches
Shale lithofacies control hydrocarbon generation potential, reservoir properties, and anisotropy, thereby determining the distribution of shale “sweet spots” and guiding the selection of horizontal well target windows. Consequently, predicting shale lithofacies is crucial for the detailed evaluation...
Saved in:
Published in | Journal of applied geophysics Vol. 242; p. 105902 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shale lithofacies control hydrocarbon generation potential, reservoir properties, and anisotropy, thereby determining the distribution of shale “sweet spots” and guiding the selection of horizontal well target windows. Consequently, predicting shale lithofacies is crucial for the detailed evaluation, efficient exploration, and development of shale reservoirs. However, predicting lithofacies within the Wujiaping Formation of the Permian in the Hongxing area, eastern Sichuan Basin, presents significant challenges due to complex mineral compositions and strong heterogeneity. In this study, we classified the shale and its interlayers within the reservoir into five lithofacies based on total organic carbon content and mineral assemblages, with MF4 identified as the favorable lithofacies. Additionally, six logging curves (GR, AC, DEN, CNL, CAL, and LLD) were selected as input features to train and test deep learning models for automatic lithofacies prediction. To investigate the applicability of deep learning models for lithofacies identifications using well logs, six models were employed, including CNN, CNN-LSTM, CNN-BiLSTM, CNN-GRU, CNN-BiGRU, and Transformer. Notably, the Transformer model outperformed the others, achieving an Accuracy of 0.8776 and Precision of 0.9152 in shale lithofacies identification. Specifically, for the favorable lithofacies MF4, the Transformer model yielded the highest prediction performance, with F1−score of 0.89. This study demonstrates that deep learning models can effectively identify the shale lithofacies from conventional well logs, providing valuable technical insights for developing practical approaches to identify lithofacies.
•Six deep learning models were employed to automatically classify and predict marine shale lithofacies.•State-of-the-art Transformer outperformed others with an Accuracy of 0.8776 and Precision of 0.9152.•Deep learning models can effectively identify shale lithofacies, providing deep insights for practical applications. |
---|---|
AbstractList | Shale lithofacies control hydrocarbon generation potential, reservoir properties, and anisotropy, thereby determining the distribution of shale “sweet spots” and guiding the selection of horizontal well target windows. Consequently, predicting shale lithofacies is crucial for the detailed evaluation, efficient exploration, and development of shale reservoirs. However, predicting lithofacies within the Wujiaping Formation of the Permian in the Hongxing area, eastern Sichuan Basin, presents significant challenges due to complex mineral compositions and strong heterogeneity. In this study, we classified the shale and its interlayers within the reservoir into five lithofacies based on total organic carbon content and mineral assemblages, with MF4 identified as the favorable lithofacies. Additionally, six logging curves (GR, AC, DEN, CNL, CAL, and LLD) were selected as input features to train and test deep learning models for automatic lithofacies prediction. To investigate the applicability of deep learning models for lithofacies identifications using well logs, six models were employed, including CNN, CNN-LSTM, CNN-BiLSTM, CNN-GRU, CNN-BiGRU, and Transformer. Notably, the Transformer model outperformed the others, achieving an Accuracy of 0.8776 and Precision of 0.9152 in shale lithofacies identification. Specifically, for the favorable lithofacies MF4, the Transformer model yielded the highest prediction performance, with F1−score of 0.89. This study demonstrates that deep learning models can effectively identify the shale lithofacies from conventional well logs, providing valuable technical insights for developing practical approaches to identify lithofacies.
