Multi-Modal Beat Alignment Transformers for Dance Quality Assessment Framework

In recent years, the dance entertainment industry has been growing as consumers have a desire to learn and improve their dancing skills. To fulfill this need, they need to be evaluated and get feedback to improve their dance skills, but the evaluation is very dependent on professional dancers. With...

Full description

Saved in:
Bibliographic Details
Published inJournal of Multimedia Information System Vol. 11; no. 2; pp. 149 - 156
Main Author Kim, Taewan
Format Journal Article
LanguageEnglish
Published 한국멀티미디어학회 30.06.2024
Subjects
Online AccessGet full text
ISSN2383-7632
2383-7632
DOI10.33851/JMIS.2024.11.2.149

Cover

Loading…
Abstract In recent years, the dance entertainment industry has been growing as consumers have a desire to learn and improve their dancing skills. To fulfill this need, they need to be evaluated and get feedback to improve their dance skills, but the evaluation is very dependent on professional dancers. With the advent of deep learning techniques that can understand and learn the structure of 3D skeletons, graph convolutional networks and transformers have shown performance improvements in 3D human action understanding. In this paper, we propose Dance Quality Assessment (DanceQA) Framework to evaluate dance performance and predicts its dance quality numerically. For problem definition, we collect and capture 3D skeletal data by 3D pose estimator and label their dance quality. By analyzing the dataset, we propose dance quality measures, kinematic information entropy and multi-modal beat similarity, which consider traditional criteria for dance techniques. Based on results of the dance quality measures, kinematic entropy embedding matrix and multi-modal beat alignment transformers are designed to learns salient joints and frames in 3D dance sequence. Thus, we design the overall network architecture, DanceQA transformers, which consider spatial and temporal characteristics of 3D dance sequence from multiple input features and demonstrate that the proposed transformers outperform other Graph Convolutional Network (GCN)s and transformers on the DanceQA dataset. In numerous experiments, the CQTs outperforms previous methods, graph convolutional networks and multimodal transformers, at least by up to 0.146 in correlation coefficient. KCI Citation Count: 0
AbstractList In recent years, the dance entertainment industry has been growing as consumers have a desire to learn and improve their dancing skills. To fulfill this need, they need to be evaluated and get feedback to improve their dance skills, but the evaluation is very dependent on professional dancers. With the advent of deep learning techniques that can understand and learn the structure of 3D skeletons, graph convolutional networks and transformers have shown performance improvements in 3D human action understanding. In this paper, we propose Dance Quality Assessment (DanceQA) Framework to evaluate dance performance and predicts its dance quality numerically. For problem definition, we collect and capture 3D skeletal data by 3D pose estimator and label their dance quality. By analyzing the dataset, we propose dance quality measures, kinematic information entropy and multi-modal beat similarity, which consider traditional criteria for dance techniques. Based on results of the dance quality measures, kinematic entropy embedding matrix and multi-modal beat alignment transformers are designed to learns salient joints and frames in 3D dance sequence. Thus, we design the overall network architecture, DanceQA transformers, which consider spatial and temporal characteristics of 3D dance sequence from multiple input features and demonstrate that the proposed transformers outperform other Graph Convolutional Network (GCN)s and transformers on the DanceQA dataset. In numerous experiments, the CQTs outperforms previous methods, graph convolutional networks and multimodal transformers, at least by up to 0.146 in correlation coefficient. KCI Citation Count: 0
Author Kim, Taewan
Author_xml – sequence: 1
  givenname: Taewan
  surname: Kim
  fullname: Kim, Taewan
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003098125$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kLFOwzAURS1UJErpF7BkRkqI7cROxlAoFFEQUGbrxXEqq4mNbFeof0_aMiAGpvuGc95wztHIWKMQusRpQmmR4-vH5eI9ISnJEowTkuCsPEFjQgsac0bJ6Nd9hqbe6zrNKeWMp3yMnpfbLuh4aRvoohsFIao6vTa9MiFaOTC-ta5XzkfDRrdgpIpet9DpsIsq75X3B3LuoFdf1m0u0GkLnVfTn52gj_ndavYQP73cL2bVUywxz8q4BpxDnpMy41wSKuu85jhVTGLcNqwmDWvYQHCQhMgWiCoLprJaFkVNcmAtnaCr41_jWrGRWljQh11bsXGielstBE45LRktB5geYems90614tPpHtxuQMQhodgnFPuEAmNBxJBwsMo_ltQBgrYmONDdv-43P-l4xw
CitedBy_id crossref_primary_10_1038_s41598_024_83608_9
Cites_doi 10.1109/TLT.2010.27
10.1177/1089313X0901300402
10.1609/aaai.v32i1.12328
10.1109/CVPR.2016.319
10.1109/CVPR.2019.01230
10.1109/ICCV48922.2021.01315
10.1519/00124278-200708000-00026
10.1109/TIP.2003.819861
10.1002/cav.1715
10.1145/3230744.3230798
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.33851/JMIS.2024.11.2.149
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2383-7632
EndPage 156
ExternalDocumentID oai_kci_go_kr_ARTI_10739639
10_33851_JMIS_2024_11_2_149
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
.UV
ACYCR
ID FETCH-LOGICAL-c1749-ba15a5529477c23cb5b710e6c11fd6b2d6d615a7ac22cfa2e986e4bc88b25a6f3
ISSN 2383-7632
IngestDate Fri Aug 01 03:44:21 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Tue Jul 01 02:15:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1749-ba15a5529477c23cb5b710e6c11fd6b2d6d615a7ac22cfa2e986e4bc88b25a6f3
OpenAccessLink http://www.jmis.org/download/download_pdf?doi=10.33851/JMIS.2024.11.2.149
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10739639
crossref_primary_10_33851_JMIS_2024_11_2_149
crossref_citationtrail_10_33851_JMIS_2024_11_2_149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-30
PublicationDateYYYYMMDD 2024-06-30
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of Multimedia Information System
PublicationYear 2024
Publisher 한국멀티미디어학회
Publisher_xml – name: 한국멀티미디어학회
References key2.0240705101108e+13_B6
key2.0240705101108e+13_B5
key2.0240705101108e+13_B8
key2.0240705101108e+13_B7
key2.0240705101108e+13_B9
key2.0240705101108e+13_B2
key2.0240705101108e+13_B11
key2.0240705101108e+13_B1
key2.0240705101108e+13_B10
key2.0240705101108e+13_B4
key2.0240705101108e+13_B13
key2.0240705101108e+13_B3
key2.0240705101108e+13_B12
key2.0240705101108e+13_B15
key2.0240705101108e+13_B14
References_xml – ident: key2.0240705101108e+13_B4
– ident: key2.0240705101108e+13_B3
– ident: key2.0240705101108e+13_B6
  doi: 10.1109/TLT.2010.27
– ident: key2.0240705101108e+13_B13
– ident: key2.0240705101108e+13_B1
– ident: key2.0240705101108e+13_B2
– ident: key2.0240705101108e+13_B11
  doi: 10.1177/1089313X0901300402
– ident: key2.0240705101108e+13_B14
  doi: 10.1609/aaai.v32i1.12328
– ident: key2.0240705101108e+13_B9
  doi: 10.1109/CVPR.2016.319
– ident: key2.0240705101108e+13_B10
  doi: 10.1109/CVPR.2019.01230
– ident: key2.0240705101108e+13_B15
  doi: 10.1109/ICCV48922.2021.01315
– ident: key2.0240705101108e+13_B5
  doi: 10.1519/00124278-200708000-00026
– ident: key2.0240705101108e+13_B12
  doi: 10.1109/TIP.2003.819861
– ident: key2.0240705101108e+13_B7
  doi: 10.1002/cav.1715
– ident: key2.0240705101108e+13_B8
  doi: 10.1145/3230744.3230798
SSID ssib053376707
ssib022331700
ssib036278182
Score 1.8773309
Snippet In recent years, the dance entertainment industry has been growing as consumers have a desire to learn and improve their dancing skills. To fulfill this need,...
SourceID nrf
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 149
SubjectTerms 컴퓨터학
Title Multi-Modal Beat Alignment Transformers for Dance Quality Assessment Framework
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003098125
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Multimedia Information System, 2024, 11(2), , pp.149-156
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdp9zxWtrHuC8Omp8yZLUu29GgnDm0hfVkKfTOWbJfQkpSQDtaH_VP7B3cn2Z7bbaUbBEcIfXF3vvudrDsR8jESZaS5bnwWVZHPjYFXylSJrwIRVLWUjbT3pyxO46MzfnIuzkejH4NTSzc7PTG3f4wr-R-uQh3wFaNk_4Gz_aBQAWXgLzyBw_B8FI9t9Ky_2FRA5wxd_fRqdeE-7y87QIoBuniU0LJ37FJmfBunfUJOhK7ueNZfcKqdxAaYjNvYJadkbApo5BAqQ8kGWwo0T2mm8AxFPqMyompK8ylVUMOh5Wzl4tlx7LnNaIJhh19dFGg93IVgvDsy18oNjqeEHQ9mEDSd0TyjaT9VRrPA1sxpJrGgOP5w8phmvOuubCGl0u0Q11YPAqiIfFCDbKBnQ5fntDXZoctNft8agPct0BycLI6_THDRYB8mbNL3HebevmcT72TfvjSr4mJTXG4L8DGOixA_bgKw2yNPGPgmaA0W3_NOiQHcioY5DwEgJACKegwJ8DqJkyBxGbDsEj__vsA7KGlvvW0GoGf5jDxtpcBLnegdkFG9fk5OB2Lnodh5vdh5Q7Hz4N-zYue1Yuf9EjuvF7sX5GyeL6dHfnsth2_AfVW-LkNRCsEUTxLDIqOFBphaxyYMmyrWrIorgMllUhrGTFOyWsm45tpIqZko4yZ6SfbXm3X9ing8qZsgMohhAx6XoDdisCiJUg2YBvDUDwnryFCYNmc9Xp1yBUwoLO0KpF2BtANftmDgyapD8qnvdO1Stjzc_APQ1zL5AWa_flSrN7jtE4bu5XhL9nfbm_odgNadfm-F5CdMr4YL
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Beat+Alignment+Transformers+for+Dance+Quality+Assessment+Framework&rft.jtitle=Journal+of+Multimedia+Information+System%2C+11%282%29&rft.au=%EA%B9%80%ED%83%9C%EC%99%84%28Division+of+Future+Convergence&rft.date=2024-06-30&rft.pub=%ED%95%9C%EA%B5%AD%EB%A9%80%ED%8B%B0%EB%AF%B8%EB%94%94%EC%96%B4%ED%95%99%ED%9A%8C&rft.eissn=2383-7632&rft.spage=149&rft.epage=156&rft_id=info:doi/10.33851%2FJMIS.2024.11.2.149&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10739639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2383-7632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2383-7632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2383-7632&client=summon