Spatial Wilson loop in continuum, deconfining SU(2) Yang‐Mills thermodynamics
The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculat...
Saved in:
Published in | Annalen der Physik Vol. 522; no. 1-2; pp. 102 - 120 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
WILEY‐VCH Verlag
01.02.2010
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0003-3804 1521-3889 |
DOI | 10.1002/andp.201052201-210 |
Cover
Abstract | The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L.
The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L. |
---|---|
AbstractList | The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L.
The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L. The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L. The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L. |
Author | Hofmann, R. Giacosa, F. Ludescher, J. Keller, J. |
Author_xml | – sequence: 1 givenname: J. surname: Ludescher fullname: Ludescher, J. – sequence: 2 givenname: J. surname: Keller fullname: Keller, J. – sequence: 3 givenname: F. surname: Giacosa fullname: Giacosa, F. – sequence: 4 givenname: R. surname: Hofmann fullname: Hofmann, R. email: R.Hofmann@thphys.uni‐heidelberg.de |
BookMark | eNqNkMtKAzEUhoNUsNa-gKsBNwpOPUnmunBR6hWqFWoRVyHNJDVlmoyTGaQ7H8Fn9ElMqbhwIW7OBf7vHP5_H3WMNRKhQwwDDEDOuCmqAQEMMfE1JBh2UBfHBIc0y_IO6gIA9TNEe6jv3NKvEAMBEnXRZFrxRvMyeNKlsyYora0CbQJhTaNN265Og0L6RWmjzSKYzo7JSfDMzeLz_eNOl6ULmhdZr2yxNnylhTtAu4qXTva_ew_Nri4fRzfheHJ9OxqOQ4HTKAlpFItIpHkyp4oTJVPIeJLQlEJWzLEkmGeZUHGepyov4oLHSqkoKfIkLoTKOKE9dLS9W9X2tZWuYUvb1sa_ZCRJcU5pSsCrsq1K1Na5WiomdOP9enM11yXDwDYJsk2C7CdB5hP0KPmFVrVe8Xr9N3S-hd50Kdf_INjw_uKBAOQYIkjoFwqRiHs |
CitedBy_id | crossref_primary_10_3390_sym16121587 |
Cites_doi | 10.1142/S0217732306020457 10.1088/0305-4470/9/8/029 10.1016/S0550-3213(01)00229-2 10.1142/S0217732307024413 10.1142/S0217751X08042535 10.1142/S0217751X07035227 10.1142/1341 10.1016/0550-3213(73)90263-0 10.1103/PhysRevD.70.036003 10.1103/PhysRevLett.58.847 10.1103/PhysRevD.5.3137 10.1016/S0370-2693(99)01242-3 10.1016/0550-3213(71)90395-6 10.1103/PhysRevD.5.3121 10.1002/andp.200910348 10.1016/0370-2693(75)90162-8 10.1088/1126-6708/2005/03/067 10.1103/RevModPhys.53.43 10.1016/0550-3213(72)90279-9 10.1103/PhysRevD.76.085022 10.1142/S0217751X05023931 10.1016/0550-3213(85)90582-6 10.1016/0370-2693(80)90961-2 10.1103/PhysRevD.17.2122 10.1103/PhysRevLett.71.3059 10.1143/PTP.118.759 10.1103/PhysRevD.5.3155 10.1016/S0550-3213(72)80021-X |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright Wiley Subscription Services, Inc. Feb 2010 |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright Wiley Subscription Services, Inc. Feb 2010 |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1002/andp.201052201-210 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3889 |
EndPage | 120 |
ExternalDocumentID | 10_1002_andp_201052201_210 ANDP200910406 |
Genre | article |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 2WC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 669 66C 692 6J9 6P2 6TJ 6TS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM E3Z EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYQRN H.T H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQ8 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6R MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGL RIWAO RJQFR RNS RNW ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 UPT UQL V8K VH1 W8V W99 WBKPD WGJPS WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XOL XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGQPQ AGYGG CITATION 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c1746-345c4c796b3fa2fe708a6637308db1e21a88cf5997f9d5da5fff46d965dcf8a23 |
IEDL.DBID | DR2 |
ISSN | 0003-3804 |
IngestDate | Fri Jul 25 12:27:52 EDT 2025 Tue Jul 01 02:44:41 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Wed Jan 22 16:24:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1746-345c4c796b3fa2fe708a6637308db1e21a88cf5997f9d5da5fff46d965dcf8a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2671933720 |
PQPubID | 946351 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2671933720 crossref_citationtrail_10_1002_andp_201052201_210 crossref_primary_10_1002_andp_201052201_210 wiley_primary_10_1002_andp_201052201_210_ANDP200910406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2010 |
PublicationDateYYYYMMDD | 2010-02-01 |
PublicationDate_xml | – month: 02 year: 2010 text: February 2010 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin – name: Weinheim |
PublicationTitle | Annalen der Physik |
PublicationYear | 2010 |
Publisher | WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | 1987; 58 1980; 58 2007; 118 2004; 70 2005; 0503 2005 2006; 20 21 1972 1971 1973 1972 1972 1972 1972; 44 33 62 50 5 5 5 1993; 71 1975 2003 2001 1999; 59 34 608 469 2008; 23 1978; 17 2007; 76 2007; 22 1985; 261 1976; 9 1981; 53 2009; 18 2005; 36 e_1_2_1_18_7 e_1_2_1_18_8 e_1_2_1_18_5 e_1_2_1_18_6 Herbst U. (e_1_2_1_24_2) 2005; 36 e_1_2_1_20_4 e_1_2_1_22_2 Korthals‐Altes C.P. (e_1_2_1_20_3) 2003; 34 e_1_2_1_20_5 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_25_2 e_1_2_1_6_2 e_1_2_1_6_3 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_10_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_18_3 e_1_2_1_19_2 e_1_2_1_18_4 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – volume: 261 start-page: 455 year: 1985 publication-title: Nucl. Phys. B – volume: 17 start-page: 2122 year: 1978 publication-title: Phys. Rev. D – volume: 9 start-page: 1387 year: 1976 publication-title: J. Phys. A – volume: 71 start-page: 3059 year: 1993 publication-title: Phys. Rev. Lett. – volume: 0503 start-page: 067 year: 2005 publication-title: JHEP, J. High Energy Phys. – volume: 36 start-page: 881 year: 2005 publication-title: Acta Phys. Pol. B – volume: 22 start-page: 2343 year: 2007 publication-title: Mod. Phys. Lett. A – volume: 23 start-page: 5181 year: 2008 publication-title: Int. J. Mod. Phys. A – volume: 18 start-page: 271 year: 2009 publication-title: Ann. Phys. (Berlin) – volume: 20 21 start-page: 4123 999 year: 2005 2006 publication-title: Int. J. Mod. Phys. A Mod. Phys. Lett. A – volume: 118 start-page: 759 year: 2007 publication-title: Prog. Theor. Phys. – volume: 76 start-page: 085022 year: 2007 publication-title: Phys. Rev. D – volume: 44 33 62 50 5 5 5 start-page: 189 173 444 318 3121 3137 3155 year: 1972 1971 1973 1972 1972 1972 1972 publication-title: Nucl. Phys. B Nucl. Phys. B Nucl. Phys. B Nucl. Phys. B Phys. Rev. D Phys. Rev. D Phys. Rev. D – volume: 70 start-page: 036003 year: 2004 publication-title: Phys. Rev. D – volume: 59 34 608 469 start-page: 82 5825 203 205 year: 1975 2003 2001 1999 publication-title: Phys. Lett. B Acta Phys. Pol. B Nucl. Phys. B Phys. Lett. B – volume: 53 start-page: 43 year: 1981 publication-title: Rev. Mod. Phys. – volume: 58 start-page: 847 year: 1987 publication-title: Phys. Rev. Lett. – volume: 58 start-page: 413 year: 1980 publication-title: Phys. Lett. B – volume: 22 start-page: 1213 year: 2007 publication-title: Int. J. Mod. Phys. A – ident: e_1_2_1_6_3 doi: 10.1142/S0217732306020457 – ident: e_1_2_1_14_2 doi: 10.1088/0305-4470/9/8/029 – ident: e_1_2_1_20_4 doi: 10.1016/S0550-3213(01)00229-2 – ident: e_1_2_1_16_2 doi: 10.1142/S0217732307024413 – ident: e_1_2_1_8_2 – ident: e_1_2_1_17_2 doi: 10.1142/S0217751X08042535 – ident: e_1_2_1_15_2 doi: 10.1142/S0217751X07035227 – ident: e_1_2_1_25_2 doi: 10.1142/1341 – ident: e_1_2_1_18_4 doi: 10.1016/0550-3213(73)90263-0 – volume: 34 start-page: 5825 year: 2003 ident: e_1_2_1_20_3 publication-title: Acta Phys. Pol. B – ident: e_1_2_1_23_2 doi: 10.1103/PhysRevD.70.036003 – ident: e_1_2_1_3_2 doi: 10.1103/PhysRevLett.58.847 – volume: 36 start-page: 881 year: 2005 ident: e_1_2_1_24_2 publication-title: Acta Phys. Pol. B – ident: e_1_2_1_9_2 – ident: e_1_2_1_10_2 – ident: e_1_2_1_18_7 doi: 10.1103/PhysRevD.5.3137 – ident: e_1_2_1_20_5 doi: 10.1016/S0370-2693(99)01242-3 – ident: e_1_2_1_18_3 doi: 10.1016/0550-3213(71)90395-6 – ident: e_1_2_1_18_6 doi: 10.1103/PhysRevD.5.3121 – ident: e_1_2_1_19_2 doi: 10.1002/andp.200910348 – ident: e_1_2_1_20_2 doi: 10.1016/0370-2693(75)90162-8 – ident: e_1_2_1_5_2 doi: 10.1088/1126-6708/2005/03/067 – ident: e_1_2_1_21_2 – ident: e_1_2_1_13_2 doi: 10.1103/RevModPhys.53.43 – ident: e_1_2_1_18_2 doi: 10.1016/0550-3213(72)90279-9 – ident: e_1_2_1_22_2 doi: 10.1103/PhysRevD.76.085022 – ident: e_1_2_1_6_2 doi: 10.1142/S0217751X05023931 – ident: e_1_2_1_2_2 doi: 10.1016/0550-3213(85)90582-6 – ident: e_1_2_1_12_2 doi: 10.1016/0370-2693(80)90961-2 – ident: e_1_2_1_11_2 doi: 10.1103/PhysRevD.17.2122 – ident: e_1_2_1_26_2 – ident: e_1_2_1_4_2 doi: 10.1103/PhysRevLett.71.3059 – ident: e_1_2_1_7_2 doi: 10.1143/PTP.118.759 – ident: e_1_2_1_18_8 doi: 10.1103/PhysRevD.5.3155 – ident: e_1_2_1_18_5 doi: 10.1016/S0550-3213(72)80021-X |
SSID | ssj0000502024 ssj0002169523 ssj0000502025 ssj0009609 |
Score | 1.81613 |
Snippet | The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102 |
SubjectTerms | High temperature Magnetic monopoles Thermodynamics |
Title | Spatial Wilson loop in continuum, deconfining SU(2) Yang‐Mills thermodynamics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fandp.201052201-210 https://www.proquest.com/docview/2671933720 |
Volume | 522 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFLUQEhIbChRESqi8YNGqDMx4xh57GZFGiEWoWiKlq5HHD4Qgk6hJFrDiE_hGvoRrzyMpSBWiS0u2R3P9Otc-91yEDjljoVU8DgQhOkhopALAcTQgPLRxGjKeGs_y7bOzQXI-pMMV1K1jYUp9iObCza0Mv1-7BS7z6clCNBQc7YmnZgGCAJeY-DirKGZOQL_7kzQXLSEFRFSFQCzKtCmTiAm6tH07CbY6zV7Mw6SKtIGKJ68_-fdptoCoy0DXn1S9D8jU_1gSVG6O57P8WN2_kH_8XyNsoo0KyuJOOfe20IopttGap5Sq6Ud04bIdw-zGpSIkvh2PJ_i6wI4cf13M56MjrJ03bn2KCvxr8IV8xb9lcfX08OgiFKfYYdPRWN8VcgQ97qBB7_vl6VlQpW8IFLg5LIgTqhKVCpbHVhJr0pBLwDewpXCdR4ZEknNlqRCpFZpqSa21CdOCUa0slyTeRavFuDB7CBueRFBHSKLBfcu1BJTEcsGJzhNhpWmhqB6GTFXa5i7Fxm1WqjKTzBkqawyVgaFa6FvTZlIqe_yzdrse3axa5dOMsBTwr8vz00LMD9Mbeso6_e4P9yYFjnDIPr234T5aL4kMjlnTRquzP3NzAPholn_28_8Zeab88w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqogouUL7Uhbb4wAEEaRPHduxj1Q8tUBYEXamcLMeOUUU3u2J3D3DqT-hv5Jcw42SzLUgIwdGS7Uhjj_3GefOGkKdKyjQ4lSeaMZ9wkbkEcJxImEpDXqRSFVVk-Q5kf8hfn4rTFXK4yIVp9CG6Bzf0jHheo4Pjg_TuUjUUIu1J5GYBhICYmGGi1Q0OiANjsIMPrHtqSQVgojYJYtkWXZtlUosrBziKsC0K7eUq5W2uDXTc_f2b1--zJUi9CnXjXXV0p-GUTKPEIVJUvuzMZ-WO-_6LAOR_m2Gd3G7RLN1rtt9dslLV98haZJW66X3yDgsewwanjSgkPR-PJ_SspsiPP6vn89FL6jEgD7FKBf04fMae00-2_vzj4hKTFKcU4elo7L_VdgQzPiDDo8OT_X7SVnBIHEQ6Msm5cNwVWpZ5sCxURaosQBw4VZQvs4plVikXhNZF0F54K0IIXHothXdBWZY_JKv1uK42CK0Uz6CPtsxDBFd6C0BJlloxX3IdbNUj2WIdjGvlzbHKxrlphJmZQUOZzlAGDNUjL7oxk0bc44-9NxfLa1pHnxomC4DAWOqnR2Rcp7-YyewNDt7jbymIhVP56F8HPiE3-ydvj83xq8Gbx-RWw2tAos0mWZ19nVdbAJdm5XZ0hp9sVQEh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRSAu5S22FPCBAwjSJo7t2MeKZVUeWipgpXKyHD9Q1W521d090FN_Ar-RX8I4ry0gIQTHSLajjD32N8433wA8kUKkwco8UZS6hPHMJojjeEJlGvIiFbLwNct3LA4m7M0RP9qAYZcL0-hD9Bdu0TPq_To6-NyFvbVoKAba85qahQgCQ2Ia86yuMIGQIkKjD7S_aUk5QqI2B2L9zPtnmgnFL-3fUYOtq7OXy5S1qTbYcO_3d_58nK0x6mWkWx9Voxvgu49sGConu6tluWvPf9F__F8r3IStFsuS_Wbx3YINX92GqzWn1C7uwPtY7hiXN2kkIcnpbDYnxxWJ7PjjarWaviAuhuOhrlFBPk6e0mfks6m-fL_4FlMUFySC0-nMfa3MFEe8C5PRq08vD5K2fkNiMc4RSc64ZbZQosyDocEXqTQIcHBPka7MPM2MlDZwpYqgHHeGhxCYcEpwZ4M0NL8Hm9Ws8veBeMkybKMMdRi_lc4gTBKlktSVTAXjB5B106BtK24ea2yc6kaWmepoKN0bSqOhBvC87zNvpD3-2Hqnm13duvlCU1EgAI6FfgYg6mn6i5H0_nh4GH9KYSSciu1_7fgYrh0OR_rd6_HbB3C9ITVEls0ObC7PVv4hYqVl-ah2hR9WMP_B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Wilson+loop+in+continuum%2C+deconfining+SU%282%29+Yang%E2%80%90Mills+thermodynamics&rft.jtitle=Annalen+der+Physik&rft.au=Ludescher%2C+J.&rft.au=Keller%2C+J.&rft.au=Giacosa%2C+F.&rft.au=Hofmann%2C+R.&rft.date=2010-02-01&rft.issn=0003-3804&rft.eissn=1521-3889&rft.volume=522&rft.issue=1-2&rft.spage=102&rft.epage=120&rft_id=info:doi/10.1002%2Fandp.201052201-210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_andp_201052201_210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3804&client=summon |