•Six deep learning models were employed to automatically classify and predict marine shale lithofacies.•State-of-the-art Transformer outperformed others with an Accuracy of 0.8776 and Precision of 0.9152.•Deep learning models can effectively identify shale lithofacies, providing deep insights for practical applications. |
ArticleNumber | 105902 |
Author | Xue, Yufang Chen, Yalin Yi, Yuhao Qin, Jun Chen, Lanpu Luo, Bing |
Author_xml | – sequence: 1 givenname: Yufang surname: Xue fullname: Xue, Yufang email: yfxcug@163.com organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China – sequence: 2 givenname: Bing surname: Luo fullname: Luo, Bing organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China – sequence: 3 givenname: Yalin surname: Chen fullname: Chen, Yalin organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China – sequence: 4 givenname: Jun surname: Qin fullname: Qin, Jun organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China – sequence: 5 givenname: Lanpu surname: Chen fullname: Chen, Lanpu organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China – sequence: 6 givenname: Yuhao surname: Yi fullname: Yi, Yuhao organization: Exploration and Development Research Institute, SINOPEC Jianghan Oilfield Company, Wuhan 430223, China |
BookMark | eNqFkM1qwzAQhHVIoUnaRyjoBZyuLP-eSkl_IdBLC72JtbRKZFzJSCbQt69Dcu9pYZeZnflWbOGDJ8buBGwEiOq-3_Q4jnsKmxzyct6VLeQLtoQ2r7K2KcU1W6XUA4CQUCzZ9xNOmJnojuT54KZDsKgdJa4HTMlZp3FywfNg-Q9G54mnAw7EO0xk-HwwRCMfCKN3fs_n3zGgPlC6YVcWh0S3l7lmXy_Pn9u3bPfx-r593GVa1MWUSS1rYW2h61Y3UFXUYmlrknkH0JQasIPCFAYLbLXUjbWy6oByUdXSFFbXcs3Ks6-OIaVIVo3RzVF_lQB1QqJ6dUGiTkjUGcmsezjraA53dBRVmnt7TcZF0pMywf3j8Ae19HJE |
Cites_doi | 10.1093/gji/ggac371 10.1016/j.jngse.2022.104500 10.1007/s13202-021-01157-7 10.1016/j.uncres.2022.09.002 10.1190/geo2022-0782.1 10.1007/s13202-018-0508-6 10.1016/j.ptlrs.2021.05.009 10.1190/geo2018-0685.1 10.1021/acs.energyfuels.0c04131 10.1016/j.petrol.2022.110610 10.1016/j.egyr.2023.06.026 10.1016/j.jappgeo.2022.104605 10.1190/geo2020-0121.1 10.2118/218419-PA 10.3390/en16062581 10.1016/j.jappgeo.2022.104865 10.1306/02072220067 10.1016/j.marpetgeo.2019.06.028 10.1016/j.petrol.2021.108816 10.1016/j.petrol.2016.05.017 10.1306/08031817416 10.1109/ACCESS.2023.3349216 10.1109/LGRS.2021.3053383 10.1306/12162121035 10.1029/2021RG000742 10.1016/j.ptlrs.2024.01.011 10.1016/j.earscirev.2023.104509 10.1190/geo2019-0435.1 10.1190/geo2019-0375.1 10.1016/j.petsci.2022.11.027 10.1016/j.jclepro.2021.126257 10.1306/03112221015 10.1016/j.ptlrs.2024.01.007 10.1016/j.geoen.2023.212587 10.1016/j.petrol.2021.109345 10.1016/j.petrol.2022.110541 10.1016/j.petrol.2008.05.004 10.1016/j.petrol.2021.109631 10.1016/j.petrol.2014.06.013 10.1016/j.petsci.2023.09.011 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jappgeo.2025.105902 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jappgeo_2025_105902 S0926985125002836 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- AAYXX CITATION EFLBG |
ID | FETCH-LOGICAL-c174t-3c371ff4c79c8066e9a5f7e32b0085c0ab04d4da4a9c3c8ff36b0e21673d4fc73 |
IEDL.DBID | .~1 |
ISSN | 0926-9851 |
IngestDate | Wed Sep 03 16:44:04 EDT 2025 Sat Aug 30 17:16:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Transformer Shale lithofacies Automatic identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c174t-3c371ff4c79c8066e9a5f7e32b0085c0ab04d4da4a9c3c8ff36b0e21673d4fc73 |
ParticipantIDs | crossref_primary_10_1016_j_jappgeo_2025_105902 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2025_105902 |
PublicationCentury | 2000 |
PublicationDate | November 2025 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied geophysics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Min, XinPing, HongMing (bb0125) 2023; 66 An, Du, Ma (bb0010) 2023; 243 Liu, Yang, Ren (bb0120) 2021; 86 Wu, Geng, Shi (bb0200) 2020; 85 Zheng, Hou, Chen (bb0225) 2022; 215 Bao, Zhao, Liang (bb0015) 2023; 28 Han, Wang, Zhang (bb0055) 2024; 89 He, Ding, Jiang (bb0060) 2016; 145 Dong, Zhong, Cui (bb0035) 2023; 20 Yu, Ma (bb0215) 2021; 59 Ren, Zhang, Yu (bb0150) 2024; 29 Li, Cao, Yang (bb0115) 2025; 90 Pan, Huang, Guo (bb0140) 2022; 208 Sircar, Yadav, Rayavarapu (bb0170) 2021; 6 Bo, Haoli, Xiaofei (bb0025) 2019; 103 Tang, White (bb0180) 2008; 61 Sun, Nie, Dang (bb0175) 2021; 35 Sang, Yuan, Han (bb0155) 2023; 232 Yan, Xu, Sun (bb0205) 2024; 21 Li, Li, Liu (bb0105) 2022; 207 Li, Xia, Liu (bb0110) 2023; 61 Cui, Yang, Li (bb0030) 2022; 2 Jiang, Sun, Lyu (bb0080) 2024; 233 Lawal, Yang, He (bb0100) 2024; 12 Khan, Kirmani (bb0085) 2024; 9 Wang, Yang (bb0190) 2022; 106 Wei, Duan, Yan (bb0195) 2021; 294 Sfidari, Kadkhodaie-Ilkhchi, Rahimpour-Bbonab (bb0165) 2014; 121 Hou, Lian, Zhao (bb0075) 2024; 9 Okeugo, Onuoha, Ekwe (bb0135) 2019; 9 Falivene, Auchter, Pires De Lima (bb0040) 2022; 106 Kumar, Seelam, Rao (bb0095) 2022; 199 Zou, Zhao, Cong (bb0230) 2021; 41 Tomski, Sen, Hess (bb0185) 2022; 106 Ali, Jamil, Zaheer (bb0005) 2022; 14 Yang, Xu, Hao (bb0210) 2019; 109 Niu, Lu, Sun (bb0130) 2023; 10 Bellani, Verma, Khatri (bb0020) 2021; 11 Feng, Mejer Hansen, Grana (bb0050) 2020; 85 Kim (bb0090) 2022; 100 Zhang, Alkhalifah (bb0220) 2019; 84 Feng (bb0045) 2021; 205 He, Gu, Xue (bb0065) 2022; 214 Hou, Xiao, Lei (bb0070) 2023; 16 Santos, Roisenberg, Nascimento (bb0160) 2022; 19 Park, Jeong, Emelyanova (bb0145) 2022; 208 Dong (10.1016/j.jappgeo.2025.105902_bb0035) 2023; 20 Tomski (10.1016/j.jappgeo.2025.105902_bb0185) 2022; 106 Sang (10.1016/j.jappgeo.2025.105902_bb0155) 2023; 232 He (10.1016/j.jappgeo.2025.105902_bb0060) 2016; 145 Kumar (10.1016/j.jappgeo.2025.105902_bb0095) 2022; 199 Bao (10.1016/j.jappgeo.2025.105902_bb0015) 2023; 28 Khan (10.1016/j.jappgeo.2025.105902_bb0085) 2024; 9 Sircar (10.1016/j.jappgeo.2025.105902_bb0170) 2021; 6 Okeugo (10.1016/j.jappgeo.2025.105902_bb0135) 2019; 9 Li (10.1016/j.jappgeo.2025.105902_bb0105) 2022; 207 Tang (10.1016/j.jappgeo.2025.105902_bb0180) 2008; 61 Bellani (10.1016/j.jappgeo.2025.105902_bb0020) 2021; 11 Jiang (10.1016/j.jappgeo.2025.105902_bb0080) 2024; 233 Yu (10.1016/j.jappgeo.2025.105902_bb0215) 2021; 59 Liu (10.1016/j.jappgeo.2025.105902_bb0120) 2021; 86 Li (10.1016/j.jappgeo.2025.105902_bb0110) 2023; 61 Santos (10.1016/j.jappgeo.2025.105902_bb0160) 2022; 19 Feng (10.1016/j.jappgeo.2025.105902_bb0045) 2021; 205 Yan (10.1016/j.jappgeo.2025.105902_bb0205) 2024; 21 Falivene (10.1016/j.jappgeo.2025.105902_bb0040) 2022; 106 Pan (10.1016/j.jappgeo.2025.105902_bb0140) 2022; 208 Ren (10.1016/j.jappgeo.2025.105902_bb0150) 2024; 29 Zou (10.1016/j.jappgeo.2025.105902_bb0230) 2021; 41 Niu (10.1016/j.jappgeo.2025.105902_bb0130) 2023; 10 Wang (10.1016/j.jappgeo.2025.105902_bb0190) 2022; 106 Wei (10.1016/j.jappgeo.2025.105902_bb0195) 2021; 294 Li (10.1016/j.jappgeo.2025.105902_bb0115) 2025; 90 Kim (10.1016/j.jappgeo.2025.105902_bb0090) 2022; 100 Hou (10.1016/j.jappgeo.2025.105902_bb0075) 2024; 9 Zhang (10.1016/j.jappgeo.2025.105902_bb0220) 2019; 84 Min (10.1016/j.jappgeo.2025.105902_bb0125) 2023; 66 Sun (10.1016/j.jappgeo.2025.105902_bb0175) 2021; 35 Ali (10.1016/j.jappgeo.2025.105902_bb0005) 2022; 14 He (10.1016/j.jappgeo.2025.105902_bb0065) 2022; 214 An (10.1016/j.jappgeo.2025.105902_bb0010) 2023; 243 Bo (10.1016/j.jappgeo.2025.105902_bb0025) 2019; 103 Cui (10.1016/j.jappgeo.2025.105902_bb0030) 2022; 2 Lawal (10.1016/j.jappgeo.2025.105902_bb0100) 2024; 12 Park (10.1016/j.jappgeo.2025.105902_bb0145) 2022; 208 Sfidari (10.1016/j.jappgeo.2025.105902_bb0165) 2014; 121 Wu (10.1016/j.jappgeo.2025.105902_bb0200) 2020; 85 Yang (10.1016/j.jappgeo.2025.105902_bb0210) 2019; 109 Feng (10.1016/j.jappgeo.2025.105902_bb0050) 2020; 85 Hou (10.1016/j.jappgeo.2025.105902_bb0070) 2023; 16 Zheng (10.1016/j.jappgeo.2025.105902_bb0225) 2022; 215 Han (10.1016/j.jappgeo.2025.105902_bb0055) 2024; 89 |
References_xml | – volume: 84 start-page: R741 year: 2019 end-page: R751 ident: bb0220 article-title: Regularized elastic full-waveform inversion using deep learning publication-title: Geophysics – volume: 2 start-page: 72 year: 2022 end-page: 84 ident: bb0030 article-title: Identification of lithofacies and prediction of mineral composition in shales – a case study of the Shahejie Formation in the Bozhong Sag publication-title: Unconvent. Resour. – volume: 243 year: 2023 ident: bb0010 article-title: Current state and future directions for deep learning based automatic seismic fault interpretation: a systematic review publication-title: Earth Sci. Rev. – volume: 121 start-page: 87 year: 2014 end-page: 102 ident: bb0165 article-title: A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: a case study from the south Pars gas field, the Persian Gulf basin publication-title: J. Pet. Sci. Eng. – volume: 59 year: 2021 ident: bb0215 article-title: Deep learning for geophysics: current and future trends publication-title: Rev. Geophys. – volume: 20 start-page: 1411 year: 2023 end-page: 1428 ident: bb0035 article-title: A deep kernel method for lithofacies identification using conventional well logs publication-title: Pet. Sci. – volume: 106 start-page: 1653 year: 2022 end-page: 1678 ident: bb0190 article-title: Quantitative classification and