Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images

Abstract Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great interest for scientific research and various engineering, industrial, and recreational applications. To this end, numerous measurement technique...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 34; no. 5; p. 55801
Main Authors Ginio, Noam, Liberzon, Dan, Lindenbaum, Michael, Fishbain, Barak
Format Journal Article
LanguageEnglish
Published 01.05.2023
Online AccessGet full text

Cover

Loading…
Abstract Abstract Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great interest for scientific research and various engineering, industrial, and recreational applications. To this end, numerous measurement techniques have been developed over the years. None of these techniques, however, are universally applicable across various ocean and laboratory conditions and none provide near-real-time data. We utilized the latest advances in polarimetric imaging to develop a new remote sensing method based on machine learning methodology and polarimetric reflection measurements for inferring surface waves elevation and slope. The method utilizes a newly available, inexpensive polarimetric camera providing images of the water surface in a high spatio-temporal resolution at several linear polarization angles. Algorithms based on artificial neural networks ( ANN s) are then trained to obtain high-resolution reconstructions of the water surface slope state from those images. The ANN s are trained on laboratory-collected supervised datasets of prescribed mechanically generated monochromatic wave trains and tested on a stochastic wave field of JONSWAP spectral shape. The proposed method, based on inferring the surface slope from polarimetric images, provides a dense estimate of the water surface. The results of this study pave the way for the development of accurate and cost-effective near-real-time remote sensing tools for both laboratory and open sea wave measurements.
AbstractList Abstract Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great interest for scientific research and various engineering, industrial, and recreational applications. To this end, numerous measurement techniques have been developed over the years. None of these techniques, however, are universally applicable across various ocean and laboratory conditions and none provide near-real-time data. We utilized the latest advances in polarimetric imaging to develop a new remote sensing method based on machine learning methodology and polarimetric reflection measurements for inferring surface waves elevation and slope. The method utilizes a newly available, inexpensive polarimetric camera providing images of the water surface in a high spatio-temporal resolution at several linear polarization angles. Algorithms based on artificial neural networks ( ANN s) are then trained to obtain high-resolution reconstructions of the water surface slope state from those images. The ANN s are trained on laboratory-collected supervised datasets of prescribed mechanically generated monochromatic wave trains and tested on a stochastic wave field of JONSWAP spectral shape. The proposed method, based on inferring the surface slope from polarimetric images, provides a dense estimate of the water surface. The results of this study pave the way for the development of accurate and cost-effective near-real-time remote sensing tools for both laboratory and open sea wave measurements.
Author Liberzon, Dan
Ginio, Noam
Fishbain, Barak
Lindenbaum, Michael
Author_xml – sequence: 1
  givenname: Noam
  surname: Ginio
  fullname: Ginio, Noam
– sequence: 2
  givenname: Dan
  orcidid: 0000-0003-4061-8203
  surname: Liberzon
  fullname: Liberzon, Dan
– sequence: 3
  givenname: Michael
  surname: Lindenbaum
  fullname: Lindenbaum, Michael
– sequence: 4
  givenname: Barak
  surname: Fishbain
  fullname: Fishbain, Barak
BookMark eNo9kM1OwzAQhC1UJNrCnaNfINQbE6c-oqr8SJW4wDlyNuvWKLGD7YJ4e1IVcdrZ0Wg0-hZs5oMnxm5B3IFYr1cgFRSqErAy2EpqL9j835qxudBVXYhSyiu2SOlDCFELrefsc2utQ0c-88HgwXniPZnond_zgfIhdNyGyNNosgtFpmEM0fT822Sa3GO0Bmn6vijxSBh8yvGIU9RzG8PAx9Cb6Kai6JC7wewpXbNLa_pEN393yd4ft2-b52L3-vSyedgVCLXMBUgiRR3WtUIsrSw7jXYNrba6kl3ZElRQazBKoAQy96jUJAR2GrQkqeWSiXMvxpBSJNuM0xITfxoQzQlZc-LTnPg0Z2TyF_HvZV4
CitedBy_id crossref_primary_10_1063_5_0149980
crossref_primary_10_1038_s42254_023_00626_8
crossref_primary_10_1109_TCI_2024_3402347
Cites_doi 10.25607/OBP-811
10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2
10.1007/s11141-015-9586-1
10.3390/rs12050761
10.23919/OCEANS.2009.5422147
10.1080/07038992.2019.1683444
10.1103/PhysRevLett.118.144503
10.1119/1.2360991
10.1142/1232
10.1007/s42452-020-2060-5
10.1175/JTECH1729.1
10.1088/0957-0233/19/5/055503
10.1007/s00348-021-03326-0
10.1016/j.coastaleng.2018.03.004
10.1007/s10851-014-0505-4
10.1016/j.cma.2020.113350
10.1080/01431160701352154
10.1142/9789812797568_0004
10.1007/s00343-020-0157-8
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/acb3eb
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_acb3eb
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c173t-13ee6edc776cc2f32d9cf81b9f953d2be151791a60c31ea4c66c310cd9193e393
ISSN 0957-0233
IngestDate Fri Aug 23 03:25:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c173t-13ee6edc776cc2f32d9cf81b9f953d2be151791a60c31ea4c66c310cd9193e393
ORCID 0000-0003-4061-8203
ParticipantIDs crossref_primary_10_1088_1361_6501_acb3eb
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2023
References Zhang (mstacb3ebbib11) 2020; 38
Harald (mstacb3ebbib1) 2005
Hashimoto (mstacb3ebbib3) 1997; 3
James (mstacb3ebbib15) 2018; 137
Cannata (mstacb3ebbib13) 2020; 12
Donelan (mstacb3ebbib4) 1996; 26
Beale (mstacb3ebbib20) 2016
Li (mstacb3ebbib7) 2021; 62
Bourdier (mstacb3ebbib5) 2014
Toffoli (mstacb3ebbib2) 2017; 118
Salin (mstacb3ebbib12) 2015; 58
Bengio (mstacb3ebbib21) 2017; vol 1
Shao (mstacb3ebbib14) 2019; 45
Zappa (mstacb3ebbib8) 2008; 19
Hasselmann (mstacb3ebbib19) 1973; 46
Harker (mstacb3ebbib24) 2015; 51
Sun (mstacb3ebbib6) 2005; 22
Dean (mstacb3ebbib18) 1984
Caballero (mstacb3ebbib22) 2020; 2
Duan (mstacb3ebbib16) 2020; 372
Mas (mstacb3ebbib17) 2008; 29
Smith (mstacb3ebbib9) 2007; 75
Baxter (mstacb3ebbib10) 2009
Harker (mstacb3ebbib23) 2022
References_xml – start-page: 3
  year: 2005
  ident: mstacb3ebbib1
  article-title: Theory, instruments and methods of analysis
  doi: 10.25607/OBP-811
  contributor:
    fullname: Harald
– volume: 26
  start-page: 1901
  year: 1996
  ident: mstacb3ebbib4
  article-title: Nonstationary analysis of the directional properties of propagating waves
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2
  contributor:
    fullname: Donelan
– volume: 58
  start-page: 114
  year: 2015
  ident: mstacb3ebbib12
  article-title: Combined method for measuring 3D wave spectra. I. algorithms to transform the optical-brightness field into the wave-height distribution
  publication-title: Radiophys. Quantum Electron.
  doi: 10.1007/s11141-015-9586-1
  contributor:
    fullname: Salin
– volume: 12
  start-page: 761
  year: 2020
  ident: mstacb3ebbib13
  article-title: Unravelling the relationship between microseisms and spatial distribution of sea wave height by statistical and machine learning approaches
  publication-title: Remote Sens.
  doi: 10.3390/rs12050761
  contributor:
    fullname: Cannata
– year: 2016
  ident: mstacb3ebbib20
  article-title: Neural network toolbox TM reference 255
  contributor:
    fullname: Beale
– volume: vol 1
  year: 2017
  ident: mstacb3ebbib21
  contributor:
    fullname: Bengio
– year: 2022
  ident: mstacb3ebbib23
  article-title: Surface reconstruction from gradient fields: grad2Surf version 1.0
  contributor:
    fullname: Harker
– start-page: 1
  year: 2009
  ident: mstacb3ebbib10
  article-title: Polarimetric remote sensing of ocean waves
  doi: 10.23919/OCEANS.2009.5422147
  contributor:
    fullname: Baxter
– volume: 45
  start-page: 723
  year: 2019
  ident: mstacb3ebbib14
  article-title: Wave retrieval under typhoon conditions using a machine learning method applied to Gaofen-3 SAR imagery
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2019.1683444
  contributor:
    fullname: Shao
– volume: 118
  year: 2017
  ident: mstacb3ebbib2
  article-title: Wind generated rogue waves in an annular wave flume
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.144503
  contributor:
    fullname: Toffoli
– year: 2014
  ident: mstacb3ebbib5
  article-title: Non-intrusive wave field measurement
  contributor:
    fullname: Bourdier
– volume: 75
  start-page: 25
  year: 2007
  ident: mstacb3ebbib9
  article-title: The polarization of skylight: an example from nature
  publication-title: Am. J. Phys.
  doi: 10.1119/1.2360991
  contributor:
    fullname: Smith
– year: 1984
  ident: mstacb3ebbib18
  doi: 10.1142/1232
  contributor:
    fullname: Dean
– volume: 2
  start-page: 1
  year: 2020
  ident: mstacb3ebbib22
  article-title: Optimized neural networks in industrial data analysis
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2060-5
  contributor:
    fullname: Caballero
– volume: 22
  start-page: 869
  year: 2005
  ident: mstacb3ebbib6
  article-title: Measurement of directional wave spectra using aircraft laser altimeters
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH1729.1
  contributor:
    fullname: Sun
– volume: 19
  year: 2008
  ident: mstacb3ebbib8
  article-title: Retrieval of short ocean wave slope using polarimetric imaging
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/19/5/055503
  contributor:
    fullname: Zappa
– volume: 46
  start-page: 95
  year: 1973
  ident: mstacb3ebbib19
  article-title: Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP)
  publication-title: Ergnzungsheft Zur Deutschen Hydrographischen Zeitschrift Reihe A
  contributor:
    fullname: Hasselmann
– volume: 62
  start-page: 1
  year: 2021
  ident: mstacb3ebbib7
  article-title: A single-camera synthetic Schlieren method for the measurement of free liquid surfaces
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-021-03326-0
  contributor:
    fullname: Li
– volume: 137
  start-page: 1
  year: 2018
  ident: mstacb3ebbib15
  article-title: A machine learning framework to forecast wave conditions
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2018.03.004
  contributor:
    fullname: James
– volume: 51
  start-page: 46
  year: 2015
  ident: mstacb3ebbib24
  article-title: Regularized reconstruction of a surface from its measured gradient field
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-014-0505-4
  contributor:
    fullname: Harker
– volume: 372
  year: 2020
  ident: mstacb3ebbib16
  article-title: Phase-resolved wave prediction model for long-crest waves based on machine learning
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113350
  contributor:
    fullname: Duan
– volume: 29
  start-page: 617
  year: 2008
  ident: mstacb3ebbib17
  article-title: The application of artificial neural networks to the analysis of remotely sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701352154
  contributor:
    fullname: Mas
– volume: 3
  start-page: 103
  year: 1997
  ident: mstacb3ebbib3
  article-title: Analysis of the directional wave spectrum from field data
  publication-title: Adv. Coast. Ocean Eng.
  doi: 10.1142/9789812797568_0004
  contributor:
    fullname: Hashimoto
– volume: 38
  start-page: 930
  year: 2020
  ident: mstacb3ebbib11
  article-title: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China
  publication-title: J. Oceanol. Limnol.
  doi: 10.1007/s00343-020-0157-8
  contributor:
    fullname: Zhang
SSID ssj0007099
Score 2.4573553
Snippet Abstract Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great...
SourceID crossref
SourceType Aggregation Database
StartPage 55801
Title Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fTxQxEG5OjIkvBFCjgqYPPkgule12f_WRIEpMUB8g4W3Tdrtmg7cge4SEv8c_1Jm2u1TERHzZbHqXye3Od9POzDczhLxpVSKavEoY51axTPKMad4oJnWbtrkVwiqsRj78XBwcZ59O8pPZ7GfEWrpc6nfm-s66kv_RKqyBXrFK9h6anYTCAtyDfuEKGobrP-l43_V_wGz-wnEi7TgE4luYDO1IhIMjTbPQhOr7_EphY8Th8qJV8Ke-Uth31vnFUy9ZX3Ryjl5vt8CRW2beLcDwDPFR9vAmujgfi4MQR8s_gvUfu74780kitZgYQEhVufY5__cRMQjbN_Za-fHLMalf-TntWoUJ8-pCncYxizRiCE7Bx5LBujdt1pteUXAG50Ue2-YQ6Ozi7LcztDngi9-5BYDZxGjEKA33OqOF1Tcb3pjkv7UPTuxEl5evqhpl1Cij9hIekIcp9uPHMtEvX6f9vkxk6Ojonykkw0HCzvQrdryE6PATnWKO1shqcD_orsfSOpnZfoM8cjRgM2yQ9WDqB_o29CPffkJ-TDCjAWZ0hBn1MKMAM3oLZtTBjAaYUQcz-jvMKMKMxjCjHmZPyfGH_aO9AxYmdTDDS7FkXFhb2MaUJdLwW5E20rTgEMlW5qJJteXYCY6rIjECbEJmigJuEtNI8B-skOIZWenPevucUFlllbY2VUbAYdeAP60rg059U8BHbfmCbI-vsD73DVnqvyns5T2-u0kee6RidG2LrMCrsK_gvLnUr526fwG8YoY2
link.rule.ids 315,786,790,27946,27947
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+machine+learning+method+for+spatio-temporal+water+surface+waves+reconstruction+from+polarimetric+images&rft.jtitle=Measurement+science+%26+technology&rft.au=Ginio%2C+Noam&rft.au=Liberzon%2C+Dan&rft.au=Lindenbaum%2C+Michael&rft.au=Fishbain%2C+Barak&rft.date=2023-05-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=5&rft.spage=55801&rft_id=info:doi/10.1088%2F1361-6501%2Facb3eb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acb3eb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon