Conformation of Achiral α/β Hybrid Peptides Containing Glycine and 1‐Aminocyclohexaneacetic Acid

The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1), Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2), and Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, (P3) using X‐ray crystallography. Peptides P1 and P2 adopt C11 and C12 folded conformations, respectively. The directional...

Full description

Saved in:
Bibliographic Details
Published inChemistrySelect (Weinheim) Vol. 7; no. 10
Main Authors Shankar, Sudha, Jyothi, Deeti, Rahim, Junaid ur, Pal, Purna Chandra, Singh, Umesh Prasad, Rai, Rajkishor
Format Journal Article
LanguageEnglish
Published 15.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1), Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2), and Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, (P3) using X‐ray crystallography. Peptides P1 and P2 adopt C11 and C12 folded conformations, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2. In case of tetrapeptide P3, no such hydrogen bond is observed. Further, the solvent titration experiment establishes the similar intramolecular hydrogen bonding as observed in the crystals. In P1 and P2, the amino group of β3,3‐Ac6c occupies equatorial orientations, while in the case of peptide P3, it occupies axial and equatorial orientations for residues β3,3‐Ac6c(2) and β3,3‐Ac6c(4), respectively. The average (ϕ,θ,ψ) torsional preferences of β3,3‐Ac6c in achiral α/β peptides are somewhat different from that of chiral α/β peptides. α/β hybrid peptides Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1) and Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2) display C11 and C12 intramolecular hydrogen‐bonds, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2. No intramolecular hydrogen bond is observed in peptide Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, P3.
AbstractList Abstract The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β 3,3 ‐Ac 6 c‐NHMe ( P1) , Boc‐Gly‐β 3,3 ‐Ac 6 c‐Gly‐OMe ( P2 ), and Boc‐Gly‐β 3,3 ‐Ac 6 c‐Gly‐β 3,3 ‐Ac 6 c‐OMe, ( P3 ) using X‐ray crystallography. Peptides P1 and P2 adopt C 11 and C 12 folded conformations, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2 . In case of tetrapeptide P3 , no such hydrogen bond is observed. Further, the solvent titration experiment establishes the similar intramolecular hydrogen bonding as observed in the crystals. In P1 and P2 , the amino group of β 3,3 ‐Ac 6 c occupies equatorial orientations, while in the case of peptide P3 , it occupies axial and equatorial orientations for residues β 3,3 ‐Ac 6 c(2) and β 3,3 ‐Ac 6 c(4), respectively. The average (ϕ,θ,ψ) torsional preferences of β 3,3 ‐Ac 6 c in achiral α/β peptides are somewhat different from that of chiral α/β peptides.
The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1), Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2), and Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, (P3) using X‐ray crystallography. Peptides P1 and P2 adopt C11 and C12 folded conformations, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2. In case of tetrapeptide P3, no such hydrogen bond is observed. Further, the solvent titration experiment establishes the similar intramolecular hydrogen bonding as observed in the crystals. In P1 and P2, the amino group of β3,3‐Ac6c occupies equatorial orientations, while in the case of peptide P3, it occupies axial and equatorial orientations for residues β3,3‐Ac6c(2) and β3,3‐Ac6c(4), respectively. The average (ϕ,θ,ψ) torsional preferences of β3,3‐Ac6c in achiral α/β peptides are somewhat different from that of chiral α/β peptides. α/β hybrid peptides Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1) and Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2) display C11 and C12 intramolecular hydrogen‐bonds, respectively. The directionality of the hydrogen bond observed in P1 is opposite to that observed in peptide P2. No intramolecular hydrogen bond is observed in peptide Boc‐Gly‐β3,3‐Ac6c‐Gly‐β3,3‐Ac6c‐OMe, P3.