analysis of porosity within different lithofacies of the Upper Ordovician-lower Silurian shales, China publication-title: AAPG Bull. – volume: 85 start-page: M97 year: 2020 end-page: M105 ident: bb0050 article-title: An unsupervised deep-learning method for porosity estimation based on poststack seismic data publication-title: Geophysics – volume: 208 year: 2022 ident: bb0140 article-title: Lithofacies types, reservoir characteristics, and hydrocarbon potential of the lacustrine organic-rich fine-grained rocks affected by tephra of the permian Lucaogou formation, Santanghu basin, western China publication-title: J. Pet. Sci. Eng. – volume: 100 year: 2022 ident: bb0090 article-title: Lithofacies classification integrating conventional approaches and machine learning technique publication-title: J. Nat. Gas Sci. Eng. – volume: 85 start-page: WA27 year: 2020 end-page: WA39 ident: bb0200 article-title: Building realistic structure models to train convolutional neural networks for seismic structural interpretation publication-title: Geophysics – volume: 66 start-page: 2592 year: 2023 end-page: 2610 ident: bb0125 article-title: Prediction case of core parameters of shale gas reservoirs through deep transformer transfer learning publication-title: Chin. J. Geophys. – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: bb0160 article-title: Deep recurrent neural networks approach to sedimentary facies classification using well logs publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 29 start-page: 2148 year: 2024 end-page: 2164 ident: bb0150 article-title: Heterogeneous domain adaptation framework for logging lithofacies identification publication-title: SPE J. – volume: 233 year: 2024 ident: bb0080 article-title: Machine learning (ML) for fluvial lithofacies identification from well logs: a hybrid classification model integrating lithofacies characteristics, logging data distributions, and ML models applicability publication-title: Geoenergy Sci. Eng. – volume: 10 start-page: 213 year: 2023 end-page: 227 ident: bb0130 article-title: A review of the application of data-driven technology in shale gas production evaluation publication-title: Energy Rep. – volume: 28 start-page: 71 year: 2023 end-page: 82 ident: bb0015 article-title: Enrichment and high yield of shale gas in the Permian Wujiaping Formation in Hongxing area of eastern Sichuan and its exploration implications publication-title: China Petrol. Explor. – volume: 109 start-page: 394 year: 2019 end-page: 407 ident: bb0210 article-title: Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sichuan Basin, China; implications for shale gas accumulation mechanism publication-title: Mar. Pet. Geol. – volume: 294 year: 2021 ident: bb0195 article-title: Shale gas: will it become a new type of clean energy in China? — a perspective of development potential publication-title: J. Clean. Prod. – volume: 232 start-page: 940 year: 2023 end-page: 957 ident: bb0155 article-title: Porosity prediction using semi-supervised learning with biased well log data for improving estimation accuracy and reducing prediction uncertainty publication-title: Geophys. J. Int. – volume: 11 start-page: 2127 year: 2021 end-page: 2141 ident: bb0020 article-title: Shale gas: a step toward sustainable energy future publication-title: J. Pet. Explor. Prod. Technol. – volume: 103 start-page: 405 year: 2019 end-page: 432 ident: bb0025 article-title: Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, Northeast China publication-title: AAPG Bull. – volume: 21 start-page: 1135 year: 2024 end-page: 1148 ident: bb0205 article-title: A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm publication-title: Pet. Sci. – volume: 9 start-page: 97 year: 2019 end-page: 110 ident: bb0135 article-title: Application of crossplot and prestack seismic-based impedance inversion for discrimination of lithofacies and fluid prediction in an old producing field, Eastern Niger Delta Basin publication-title: J. Pet. Explor. Prod. Technol. – volume: 41 start-page: 1 year: 2021 end-page: 14 ident: bb0230 article-title: Development progress, potential and prospect of shale gas in China publication-title: Nat. Gas Ind. – volume: 145 start-page: 238 year: 2016 end-page: 255 ident: bb0060 article-title: Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: a case study from the Es3L shale in the Jiyang Depression, Bohai Bay Basin, Eastern China publication-title: J. Pet. Sci. Eng. – volume: 14 start-page: 87 year: 2022 end-page: 103 ident: bb0005 article-title: Exploration and development of shale gas in China: a review publication-title: Iran. J. Earth Sci. – volume: 6 start-page: 379 year: 2021 end-page: 391 ident: bb0170 article-title: Application of machine learning and artificial intelligence in oil and gas industry publication-title: Petrol. Res. – volume: 199 year: 2022 ident: bb0095 article-title: Lithology prediction from well log data using machine learning techniques: a case study from Talcher coalfield, Eastern India publication-title: J. Appl. Geophys. – volume: 12 start-page: 19035 year: 2024 end-page: 19058 ident: bb0100 article-title: Machine learning in oil and gas exploration: a review publication-title: IEEE Access. – volume: 90 start-page: IM15-IM34 year: 2025 ident: bb0115 article-title: Intelligent prestack multitrace seismic inversion constrained by probabilistic geologic information publication-title: Geophysics – volume: 9 start-page: 393 year: 2024 end-page: 408 ident: bb0085 article-title: A systematic approach of predicting the lithology from applicability of deep neural networks based on conventional well logs publication-title: Petrol. Res. – volume: 207 year: 2022 ident: bb0105 article-title: Single-well lithofacies identification based on logging response and convolutional neural network publication-title: J. Appl. Geophys. – volume: 86 start-page: R31 year: 2021 end-page: R44 ident: bb0120 article-title: Deep-learning seismic full-waveform inversion for realistic structural models publication-title: Geophysics – volume: 61 start-page: 88 year: 2008 end-page: 93 ident: bb0180 article-title: Multivariate statistical log log-facies classification on a shallow marine reservoir publication-title: J. Pet. Sci. Eng. – volume: 106 start-page: 2203 year: 2022 end-page: 2223 ident: bb0185 article-title: Unconventional reservoir characterization by seismic inversion and machine learning of the Bakken Formation publication-title: Aapg Bull. – volume: 208 year: 2022 ident: bb0145 article-title: Data-driven sequence labeling methods incorporating the long-range spatial variation of geological data for lithofacies sequence estimation publication-title: J. Pet. Sci. Eng. – volume: 106 start-page: 1357 year: 2022 end-page: 1372 ident: bb0040 article-title: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: turbidite deposits (Gulf of Mexico and North Sea) publication-title: Bulletin – volume: 205 year: 2021 ident: bb0045 article-title: Uncertainty analysis in well log classification by Bayesian long short-term memory networks publication-title: J. Pet. Sci. Eng. – volume: 16 year: 2023 ident: bb0070 article-title: Machine learning algorithms for lithofacies classification of the Gulong Shale from the Songliao Basin, China publication-title: Energies – volume: 9 start-page: 165 year: 2024 end-page: 175 ident: bb0075 article-title: Identification of carbonate sedimentary facies from well logs with machine learning publication-title: Petrol. Res. – volume: 89 start-page: JM1 year: 2024 end-page: JM11 ident: bb0055 article-title: Prediction of igneous lithology and lithofacies based on ensemble learning with data optimization publication-title: Geophysics – volume: 61 start-page: 1 year: 2023 end-page: 15 ident: bb0110 article-title: Missing sonic logs generation for gas hydrate-bearing sediments via hybrid networks combining deep learning with rock physics modeling publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 35 start-page: 6359 year: 2021 end-page: 6379 ident: bb0175 article-title: Shale gas exploration and development in China: current status, geological challenges, and future directions publication-title: Energy Fuels – volume: 214 year: 2022 ident: bb0065 article-title: Log interpretation for lithofacies classification with a robust learning model using stacked generalization publication-title: J. Petrol. Sci. Eng. – volume: 215 year: 2022 ident: bb0225 article-title: Application of machine learning in the identification of fluvial-lacustrine lithofacies from well logs: a case study from Sichuan Basin, China publication-title: J. Pet. Sci. Eng. – volume: 232 start-page: 940 year: 2023 ident: 10.1016/j.jappgeo.2025.105902_bb0155 article-title: Porosity prediction using semi-supervised learning with biased well log data for improving estimation accuracy and reducing prediction uncertainty publication-title: Geophys. J. Int. doi: 10.1093/gji/ggac371 – volume: 100 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0090 article-title: Lithofacies classification integrating conventional approaches and machine learning technique publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2022.104500 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.jappgeo.2025.105902_bb0110 article-title: Missing sonic logs generation for gas hydrate-bearing sediments via hybrid networks combining deep learning with rock physics modeling publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 87 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0005 article-title: Exploration and development of shale gas in China: a review publication-title: Iran. J. Earth Sci. – volume: 11 start-page: 2127 year: 2021 ident: 10.1016/j.jappgeo.2025.105902_bb0020 article-title: Shale gas: a step toward sustainable energy future publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-021-01157-7 – volume: 2 start-page: 72 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0030 article-title: Identification of lithofacies and prediction of mineral composition in shales – a case study of the Shahejie Formation in the Bozhong Sag publication-title: Unconvent. Resour. doi: 10.1016/j.uncres.2022.09.002 – volume: 89 start-page: JM1 year: 2024 ident: 10.1016/j.jappgeo.2025.105902_bb0055 article-title: Prediction of igneous lithology and lithofacies based on ensemble learning with data optimization publication-title: Geophysics doi: 10.1190/geo2022-0782.1 – volume: 9 start-page: 97 year: 2019 ident: 10.1016/j.jappgeo.2025.105902_bb0135 article-title: Application of crossplot and prestack seismic-based impedance inversion for discrimination of lithofacies and fluid prediction in an old producing field, Eastern Niger Delta Basin publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-018-0508-6 – volume: 90 start-page: IM15-IM34 year: 2025 ident: 10.1016/j.jappgeo.2025.105902_bb0115 article-title: Intelligent prestack multitrace seismic inversion constrained by probabilistic geologic information publication-title: Geophysics – volume: 66 start-page: 2592 year: 2023 ident: 10.1016/j.jappgeo.2025.105902_bb0125 article-title: Prediction case of core parameters of shale gas reservoirs through deep transformer transfer learning publication-title: Chin. J. Geophys. – volume: 6 start-page: 379 year: 2021 ident: 10.1016/j.jappgeo.2025.105902_bb0170 article-title: Application of machine learning and artificial intelligence in oil and gas industry publication-title: Petrol. Res. doi: 10.1016/j.ptlrs.2021.05.009 – volume: 84 start-page: R741 year: 2019 ident: 10.1016/j.jappgeo.2025.105902_bb0220 article-title: Regularized elastic full-waveform inversion using deep learning publication-title: Geophysics doi: 10.1190/geo2018-0685.1 – volume: 35 start-page: 6359 year: 2021 ident: 10.1016/j.jappgeo.2025.105902_bb0175 article-title: Shale gas exploration and development in China: current status, geological challenges, and future directions publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c04131 – volume: 215 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0225 article-title: Application of machine learning in the identification of fluvial-lacustrine lithofacies from well logs: a case study from Sichuan Basin, China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.110610 – volume: 10 start-page: 213 year: 2023 ident: 10.1016/j.jappgeo.2025.105902_bb0130 article-title: A review of the application of data-driven technology in shale gas production evaluation publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.06.026 – volume: 199 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0095 article-title: Lithology prediction from well log data using machine learning techniques: a case study from Talcher coalfield, Eastern India publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2022.104605 – volume: 85 start-page: M97 year: 2020 ident: 10.1016/j.jappgeo.2025.105902_bb0050 article-title: An unsupervised deep-learning method for porosity estimation based on poststack seismic data publication-title: Geophysics doi: 10.1190/geo2020-0121.1 – volume: 29 start-page: 2148 year: 2024 ident: 10.1016/j.jappgeo.2025.105902_bb0150 article-title: Heterogeneous domain adaptation framework for logging lithofacies identification publication-title: SPE J. doi: 10.2118/218419-PA – volume: 16 year: 2023 ident: 10.1016/j.jappgeo.2025.105902_bb0070 article-title: Machine learning algorithms for lithofacies classification of the Gulong Shale from the Songliao Basin, China publication-title: Energies doi: 10.3390/en16062581 – volume: 207 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0105 article-title: Single-well lithofacies identification based on logging response and convolutional neural network publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2022.104865 – volume: 106 start-page: 1653 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0190 article-title: Quantitative classification and analysis of porosity within different lithofacies of the Upper Ordovician-lower Silurian shales, China publication-title: AAPG Bull. doi: 10.1306/02072220067 – volume: 109 start-page: 394 year: 2019 ident: 10.1016/j.jappgeo.2025.105902_bb0210 article-title: Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sichuan Basin, China; implications for shale gas accumulation mechanism publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2019.06.028 – volume: 205 year: 2021 ident: 10.1016/j.jappgeo.2025.105902_bb0045 article-title: Uncertainty analysis in well log classification by Bayesian long short-term memory networks publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108816 – volume: 145 start-page: 238 year: 2016 ident: 10.1016/j.jappgeo.2025.105902_bb0060 article-title: Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: a case study from the Es3L shale in the Jiyang Depression, Bohai Bay Basin, Eastern China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.05.017 – volume: 103 start-page: 405 year: 2019 ident: 10.1016/j.jappgeo.2025.105902_bb0025 article-title: Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, Northeast China publication-title: AAPG Bull. doi: 10.1306/08031817416 – volume: 12 start-page: 19035 year: 2024 ident: 10.1016/j.jappgeo.2025.105902_bb0100 article-title: Machine learning in oil and gas exploration: a review publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3349216 – volume: 28 start-page: 71 year: 2023 ident: 10.1016/j.jappgeo.2025.105902_bb0015 article-title: Enrichment and high yield of shale gas in the Permian Wujiaping Formation in Hongxing area of eastern Sichuan and its exploration implications publication-title: China Petrol. Explor. – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0160 article-title: Deep recurrent neural networks approach to sedimentary facies classification using well logs publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2021.3053383 – volume: 106 start-page: 2203 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0185 article-title: Unconventional reservoir characterization by seismic inversion and machine learning of the Bakken Formation publication-title: Aapg Bull. doi: 10.1306/12162121035 – volume: 59 year: 2021 ident: 10.1016/j.jappgeo.2025.105902_bb0215 article-title: Deep learning for geophysics: current and future trends publication-title: Rev. Geophys. doi: 10.1029/2021RG000742 – volume: 9 start-page: 393 year: 2024 ident: 10.1016/j.jappgeo.2025.105902_bb0085 article-title: A systematic approach of predicting the lithology from applicability of deep neural networks based on conventional well logs publication-title: Petrol. Res. doi: 10.1016/j.ptlrs.2024.01.011 – volume: 243 year: 2023 ident: 10.1016/j.jappgeo.2025.105902_bb0010 article-title: Current state and future directions for deep learning based automatic seismic fault interpretation: a systematic review publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2023.104509 – volume: 86 start-page: R31 year: 2021 ident: 10.1016/j.jappgeo.2025.105902_bb0120 article-title: Deep-learning seismic full-waveform inversion for realistic structural models publication-title: Geophysics doi: 10.1190/geo2019-0435.1 – volume: 85 start-page: WA27 year: 2020 ident: 10.1016/j.jappgeo.2025.105902_bb0200 article-title: Building realistic structure models to train convolutional neural networks for seismic structural interpretation publication-title: Geophysics doi: 10.1190/geo2019-0375.1 – volume: 20 start-page: 1411 year: 2023 ident: 10.1016/j.jappgeo.2025.105902_bb0035 article-title: A deep kernel method for lithofacies identification using conventional well logs publication-title: Pet. Sci. doi: 10.1016/j.petsci.2022.11.027 – volume: 294 year: 2021 ident: 10.1016/j.jappgeo.2025.105902_bb0195 article-title: Shale gas: will it become a new type of clean energy in China? — a perspective of development potential publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126257 – volume: 106 start-page: 1357 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0040 article-title: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: turbidite deposits (Gulf of Mexico and North Sea) publication-title: Bulletin doi: 10.1306/03112221015 – volume: 9 start-page: 165 year: 2024 ident: 10.1016/j.jappgeo.2025.105902_bb0075 article-title: Identification of carbonate sedimentary facies from well logs with machine learning publication-title: Petrol. Res. doi: 10.1016/j.ptlrs.2024.01.007 – volume: 233 year: 2024 ident: 10.1016/j.jappgeo.2025.105902_bb0080 article-title: Machine learning (ML) for fluvial lithofacies identification from well logs: a hybrid classification model integrating lithofacies characteristics, logging data distributions, and ML models applicability publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2023.212587 – volume: 208 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0145 article-title: Data-driven sequence labeling methods incorporating the long-range spatial variation of geological data for lithofacies sequence estimation publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109345 – volume: 214 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0065 article-title: Log interpretation for lithofacies classification with a robust learning model using stacked generalization publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2022.110541 – volume: 61 start-page: 88 year: 2008 ident: 10.1016/j.jappgeo.2025.105902_bb0180 article-title: Multivariate statistical log log-facies classification on a shallow marine reservoir publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2008.05.004 – volume: 208 year: 2022 ident: 10.1016/j.jappgeo.2025.105902_bb0140 article-title: Lithofacies types, reservoir characteristics, and hydrocarbon potential of the lacustrine organic-rich fine-grained rocks affected by tephra of the permian Lucaogou formation, Santanghu basin, western China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109631 – volume: 121 start-page: 87 year: 2014 ident: 10.1016/j.jappgeo.2025.105902_bb0165 article-title: A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: a case study from the south Pars gas field, the Persian Gulf basin publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2014.06.013 – volume: 21 start-page: 1135 year: 2024 ident: 10.1016/j.jappgeo.2025.105902_bb0205 article-title: A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm publication-title: Pet. Sci. doi: 10.1016/j.petsci.2023.09.011 – volume: 41 start-page: 1 year: 2021 ident: 10.1016/j.jappgeo.2025.105902_bb0230 article-title: Development progress, potential and prospect of shale gas in China publication-title: Nat. Gas Ind. |
SSID | ssj0001304 |
Score | 2.422904 |
Snippet | Shale lithofacies control hydrocarbon generation potential, reservoir properties, and anisotropy, thereby determining the distribution of shale “sweet spots”... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 105902 |
SubjectTerms | Automatic identification Deep learning Shale lithofacies Transformer |
Title | Data-driven lithofacies classification of marine shale based on deep learning approaches |
URI | https://dx.doi.org/10.1016/j.jappgeo.2025.105902 |
Volume | 242 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywpmkcN07GqlAVEF2gUrfI8aMPiTZqw8pv5y5x1CIkBsYktpR8se77Et99R8g9BxXMo0x5ocJtRpUITzLNvIAr3LYDhgyw3vl1HI0m_HnamzbIoK6FwbRKF_urmF5Ga3fGd2j6-WLhv3UTFiUgGIDEkSTRdptzgau887VL84AYXVpIwWAPR--qePxlZynzfFbWALIedrxN3N-VX_y0xznDE3LsxCLtV_dzShpmdUaO9iwEz8n0QRbS0xsMWhQk9XxtJTzGliqUxZgHVEJP15Z-SKz0o9s5cAJF9tIULmhjcup6R8xobTFuthdkMnx8H4w81y3BU_BVUSDYIrCWK5GoGISESWTPChOyDGWV6sqsyzXXkstEhSq2NoyyrmFBJELNrRLhJWmu1itzRagE0RDExjAjGI-YkAZt1A1aoelABnGLdGqM0rwyxUjrbLFl6kBNEdS0ArVF4hrJ9MfbTSFw_z31-v9Tb8ghHlWVg7ekWWw-zR1IiCJrl2ukTQ76Ty-j8Tc76sXk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JboMwFHxKk0PbQ9VVTVcfeiUEY7ZjlDYizXJpIuWGjDFZpCYoof9fPzBtqko99IqxBAOaGfB7Y4Anplwwc2Nh2AKXGUXgGZwm1LCYwGU7pZAW9juPxm44Za8zZ1aDbtULg2WVmvtLTi_YWh8xNZpmtlyab-2AuoEyDErEUSTdA2hgOpVTh0anPwjHX4SsaLpIkVLnGzjhu5HHXLVWPMvmRRsgdXDT20D_YPklUXuy0zuFE-0XSae8pDOoyfU5HO-lCF7A7Jnn3Ei2yFtEuerFJuXqTnZEoDPGUqACfbJJyTvHZj-yWyhZIChgCVEDiZQZ0dtHzEmVMi53lzDtvUy6oaE3TDCE-rDIEW_PSlMmvED4ykvIgDupJ20ao7MSbR63WcISznggbOGnqe3GbUkt17MTlgrPvoL6erOW10C48g2WLyWVHmUu9bjEJHWJaWiJxS2_Ca0KoygrczGiqmBsFWlQIwQ1KkFtgl8hGf14wJHi7r-n3vx_6iMchpPRMBr2x4NbOMKRspHwDur59kPeK0eRxw_6jfkEF4bIlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+lithofacies+classification+of+marine+shale+based+on+deep+learning+approaches&rft.jtitle=Journal+of+applied+geophysics&rft.au=Xue%2C+Yufang&rft.au=Luo%2C+Bing&rft.au=Chen%2C+Yalin&rft.au=Qin%2C+Jun&rft.date=2025-11-01&rft.issn=0926-9851&rft.volume=242&rft.spage=105902&rft_id=info:doi/10.1016%2Fj.jappgeo.2025.105902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2025_105902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |