Spatial Wilson loop in continuum, deconfining SU(2) Yang‐Mills thermodynamics

The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculat...

Full description

Saved in:
Bibliographic Details
Published inAnnalen der Physik Vol. 522; no. 1-2; pp. 102 - 120
Main Authors Ludescher, J., Keller, J., Giacosa, F., Hofmann, R.
Format Journal Article
LanguageEnglish
Published Berlin WILEY‐VCH Verlag 01.02.2010
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0003-3804
1521-3889
DOI10.1002/andp.201052201-210

Cover

Abstract The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L. The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L.
AbstractList The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L. The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L.
The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L.
The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining phases is made explicit. Subsequently, the spatial string tension is computed in the approach proposed by Korthals‐Altes. This SU(2) calculation is based on a particular, effective two‐loop correction to the pressure needed for the extraction of the hypothetic number density of isolated and screened magnetic monopoles or antimonopoles in the deconfining phase. By exponentiating the exchange of the tree‐level massless but one‐loop dressed mode within a quadratic spatial contour of side‐length L in the effective theory we demonstrate that for L → ∞ the Wilson loop exhibits perimeter law. This is in contrast to a rigorous lattice result subject to the Wilson action and for this action valid at sufficiently high temperature. In the framework of the effective theory there is, however, a regime for small (spatially unresolved) L were the exponent of the spatial Wilson loop possesses curvature as a function of L.
Author Hofmann, R.
Giacosa, F.
Ludescher, J.
Keller, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Ludescher
  fullname: Ludescher, J.
– sequence: 2
  givenname: J.
  surname: Keller
  fullname: Keller, J.
– sequence: 3
  givenname: F.
  surname: Giacosa
  fullname: Giacosa, F.
– sequence: 4
  givenname: R.
  surname: Hofmann
  fullname: Hofmann, R.
  email: R.Hofmann@thphys.uni‐heidelberg.de
BookMark eNqNkMtKAzEUhoNUsNa-gKsBNwpOPUnmunBR6hWqFWoRVyHNJDVlmoyTGaQ7H8Fn9ElMqbhwIW7OBf7vHP5_H3WMNRKhQwwDDEDOuCmqAQEMMfE1JBh2UBfHBIc0y_IO6gIA9TNEe6jv3NKvEAMBEnXRZFrxRvMyeNKlsyYora0CbQJhTaNN265Og0L6RWmjzSKYzo7JSfDMzeLz_eNOl6ULmhdZr2yxNnylhTtAu4qXTva_ew_Nri4fRzfheHJ9OxqOQ4HTKAlpFItIpHkyp4oTJVPIeJLQlEJWzLEkmGeZUHGepyov4oLHSqkoKfIkLoTKOKE9dLS9W9X2tZWuYUvb1sa_ZCRJcU5pSsCrsq1K1Na5WiomdOP9enM11yXDwDYJsk2C7CdB5hP0KPmFVrVe8Xr9N3S-hd50Kdf_INjw_uKBAOQYIkjoFwqRiHs
CitedBy_id crossref_primary_10_3390_sym16121587
Cites_doi 10.1142/S0217732306020457
10.1088/0305-4470/9/8/029
10.1016/S0550-3213(01)00229-2
10.1142/S0217732307024413
10.1142/S0217751X08042535
10.1142/S0217751X07035227
10.1142/1341
10.1016/0550-3213(73)90263-0
10.1103/PhysRevD.70.036003
10.1103/PhysRevLett.58.847
10.1103/PhysRevD.5.3137
10.1016/S0370-2693(99)01242-3
10.1016/0550-3213(71)90395-6
10.1103/PhysRevD.5.3121
10.1002/andp.200910348
10.1016/0370-2693(75)90162-8
10.1088/1126-6708/2005/03/067
10.1103/RevModPhys.53.43
10.1016/0550-3213(72)90279-9
10.1103/PhysRevD.76.085022
10.1142/S0217751X05023931
10.1016/0550-3213(85)90582-6
10.1016/0370-2693(80)90961-2
10.1103/PhysRevD.17.2122
10.1103/PhysRevLett.71.3059
10.1143/PTP.118.759
10.1103/PhysRevD.5.3155
10.1016/S0550-3213(72)80021-X
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright Wiley Subscription Services, Inc. Feb 2010
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright Wiley Subscription Services, Inc. Feb 2010
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1002/andp.201052201-210
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3889
EndPage 120
ExternalDocumentID 10_1002_andp_201052201_210
ANDP200910406
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
2WC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
669
66C
692
6J9
6P2
6TJ
6TS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQ8
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGL
RIWAO
RJQFR
RNS
RNW
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WGJPS
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c1746-345c4c796b3fa2fe708a6637308db1e21a88cf5997f9d5da5fff46d965dcf8a23
IEDL.DBID DR2
ISSN 0003-3804
IngestDate Fri Jul 25 12:27:52 EDT 2025
Tue Jul 01 02:44:41 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Wed Jan 22 16:24:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1746-345c4c796b3fa2fe708a6637308db1e21a88cf5997f9d5da5fff46d965dcf8a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2671933720
PQPubID 946351
PageCount 19
ParticipantIDs proquest_journals_2671933720
crossref_citationtrail_10_1002_andp_201052201_210
crossref_primary_10_1002_andp_201052201_210
wiley_primary_10_1002_andp_201052201_210_ANDP200910406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2010
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: February 2010
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Weinheim
PublicationTitle Annalen der Physik
PublicationYear 2010
Publisher WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References 1987; 58
1980; 58
2007; 118
2004; 70
2005; 0503
2005 2006; 20 21
1972 1971 1973 1972 1972 1972 1972; 44 33 62 50 5 5 5
1993; 71
1975 2003 2001 1999; 59 34 608 469
2008; 23
1978; 17
2007; 76
2007; 22
1985; 261
1976; 9
1981; 53
2009; 18
2005; 36
e_1_2_1_18_7
e_1_2_1_18_8
e_1_2_1_18_5
e_1_2_1_18_6
Herbst U. (e_1_2_1_24_2) 2005; 36
e_1_2_1_20_4
e_1_2_1_22_2
Korthals‐Altes C.P. (e_1_2_1_20_3) 2003; 34
e_1_2_1_20_5
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_25_2
e_1_2_1_6_2
e_1_2_1_6_3
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_18_3
e_1_2_1_19_2
e_1_2_1_18_4
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 261
  start-page: 455
  year: 1985
  publication-title: Nucl. Phys. B
– volume: 17
  start-page: 2122
  year: 1978
  publication-title: Phys. Rev. D
– volume: 9
  start-page: 1387
  year: 1976
  publication-title: J. Phys. A
– volume: 71
  start-page: 3059
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 0503
  start-page: 067
  year: 2005
  publication-title: JHEP, J. High Energy Phys.
– volume: 36
  start-page: 881
  year: 2005
  publication-title: Acta Phys. Pol. B
– volume: 22
  start-page: 2343
  year: 2007
  publication-title: Mod. Phys. Lett. A
– volume: 23
  start-page: 5181
  year: 2008
  publication-title: Int. J. Mod. Phys. A
– volume: 18
  start-page: 271
  year: 2009
  publication-title: Ann. Phys. (Berlin)
– volume: 20 21
  start-page: 4123 999
  year: 2005 2006
  publication-title: Int. J. Mod. Phys. A Mod. Phys. Lett. A
– volume: 118
  start-page: 759
  year: 2007
  publication-title: Prog. Theor. Phys.
– volume: 76
  start-page: 085022
  year: 2007
  publication-title: Phys. Rev. D
– volume: 44 33 62 50 5 5 5
  start-page: 189 173 444 318 3121 3137 3155
  year: 1972 1971 1973 1972 1972 1972 1972
  publication-title: Nucl. Phys. B Nucl. Phys. B Nucl. Phys. B Nucl. Phys. B Phys. Rev. D Phys. Rev. D Phys. Rev. D
– volume: 70
  start-page: 036003
  year: 2004
  publication-title: Phys. Rev. D
– volume: 59 34 608 469
  start-page: 82 5825 203 205
  year: 1975 2003 2001 1999
  publication-title: Phys. Lett. B Acta Phys. Pol. B Nucl. Phys. B Phys. Lett. B
– volume: 53
  start-page: 43
  year: 1981
  publication-title: Rev. Mod. Phys.
– volume: 58
  start-page: 847
  year: 1987
  publication-title: Phys. Rev. Lett.
– volume: 58
  start-page: 413
  year: 1980
  publication-title: Phys. Lett. B
– volume: 22
  start-page: 1213
  year: 2007
  publication-title: Int. J. Mod. Phys. A
– ident: e_1_2_1_6_3
  doi: 10.1142/S0217732306020457
– ident: e_1_2_1_14_2
  doi: 10.1088/0305-4470/9/8/029
– ident: e_1_2_1_20_4
  doi: 10.1016/S0550-3213(01)00229-2
– ident: e_1_2_1_16_2
  doi: 10.1142/S0217732307024413
– ident: e_1_2_1_8_2
– ident: e_1_2_1_17_2
  doi: 10.1142/S0217751X08042535
– ident: e_1_2_1_15_2
  doi: 10.1142/S0217751X07035227
– ident: e_1_2_1_25_2
  doi: 10.1142/1341
– ident: e_1_2_1_18_4
  doi: 10.1016/0550-3213(73)90263-0
– volume: 34
  start-page: 5825
  year: 2003
  ident: e_1_2_1_20_3
  publication-title: Acta Phys. Pol. B
– ident: e_1_2_1_23_2
  doi: 10.1103/PhysRevD.70.036003
– ident: e_1_2_1_3_2
  doi: 10.1103/PhysRevLett.58.847
– volume: 36
  start-page: 881
  year: 2005
  ident: e_1_2_1_24_2
  publication-title: Acta Phys. Pol. B
– ident: e_1_2_1_9_2
– ident: e_1_2_1_10_2
– ident: e_1_2_1_18_7
  doi: 10.1103/PhysRevD.5.3137
– ident: e_1_2_1_20_5
  doi: 10.1016/S0370-2693(99)01242-3
– ident: e_1_2_1_18_3
  doi: 10.1016/0550-3213(71)90395-6
– ident: e_1_2_1_18_6
  doi: 10.1103/PhysRevD.5.3121
– ident: e_1_2_1_19_2
  doi: 10.1002/andp.200910348
– ident: e_1_2_1_20_2
  doi: 10.1016/0370-2693(75)90162-8
– ident: e_1_2_1_5_2
  doi: 10.1088/1126-6708/2005/03/067
– ident: e_1_2_1_21_2
– ident: e_1_2_1_13_2
  doi: 10.1103/RevModPhys.53.43
– ident: e_1_2_1_18_2
  doi: 10.1016/0550-3213(72)90279-9
– ident: e_1_2_1_22_2
  doi: 10.1103/PhysRevD.76.085022
– ident: e_1_2_1_6_2
  doi: 10.1142/S0217751X05023931
– ident: e_1_2_1_2_2
  doi: 10.1016/0550-3213(85)90582-6
– ident: e_1_2_1_12_2
  doi: 10.1016/0370-2693(80)90961-2
– ident: e_1_2_1_11_2
  doi: 10.1103/PhysRevD.17.2122
– ident: e_1_2_1_26_2
– ident: e_1_2_1_4_2
  doi: 10.1103/PhysRevLett.71.3059
– ident: e_1_2_1_7_2
  doi: 10.1143/PTP.118.759
– ident: e_1_2_1_18_8
  doi: 10.1103/PhysRevD.5.3155
– ident: e_1_2_1_18_5
  doi: 10.1016/S0550-3213(72)80021-X
SSID ssj0000502024
ssj0002169523
ssj0000502025
ssj0009609
Score 1.81613
Snippet The uniquess of the effective actions describing 4D SU(2) and SU(3) continuum, infinite‐volume Yang‐Mills thermodynamics in their deconfining and preconfining...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms High temperature
Magnetic monopoles
Thermodynamics
Title Spatial Wilson loop in continuum, deconfining SU(2) Yang‐Mills thermodynamics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fandp.201052201-210
https://www.proquest.com/docview/2671933720
Volume 522
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFLUQEhIbChRESqi8YNGqDMx4xh57GZFGiEWoWiKlq5HHD4Qgk6hJFrDiE_hGvoRrzyMpSBWiS0u2R3P9Otc-91yEDjljoVU8DgQhOkhopALAcTQgPLRxGjKeGs_y7bOzQXI-pMMV1K1jYUp9iObCza0Mv1-7BS7z6clCNBQc7YmnZgGCAJeY-DirKGZOQL_7kzQXLSEFRFSFQCzKtCmTiAm6tH07CbY6zV7Mw6SKtIGKJ68_-fdptoCoy0DXn1S9D8jU_1gSVG6O57P8WN2_kH_8XyNsoo0KyuJOOfe20IopttGap5Sq6Ud04bIdw-zGpSIkvh2PJ_i6wI4cf13M56MjrJ03bn2KCvxr8IV8xb9lcfX08OgiFKfYYdPRWN8VcgQ97qBB7_vl6VlQpW8IFLg5LIgTqhKVCpbHVhJr0pBLwDewpXCdR4ZEknNlqRCpFZpqSa21CdOCUa0slyTeRavFuDB7CBueRFBHSKLBfcu1BJTEcsGJzhNhpWmhqB6GTFXa5i7Fxm1WqjKTzBkqawyVgaFa6FvTZlIqe_yzdrse3axa5dOMsBTwr8vz00LMD9Mbeso6_e4P9yYFjnDIPr234T5aL4kMjlnTRquzP3NzAPholn_28_8Zeab88w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqogouUL7Uhbb4wAEEaRPHduxj1Q8tUBYEXamcLMeOUUU3u2J3D3DqT-hv5Jcw42SzLUgIwdGS7Uhjj_3GefOGkKdKyjQ4lSeaMZ9wkbkEcJxImEpDXqRSFVVk-Q5kf8hfn4rTFXK4yIVp9CG6Bzf0jHheo4Pjg_TuUjUUIu1J5GYBhICYmGGi1Q0OiANjsIMPrHtqSQVgojYJYtkWXZtlUosrBziKsC0K7eUq5W2uDXTc_f2b1--zJUi9CnXjXXV0p-GUTKPEIVJUvuzMZ-WO-_6LAOR_m2Gd3G7RLN1rtt9dslLV98haZJW66X3yDgsewwanjSgkPR-PJ_SspsiPP6vn89FL6jEgD7FKBf04fMae00-2_vzj4hKTFKcU4elo7L_VdgQzPiDDo8OT_X7SVnBIHEQ6Msm5cNwVWpZ5sCxURaosQBw4VZQvs4plVikXhNZF0F54K0IIXHothXdBWZY_JKv1uK42CK0Uz6CPtsxDBFd6C0BJlloxX3IdbNUj2WIdjGvlzbHKxrlphJmZQUOZzlAGDNUjL7oxk0bc44-9NxfLa1pHnxomC4DAWOqnR2Rcp7-YyewNDt7jbymIhVP56F8HPiE3-ydvj83xq8Gbx-RWw2tAos0mWZ19nVdbAJdm5XZ0hp9sVQEh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRSAu5S22FPCBAwjSJo7t2MeKZVUeWipgpXKyHD9Q1W521d090FN_Ar-RX8I4ry0gIQTHSLajjD32N8433wA8kUKkwco8UZS6hPHMJojjeEJlGvIiFbLwNct3LA4m7M0RP9qAYZcL0-hD9Bdu0TPq_To6-NyFvbVoKAba85qahQgCQ2Ia86yuMIGQIkKjD7S_aUk5QqI2B2L9zPtnmgnFL-3fUYOtq7OXy5S1qTbYcO_3d_58nK0x6mWkWx9Voxvgu49sGConu6tluWvPf9F__F8r3IStFsuS_Wbx3YINX92GqzWn1C7uwPtY7hiXN2kkIcnpbDYnxxWJ7PjjarWaviAuhuOhrlFBPk6e0mfks6m-fL_4FlMUFySC0-nMfa3MFEe8C5PRq08vD5K2fkNiMc4RSc64ZbZQosyDocEXqTQIcHBPka7MPM2MlDZwpYqgHHeGhxCYcEpwZ4M0NL8Hm9Ws8veBeMkybKMMdRi_lc4gTBKlktSVTAXjB5B106BtK24ea2yc6kaWmepoKN0bSqOhBvC87zNvpD3-2Hqnm13duvlCU1EgAI6FfgYg6mn6i5H0_nh4GH9KYSSciu1_7fgYrh0OR_rd6_HbB3C9ITVEls0ObC7PVv4hYqVl-ah2hR9WMP_B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Wilson+loop+in+continuum%2C+deconfining+SU%282%29+Yang%E2%80%90Mills+thermodynamics&rft.jtitle=Annalen+der+Physik&rft.au=Ludescher%2C+J.&rft.au=Keller%2C+J.&rft.au=Giacosa%2C+F.&rft.au=Hofmann%2C+R.&rft.date=2010-02-01&rft.issn=0003-3804&rft.eissn=1521-3889&rft.volume=522&rft.issue=1-2&rft.spage=102&rft.epage=120&rft_id=info:doi/10.1002%2Fandp.201052201-210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_andp_201052201_210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3804&client=summon