Author Singh, Umesh Prasad
Jyothi, Deeti
Rai, Rajkishor
Rahim, Junaid ur
Shankar, Sudha
Pal, Purna Chandra
Author_xml – sequence: 1
  givenname: Sudha
  surname: Shankar
  fullname: Shankar, Sudha
  organization: Academy of Scientific and Innovative Research (AcSIR)
– sequence: 2
  givenname: Deeti
  surname: Jyothi
  fullname: Jyothi, Deeti
  organization: CSIR-Indian Institute of Chemical Biology (CSIR-IICB)
– sequence: 3
  givenname: Junaid ur
  surname: Rahim
  fullname: Rahim, Junaid ur
  organization: Academy of Scientific and Innovative Research (AcSIR)
– sequence: 4
  givenname: Purna Chandra
  surname: Pal
  fullname: Pal, Purna Chandra
  organization: CSIR-Indian Institute of Chemical Biology (CSIR-IICB)
– sequence: 5
  givenname: Umesh Prasad
  surname: Singh
  fullname: Singh, Umesh Prasad
  email: umesh.singh@iicb.res.in
  organization: CSIR-Indian Institute of Chemical Biology (CSIR-IICB)
– sequence: 6
  givenname: Rajkishor
  orcidid: 0000-0003-0735-2618
  surname: Rai
  fullname: Rai, Rajkishor
  email: raj@iiim.res.in
  organization: Academy of Scientific and Innovative Research (AcSIR)
BookMark eNqFkMtKAzEUhoNUsNZuXecFpk0mmUuWZdBWKChY18NpLjYyTUoyoLPzEXwVfZA-hE_ilIq6c3UOnO__4XznaOC80whdUjKhhKTT2Mh2kpKUEs4zdoKGKcuzJM-4GPzZz9A4xidCCM3LPM2KIVKVd8aHLbTWO-wNnsmNDdDg_ft0_4EX3TpYhe_0rrVKR9zTLVhn3SOeN520TmNwCtPP17fZ1jovO9n4jX4Bp0Hq1sq-z6oLdGqgiXr8PUfo4fpqVS2S5e38ppotE0kLzhLOuWBM5CmVORUZ9I8YDkIZKNZQilSxwvTnkkpRUqUZoYL0QFEAUzwTwEZocuyVwccYtKl3wW4hdDUl9UFTfdBU_2jqA-IYeLaN7v6h6_tltfrNfgEYgnA2
Cites_doi 10.1021/ja060281w
10.1002/cbdv.200490087
10.1073/pnas.0407557101
10.1002/anie.200352267
10.1021/cr000045i
10.1021/ar700263g
10.1039/C4NJ02056A
10.1021/cr300454h
10.1021/ar960298r
10.1021/ja0536163
10.1039/C1CS15097A
10.1002/chem.200601562
10.1002/hlca.19980810513
10.1021/ja055799z
10.1021/ol5021866
10.1002/anie.200353249
10.1021/ja0753344
10.1039/c4ob00266k
10.1002/1522-2675(200209)85:9<2577::AID-HLCA2577>3.0.CO;2-D
10.1002/hlca.200690176
10.1002/ejoc.201300118
10.1002/hlca.201200537
10.1002/ange.200352267
10.1002/anie.200352125
10.1002/ange.201407329
10.1038/387381a0
10.1002/ange.200353249
10.1021/cr100100x
10.1021/ol102494m
10.1002/ange.200352125
10.1002/asia.201200052
10.1002/bip.20957
10.1002/chem.201700265
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/slct.202104453
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2365-6549
EndPage n/a
ExternalDocumentID 10_1002_slct_202104453
SLCT202104453
Genre article
GrantInformation_xml – fundername: Council of Scientific and Industrial Research (CSIR), New Delhi
GroupedDBID 0R~
1OC
33P
AAHHS
AANLZ
AAZKR
ABCUV
ABDBF
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c1743-4449339621c6195a453f4a9dfa7ba892d37f39681c981de30190f4a77a3d459a3
ISSN 2365-6549
IngestDate Fri Aug 23 03:31:32 EDT 2024
Sat Aug 24 01:13:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1743-4449339621c6195a453f4a9dfa7ba892d37f39681c981de30190f4a77a3d459a3
ORCID 0000-0003-0735-2618
PageCount 6
ParticipantIDs crossref_primary_10_1002_slct_202104453
wiley_primary_10_1002_slct_202104453_SLCT202104453
PublicationCentury 2000
PublicationDate March 15, 2022
2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: March 15, 2022
  day: 15
PublicationDecade 2020
PublicationTitle ChemistrySelect (Weinheim)
PublicationYear 2022
References 2004; 101
2010; 12
2001; 101
2004 2004; 43 116
2007; 129
2015; 39
2017; 23
1998; 81
2004; 1
2007; 13
2008; 90
2012; 95
2002; 85
2006; 89
2013; 2013
2005; 127
1997; 387
2014; 16
2010; 111
2013; 114
2008; 41
2012; 7
1998; 31
2006; 128
2014; 12
2014; 126
2012; 41
e_1_2_3_1_1
e_1_2_3_2_1
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_4_2
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_3_2
e_1_2_3_4_1
e_1_2_3_17_2
e_1_2_3_18_1
e_1_2_3_3_1
e_1_2_3_19_1
e_1_2_3_12_1
e_1_2_3_9_1
e_1_2_3_13_1
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_30_1
e_1_2_3_10_1
e_1_2_3_11_1
e_1_2_3_27_1
e_1_2_3_28_1
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_24_1
e_1_2_3_25_1
e_1_2_3_26_1
e_1_2_3_20_1
e_1_2_3_21_1
e_1_2_3_22_1
References_xml – volume: 95
  start-page: 2589
  year: 2012
  end-page: 2603
  publication-title: Helv. Chim. Acta.
– volume: 90
  start-page: 138
  year: 2008
  end-page: 150
  publication-title: Biopolymers
– volume: 13
  start-page: 5917
  year: 2007
  end-page: 5926
  publication-title: Chem. Eur. J.
– volume: 41
  start-page: 687
  year: 2012
  end-page: 702
  publication-title: Chem. Soc. Rev.
– volume: 2013
  start-page: 3464
  year: 2013
  end-page: 3469
  publication-title: Eur. J. Org. Chem.
– volume: 12
  start-page: 2641
  year: 2014
  end-page: 2644
  publication-title: Org. Biomol. Chem.
– volume: 114
  start-page: 1116
  year: 2013
  end-page: 1169
  publication-title: Chem. Rev.
– volume: 39
  start-page: 5
  year: 2015
  end-page: 3224
  publication-title: New J. Chem.
– volume: 85
  start-page: 2577
  year: 2002
  end-page: 2593
  publication-title: Helv. Chim. Acta.
– volume: 101
  start-page: 3219
  year: 2001
  end-page: 3232
  publication-title: Chem. Rev.
– volume: 129
  start-page: 13780
  year: 2007
  end-page: 13781
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 13347
  year: 2014
  end-page: 13351
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 4614
  year: 2014
  end-page: 4617
  publication-title: Org. Lett.
– volume: 43 116
  start-page: 1594 1621
  year: 2004 2004
  end-page: 1597 1624
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 127
  start-page: 16668
  year: 2005
  end-page: 16674
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 13130
  year: 2005
  end-page: 13131
  publication-title: J. Am. Chem. Soc.
– volume: 43 116
  start-page: 511 517
  year: 2004 2004
  end-page: 514 520
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 111
  start-page: 657
  year: 2010
  end-page: 687
  publication-title: Chem. Rev.
– volume: 387
  start-page: 381
  year: 1997
  end-page: 384
  publication-title: Nature.
– volume: 23
  start-page: 8364
  year: 2017
  end-page: 8370
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 1671
  year: 2012
  end-page: 1678
  publication-title: Chem. Asian J.
– volume: 41
  start-page: 1366
  year: 2008
  end-page: 1375
  publication-title: Acc. Chem. Res.
– volume: 101
  start-page: 16478
  year: 2004
  end-page: 16482
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 173
  year: 1998
  end-page: 180
  publication-title: Acc. Chem. Res.
– volume: 43 116
  start-page: 505 511
  year: 2004 2004
  end-page: 510 516
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 81
  start-page: 932
  year: 1998
  end-page: 982
  publication-title: Helv. Chim. Acta.
– volume: 12
  start-page: 5584
  year: 2010
  end-page: 5587
  publication-title: Org. Lett.
– volume: 89
  start-page: 1801
  year: 2006
  end-page: 1825
  publication-title: Helv. Chim. Acta.
– volume: 128
  start-page: 4538
  year: 2006
  end-page: 4539
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1111
  year: 2004
  end-page: 1239
  publication-title: Chem. Biodiversity.
– ident: e_1_2_3_6_1
  doi: 10.1021/ja060281w
– ident: e_1_2_3_1_1
  doi: 10.1002/cbdv.200490087
– ident: e_1_2_3_5_1
  doi: 10.1073/pnas.0407557101
– ident: e_1_2_3_4_1
  doi: 10.1002/anie.200352267
– ident: e_1_2_3_16_1
  doi: 10.1021/cr000045i
– ident: e_1_2_3_8_1
  doi: 10.1021/ar700263g
– ident: e_1_2_3_23_1
  doi: 10.1039/C4NJ02056A
– ident: e_1_2_3_12_1
  doi: 10.1021/cr300454h
– ident: e_1_2_3_2_1
  doi: 10.1021/ar960298r
– ident: e_1_2_3_18_1
  doi: 10.1021/ja0536163
– ident: e_1_2_3_14_1
  doi: 10.1039/C1CS15097A
– ident: e_1_2_3_27_1
  doi: 10.1002/chem.200601562
– ident: e_1_2_3_10_1
  doi: 10.1002/hlca.19980810513
– ident: e_1_2_3_7_1
  doi: 10.1021/ja055799z
– ident: e_1_2_3_26_1
  doi: 10.1021/ol5021866
– ident: e_1_2_3_3_1
  doi: 10.1002/anie.200353249
– ident: e_1_2_3_19_1
  doi: 10.1021/ja0753344
– ident: e_1_2_3_22_1
  doi: 10.1039/c4ob00266k
– ident: e_1_2_3_11_1
  doi: 10.1002/1522-2675(200209)85:9<2577::AID-HLCA2577>3.0.CO;2-D
– ident: e_1_2_3_20_1
  doi: 10.1002/hlca.200690176
– ident: e_1_2_3_21_1
  doi: 10.1002/ejoc.201300118
– ident: e_1_2_3_25_1
  doi: 10.1002/hlca.201200537
– ident: e_1_2_3_4_2
  doi: 10.1002/ange.200352267
– ident: e_1_2_3_17_1
  doi: 10.1002/anie.200352125
– ident: e_1_2_3_24_1
  doi: 10.1002/ange.201407329
– ident: e_1_2_3_13_1
  doi: 10.1038/387381a0
– ident: e_1_2_3_3_2
  doi: 10.1002/ange.200353249
– ident: e_1_2_3_9_1
  doi: 10.1021/cr100100x
– ident: e_1_2_3_15_1
  doi: 10.1021/ol102494m
– ident: e_1_2_3_17_2
  doi: 10.1002/ange.200352125
– ident: e_1_2_3_29_1
  doi: 10.1002/asia.201200052
– ident: e_1_2_3_28_1
  doi: 10.1002/bip.20957
– ident: e_1_2_3_30_1
  doi: 10.1002/chem.201700265
SSID ssj0001686257
Score 2.226152
Snippet The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β3,3‐Ac6c‐NHMe (P1), Boc‐Gly‐β3,3‐Ac6c‐Gly‐OMe (P2), and...
Abstract The present work describes the conformation of achiral α/β hybrid peptides, Boc‐Gly‐β 3,3 ‐Ac 6 c‐NHMe ( P1) , Boc‐Gly‐β 3,3 ‐Ac 6 c‐Gly‐OMe ( P2 ),...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms conformation
helices
hybrid peptides
X-ray crystallography
Β-β disubstituted-β-amino acid
Title Conformation of Achiral α/β Hybrid Peptides Containing Glycine and 1‐Aminocyclohexaneacetic Acid
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202104453
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbtswECXcZNFugvSHJv2AiwZdGEosivotbTepEbRFADtodgIlUpBQVw4Se-GueoRcJT1IDtGTdEaUKLkQ0LQbQaIlguY8jWbIeTOEvI25F_iSxVbMU2Fx7jBLDAJlKS8MFWhDziXu6H767E3O-emFe9Hr3bSillbL-DD53skr-R-pQhvIFVmy_yBZ0yk0wDnIF44gYTjeS8ZI16vJh6VJmWQ5Eu4PxscHI1RR5QnrT9bIy-qfYQSLVGWVzqWuDNH_MF_j1nq5h2CbyIfht7xYJOtkvsiQ_wJqE7mO0H--UddzXFeLm5bVdNBa_aLyIlNYotmsMEwzUXzVcdzTlczMd-B0DSjRPHcF3Tc7TlleUbcLAaNemfDhM6HrLePMlLQIeSXaqxbg8GIInNsoN4bRdZ6r05Ueqo62Sjv7bRAOOpW-TiJ7PU8wNhZcWM51_uHN7Np_fPVMLKLO28wifD4yzz8g2wxUF-jM7eHo_eikWbdDSk2ZQNYMt84FOmBHm4PYsHXavk9pvMx2yU7lddChhtBj0lPFE_LQiO8pkW0o0UVKKyjRu9uju59UA4jWAKINgGgFIArSoPavHzfd0KEInWfk_OR4Np5YVQEOK0FHFV5dHjpO6DE7AT_bFfCXUi5CmQo_FkHIpOOn8HNgJyG4PcrBvARwg-8LR3I3FM5zslUsCvWCUGcgpABXl9k85krF4DgzqRKWxn7ggBu9R97VUxVd6jwrUbdk9ggrZ_Ivt0XTj-OZudq_d_cvyaMGr6_I1vJqpV6D3bmM31RQ-A0ahX8t
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformation+of+Achiral+%CE%B1%2F%CE%B2+Hybrid+Peptides+Containing+Glycine+and+1%E2%80%90Aminocyclohexaneacetic+Acid&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Shankar%2C+Sudha&rft.au=Jyothi%2C+Deeti&rft.au=Rahim%2C+Junaid+ur&rft.au=Pal%2C+Purna+Chandra&rft.date=2022-03-15&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=7&rft.issue=10&rft_id=info:doi/10.1002%2Fslct.202104453&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_slct_202104453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon