Conformation of Achiral α/β Hybrid Peptides Containing Glycine and 1‐Aminocyclohexaneacetic Acid
The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1), Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2), and Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, (P3) using X‐ray crystallography. Peptides P1 and P2 adopt C11 and C12 folded conformations, respectively. The directional...
Saved in:
Published in | ChemistrySelect (Weinheim) Vol. 7; no. 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
15.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1), Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2), and Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, (P3) using X‐ray crystallography. Peptides P1 and P2 adopt C11 and C12 folded conformations, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2. In case of tetrapeptide P3, no such hydrogen bond is observed. Further, the solvent titration experiment establishes the similar intramolecular hydrogen bonding as observed in the crystals. In P1 and P2, the amino group of β3,3‐Ac6c occupies equatorial orientations, while in the case of peptide P3, it occupies axial and equatorial orientations for residues β3,3‐Ac6c(2) and β3,3‐Ac6c(4), respectively. The average (ϕ,θ,ψ) torsional preferences of β3,3‐Ac6c in achiral α/β peptides are somewhat different from that of chiral α/β peptides.
α/β hybrid peptides Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1) and Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2) display C11 and C12 intramolecular hydrogen‐bonds, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2. No intramolecular hydrogen bond is observed in peptide Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, P3. |
---|---|
AbstractList | Abstract
The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β
3,3
‐Ac
6
c‐NHMe (
P1)
, Boc‐Gly‐β
3,3
‐Ac
6
c‐Gly‐OMe (
P2
), and Boc‐Gly‐β
3,3
‐Ac
6
c‐Gly‐β
3,3
‐Ac
6
c‐OMe, (
P3
) using X‐ray crystallography. Peptides
P1
and
P2
adopt C
11
and C
12
folded conformations, respectively. The directionality of the hydrogen bond observed in
P1
is opposite to that observed in peptide
P2
. In case of tetrapeptide
P3
, no such hydrogen bond is observed. Further, the solvent titration experiment establishes the similar intramolecular hydrogen bonding as observed in the crystals. In
P1
and
P2
, the amino group of β
3,3
‐Ac
6
c occupies equatorial orientations, while in the case of peptide
P3
, it occupies axial and equatorial orientations for residues β
3,3
‐Ac
6
c(2) and β
3,3
‐Ac
6
c(4), respectively. The average (ϕ,θ,ψ) torsional preferences of β
3,3
‐Ac
6
c in achiral α/β peptides are somewhat different from that of chiral α/β peptides. The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1), Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2), and Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, (P3) using X‐ray crystallography. Peptides P1 and P2 adopt C11 and C12 folded conformations, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2. In case of tetrapeptide P3, no such hydrogen bond is observed. Further, the solvent titration experiment establishes the similar intramolecular hydrogen bonding as observed in the crystals. In P1 and P2, the amino group of β3,3‐Ac6c occupies equatorial orientations, while in the case of peptide P3, it occupies axial and equatorial orientations for residues β3,3‐Ac6c(2) and β3,3‐Ac6c(4), respectively. The average (ϕ,θ,ψ) torsional preferences of β3,3‐Ac6c in achiral α/β peptides are somewhat different from that of chiral α/β peptides. α/β hybrid peptides Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1) and Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2) display C11 and C12 intramolecular hydrogen‐bonds, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2. No intramolecular hydrogen bond is observed in peptide Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, P3. |
Author | Singh, Umesh Prasad Jyothi, Deeti Rai, Rajkishor Rahim, Junaid ur Shankar, Sudha Pal, Purna Chandra |
Author_xml | – sequence: 1 givenname: Sudha surname: Shankar fullname: Shankar, Sudha organization: Academy of Scientific and Innovative Research (AcSIR) – sequence: 2 givenname: Deeti surname: Jyothi fullname: Jyothi, Deeti organization: CSIR-Indian Institute of Chemical Biology (CSIR-IICB) – sequence: 3 givenname: Junaid ur surname: Rahim fullname: Rahim, Junaid ur organization: Academy of Scientific and Innovative Research (AcSIR) – sequence: 4 givenname: Purna Chandra surname: Pal fullname: Pal, Purna Chandra organization: CSIR-Indian Institute of Chemical Biology (CSIR-IICB) – sequence: 5 givenname: Umesh Prasad surname: Singh fullname: Singh, Umesh Prasad email: umesh.singh@iicb.res.in organization: CSIR-Indian Institute of Chemical Biology (CSIR-IICB) – sequence: 6 givenname: Rajkishor orcidid: 0000-0003-0735-2618 surname: Rai fullname: Rai, Rajkishor email: raj@iiim.res.in organization: Academy of Scientific and Innovative Research (AcSIR) |
BookMark | eNqFkMtKAzEUhoNUsNZuXecFpk0mmUuWZdBWKChY18NpLjYyTUoyoLPzEXwVfZA-hE_ilIq6c3UOnO__4XznaOC80whdUjKhhKTT2Mh2kpKUEs4zdoKGKcuzJM-4GPzZz9A4xidCCM3LPM2KIVKVd8aHLbTWO-wNnsmNDdDg_ft0_4EX3TpYhe_0rrVKR9zTLVhn3SOeN520TmNwCtPP17fZ1jovO9n4jX4Bp0Hq1sq-z6oLdGqgiXr8PUfo4fpqVS2S5e38ppotE0kLzhLOuWBM5CmVORUZ9I8YDkIZKNZQilSxwvTnkkpRUqUZoYL0QFEAUzwTwEZocuyVwccYtKl3wW4hdDUl9UFTfdBU_2jqA-IYeLaN7v6h6_tltfrNfgEYgnA2 |
Cites_doi | 10.1021/ja060281w 10.1002/cbdv.200490087 10.1073/pnas.0407557101 10.1002/anie.200352267 10.1021/cr000045i 10.1021/ar700263g 10.1039/C4NJ02056A 10.1021/cr300454h 10.1021/ar960298r 10.1021/ja0536163 10.1039/C1CS15097A 10.1002/chem.200601562 10.1002/hlca.19980810513 10.1021/ja055799z 10.1021/ol5021866 10.1002/anie.200353249 10.1021/ja0753344 10.1039/c4ob00266k 10.1002/1522-2675(200209)85:9<2577::AID-HLCA2577>3.0.CO;2-D 10.1002/hlca.200690176 10.1002/ejoc.201300118 10.1002/hlca.201200537 10.1002/ange.200352267 10.1002/anie.200352125 10.1002/ange.201407329 10.1038/387381a0 10.1002/ange.200353249 10.1021/cr100100x 10.1021/ol102494m 10.1002/ange.200352125 10.1002/asia.201200052 10.1002/bip.20957 10.1002/chem.201700265 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/slct.202104453 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2365-6549 |
EndPage | n/a |
ExternalDocumentID | 10_1002_slct_202104453 SLCT202104453 |
Genre | article |
GrantInformation_xml | – fundername: Council of Scientific and Industrial Research (CSIR), New Delhi |
GroupedDBID | 0R~ 1OC 33P AAHHS AANLZ AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX CITATION |
ID | FETCH-LOGICAL-c1743-4449339621c6195a453f4a9dfa7ba892d37f39681c981de30190f4a77a3d459a3 |
ISSN | 2365-6549 |
IngestDate | Fri Aug 23 03:31:32 EDT 2024 Sat Aug 24 01:13:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1743-4449339621c6195a453f4a9dfa7ba892d37f39681c981de30190f4a77a3d459a3 |
ORCID | 0000-0003-0735-2618 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1002_slct_202104453 wiley_primary_10_1002_slct_202104453_SLCT202104453 |
PublicationCentury | 2000 |
PublicationDate | March 15, 2022 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: March 15, 2022 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | ChemistrySelect (Weinheim) |
PublicationYear | 2022 |
References | 2004; 101 2010; 12 2001; 101 2004 2004; 43 116 2007; 129 2015; 39 2017; 23 1998; 81 2004; 1 2007; 13 2008; 90 2012; 95 2002; 85 2006; 89 2013; 2013 2005; 127 1997; 387 2014; 16 2010; 111 2013; 114 2008; 41 2012; 7 1998; 31 2006; 128 2014; 12 2014; 126 2012; 41 e_1_2_3_1_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_4_2 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_3_2 e_1_2_3_4_1 e_1_2_3_17_2 e_1_2_3_18_1 e_1_2_3_3_1 e_1_2_3_19_1 e_1_2_3_12_1 e_1_2_3_9_1 e_1_2_3_13_1 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_30_1 e_1_2_3_10_1 e_1_2_3_11_1 e_1_2_3_27_1 e_1_2_3_28_1 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_24_1 e_1_2_3_25_1 e_1_2_3_26_1 e_1_2_3_20_1 e_1_2_3_21_1 e_1_2_3_22_1 |
References_xml | – volume: 95 start-page: 2589 year: 2012 end-page: 2603 publication-title: Helv. Chim. Acta. – volume: 90 start-page: 138 year: 2008 end-page: 150 publication-title: Biopolymers – volume: 13 start-page: 5917 year: 2007 end-page: 5926 publication-title: Chem. Eur. J. – volume: 41 start-page: 687 year: 2012 end-page: 702 publication-title: Chem. Soc. Rev. – volume: 2013 start-page: 3464 year: 2013 end-page: 3469 publication-title: Eur. J. Org. Chem. – volume: 12 start-page: 2641 year: 2014 end-page: 2644 publication-title: Org. Biomol. Chem. – volume: 114 start-page: 1116 year: 2013 end-page: 1169 publication-title: Chem. Rev. – volume: 39 start-page: 5 year: 2015 end-page: 3224 publication-title: New J. Chem. – volume: 85 start-page: 2577 year: 2002 end-page: 2593 publication-title: Helv. Chim. Acta. – volume: 101 start-page: 3219 year: 2001 end-page: 3232 publication-title: Chem. Rev. – volume: 129 start-page: 13780 year: 2007 end-page: 13781 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 13347 year: 2014 end-page: 13351 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 4614 year: 2014 end-page: 4617 publication-title: Org. Lett. – volume: 43 116 start-page: 1594 1621 year: 2004 2004 end-page: 1597 1624 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 127 start-page: 16668 year: 2005 end-page: 16674 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 13130 year: 2005 end-page: 13131 publication-title: J. Am. Chem. Soc. – volume: 43 116 start-page: 511 517 year: 2004 2004 end-page: 514 520 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 111 start-page: 657 year: 2010 end-page: 687 publication-title: Chem. Rev. – volume: 387 start-page: 381 year: 1997 end-page: 384 publication-title: Nature. – volume: 23 start-page: 8364 year: 2017 end-page: 8370 publication-title: Chem. Eur. J. – volume: 7 start-page: 1671 year: 2012 end-page: 1678 publication-title: Chem. Asian J. – volume: 41 start-page: 1366 year: 2008 end-page: 1375 publication-title: Acc. Chem. Res. – volume: 101 start-page: 16478 year: 2004 end-page: 16482 publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 173 year: 1998 end-page: 180 publication-title: Acc. Chem. Res. – volume: 43 116 start-page: 505 511 year: 2004 2004 end-page: 510 516 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 81 start-page: 932 year: 1998 end-page: 982 publication-title: Helv. Chim. Acta. – volume: 12 start-page: 5584 year: 2010 end-page: 5587 publication-title: Org. Lett. – volume: 89 start-page: 1801 year: 2006 end-page: 1825 publication-title: Helv. Chim. Acta. – volume: 128 start-page: 4538 year: 2006 end-page: 4539 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1111 year: 2004 end-page: 1239 publication-title: Chem. Biodiversity. – ident: e_1_2_3_6_1 doi: 10.1021/ja060281w – ident: e_1_2_3_1_1 doi: 10.1002/cbdv.200490087 – ident: e_1_2_3_5_1 doi: 10.1073/pnas.0407557101 – ident: e_1_2_3_4_1 doi: 10.1002/anie.200352267 – ident: e_1_2_3_16_1 doi: 10.1021/cr000045i – ident: e_1_2_3_8_1 doi: 10.1021/ar700263g – ident: e_1_2_3_23_1 doi: 10.1039/C4NJ02056A – ident: e_1_2_3_12_1 doi: 10.1021/cr300454h – ident: e_1_2_3_2_1 doi: 10.1021/ar960298r – ident: e_1_2_3_18_1 doi: 10.1021/ja0536163 – ident: e_1_2_3_14_1 doi: 10.1039/C1CS15097A – ident: e_1_2_3_27_1 doi: 10.1002/chem.200601562 – ident: e_1_2_3_10_1 doi: 10.1002/hlca.19980810513 – ident: e_1_2_3_7_1 doi: 10.1021/ja055799z – ident: e_1_2_3_26_1 doi: 10.1021/ol5021866 – ident: e_1_2_3_3_1 doi: 10.1002/anie.200353249 – ident: e_1_2_3_19_1 doi: 10.1021/ja0753344 – ident: e_1_2_3_22_1 doi: 10.1039/c4ob00266k – ident: e_1_2_3_11_1 doi: 10.1002/1522-2675(200209)85:9<2577::AID-HLCA2577>3.0.CO;2-D – ident: e_1_2_3_20_1 doi: 10.1002/hlca.200690176 – ident: e_1_2_3_21_1 doi: 10.1002/ejoc.201300118 – ident: e_1_2_3_25_1 doi: 10.1002/hlca.201200537 – ident: e_1_2_3_4_2 doi: 10.1002/ange.200352267 – ident: e_1_2_3_17_1 doi: 10.1002/anie.200352125 – ident: e_1_2_3_24_1 doi: 10.1002/ange.201407329 – ident: e_1_2_3_13_1 doi: 10.1038/387381a0 – ident: e_1_2_3_3_2 doi: 10.1002/ange.200353249 – ident: e_1_2_3_9_1 doi: 10.1021/cr100100x – ident: e_1_2_3_15_1 doi: 10.1021/ol102494m – ident: e_1_2_3_17_2 doi: 10.1002/ange.200352125 – ident: e_1_2_3_29_1 doi: 10.1002/asia.201200052 – ident: e_1_2_3_28_1 doi: 10.1002/bip.20957 – ident: e_1_2_3_30_1 doi: 10.1002/chem.201700265 |
SSID | ssj0001686257 |
Score | 2.226152 |
Snippet | The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1), Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2), and... Abstract The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β 3,3 ‐Ac 6 c‐NHMe ( P1) , Boc‐Gly‐β 3,3 ‐Ac 6 c‐Gly‐OMe ( P2 ),... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | conformation helices hybrid peptides X-ray crystallography Β-β disubstituted-β-amino acid |
Title | Conformation of Achiral α/β Hybrid Peptides Containing Glycine and 1‐Aminocyclohexaneacetic Acid |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202104453 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbtswECXcZNFugvSHJv2AiwZdGEosivotbTepEbRFADtodgIlUpBQVw4Se-GueoRcJT1IDtGTdEaUKLkQ0LQbQaIlguY8jWbIeTOEvI25F_iSxVbMU2Fx7jBLDAJlKS8MFWhDziXu6H767E3O-emFe9Hr3bSillbL-DD53skr-R-pQhvIFVmy_yBZ0yk0wDnIF44gYTjeS8ZI16vJh6VJmWQ5Eu4PxscHI1RR5QnrT9bIy-qfYQSLVGWVzqWuDNH_MF_j1nq5h2CbyIfht7xYJOtkvsiQ_wJqE7mO0H--UddzXFeLm5bVdNBa_aLyIlNYotmsMEwzUXzVcdzTlczMd-B0DSjRPHcF3Tc7TlleUbcLAaNemfDhM6HrLePMlLQIeSXaqxbg8GIInNsoN4bRdZ6r05Ueqo62Sjv7bRAOOpW-TiJ7PU8wNhZcWM51_uHN7Np_fPVMLKLO28wifD4yzz8g2wxUF-jM7eHo_eikWbdDSk2ZQNYMt84FOmBHm4PYsHXavk9pvMx2yU7lddChhtBj0lPFE_LQiO8pkW0o0UVKKyjRu9uju59UA4jWAKINgGgFIArSoPavHzfd0KEInWfk_OR4Np5YVQEOK0FHFV5dHjpO6DE7AT_bFfCXUi5CmQo_FkHIpOOn8HNgJyG4PcrBvARwg-8LR3I3FM5zslUsCvWCUGcgpABXl9k85krF4DgzqRKWxn7ggBu9R97VUxVd6jwrUbdk9ggrZ_Ivt0XTj-OZudq_d_cvyaMGr6_I1vJqpV6D3bmM31RQ-A0ahX8t |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformation+of+Achiral+%CE%B1%2F%CE%B2+Hybrid+Peptides+Containing+Glycine+and+1%E2%80%90Aminocyclohexaneacetic+Acid&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Shankar%2C+Sudha&rft.au=Jyothi%2C+Deeti&rft.au=Rahim%2C+Junaid+ur&rft.au=Pal%2C+Purna+Chandra&rft.date=2022-03-15&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=7&rft.issue=10&rft_id=info:doi/10.1002%2Fslct.202104453&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_slct_202104453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon |