Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images
Abstract Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great interest for scientific research and various engineering, industrial, and recreational applications. To this end, numerous measurement technique...
Saved in:
Published in | Measurement science & technology Vol. 34; no. 5; p. 55801 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great interest for scientific research and various engineering, industrial, and recreational applications. To this end, numerous measurement techniques have been developed over the years. None of these techniques, however, are universally applicable across various ocean and laboratory conditions and none provide near-real-time data. We utilized the latest advances in polarimetric imaging to develop a new remote sensing method based on machine learning methodology and polarimetric reflection measurements for inferring surface waves elevation and slope. The method utilizes a newly available, inexpensive polarimetric camera providing images of the water surface in a high spatio-temporal resolution at several linear polarization angles. Algorithms based on artificial neural networks (
ANN
s) are then trained to obtain high-resolution reconstructions of the water surface slope state from those images. The
ANN
s are trained on laboratory-collected supervised datasets of prescribed mechanically generated monochromatic wave trains and tested on a stochastic wave field of JONSWAP spectral shape. The proposed method, based on inferring the surface slope from polarimetric images, provides a dense estimate of the water surface. The results of this study pave the way for the development of accurate and cost-effective near-real-time remote sensing tools for both laboratory and open sea wave measurements. |
---|---|
AbstractList | Abstract
Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great interest for scientific research and various engineering, industrial, and recreational applications. To this end, numerous measurement techniques have been developed over the years. None of these techniques, however, are universally applicable across various ocean and laboratory conditions and none provide near-real-time data. We utilized the latest advances in polarimetric imaging to develop a new remote sensing method based on machine learning methodology and polarimetric reflection measurements for inferring surface waves elevation and slope. The method utilizes a newly available, inexpensive polarimetric camera providing images of the water surface in a high spatio-temporal resolution at several linear polarization angles. Algorithms based on artificial neural networks (
ANN
s) are then trained to obtain high-resolution reconstructions of the water surface slope state from those images. The
ANN
s are trained on laboratory-collected supervised datasets of prescribed mechanically generated monochromatic wave trains and tested on a stochastic wave field of JONSWAP spectral shape. The proposed method, based on inferring the surface slope from polarimetric images, provides a dense estimate of the water surface. The results of this study pave the way for the development of accurate and cost-effective near-real-time remote sensing tools for both laboratory and open sea wave measurements. |
Author | Liberzon, Dan Ginio, Noam Fishbain, Barak Lindenbaum, Michael |
Author_xml | – sequence: 1 givenname: Noam surname: Ginio fullname: Ginio, Noam – sequence: 2 givenname: Dan orcidid: 0000-0003-4061-8203 surname: Liberzon fullname: Liberzon, Dan – sequence: 3 givenname: Michael surname: Lindenbaum fullname: Lindenbaum, Michael – sequence: 4 givenname: Barak surname: Fishbain fullname: Fishbain, Barak |
BookMark | eNo9kM1OwzAQhC1UJNrCnaNfINQbE6c-oqr8SJW4wDlyNuvWKLGD7YJ4e1IVcdrZ0Wg0-hZs5oMnxm5B3IFYr1cgFRSqErAy2EpqL9j835qxudBVXYhSyiu2SOlDCFELrefsc2utQ0c-88HgwXniPZnond_zgfIhdNyGyNNosgtFpmEM0fT822Sa3GO0Bmn6vijxSBh8yvGIU9RzG8PAx9Cb6Kai6JC7wewpXbNLa_pEN393yd4ft2-b52L3-vSyedgVCLXMBUgiRR3WtUIsrSw7jXYNrba6kl3ZElRQazBKoAQy96jUJAR2GrQkqeWSiXMvxpBSJNuM0xITfxoQzQlZc-LTnPg0Z2TyF_HvZV4 |
CitedBy_id | crossref_primary_10_1063_5_0149980 crossref_primary_10_1038_s42254_023_00626_8 crossref_primary_10_1109_TCI_2024_3402347 |
Cites_doi | 10.25607/OBP-811 10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2 10.1007/s11141-015-9586-1 10.3390/rs12050761 10.23919/OCEANS.2009.5422147 10.1080/07038992.2019.1683444 10.1103/PhysRevLett.118.144503 10.1119/1.2360991 10.1142/1232 10.1007/s42452-020-2060-5 10.1175/JTECH1729.1 10.1088/0957-0233/19/5/055503 10.1007/s00348-021-03326-0 10.1016/j.coastaleng.2018.03.004 10.1007/s10851-014-0505-4 10.1016/j.cma.2020.113350 10.1080/01431160701352154 10.1142/9789812797568_0004 10.1007/s00343-020-0157-8 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6501/acb3eb |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1361-6501 |
ExternalDocumentID | 10_1088_1361_6501_acb3eb |
GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
ID | FETCH-LOGICAL-c173t-13ee6edc776cc2f32d9cf81b9f953d2be151791a60c31ea4c66c310cd9193e393 |
ISSN | 0957-0233 |
IngestDate | Fri Aug 23 03:25:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c173t-13ee6edc776cc2f32d9cf81b9f953d2be151791a60c31ea4c66c310cd9193e393 |
ORCID | 0000-0003-4061-8203 |
ParticipantIDs | crossref_primary_10_1088_1361_6501_acb3eb |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Measurement science & technology |
PublicationYear | 2023 |
References | Zhang (mstacb3ebbib11) 2020; 38 Harald (mstacb3ebbib1) 2005 Hashimoto (mstacb3ebbib3) 1997; 3 James (mstacb3ebbib15) 2018; 137 Cannata (mstacb3ebbib13) 2020; 12 Donelan (mstacb3ebbib4) 1996; 26 Beale (mstacb3ebbib20) 2016 Li (mstacb3ebbib7) 2021; 62 Bourdier (mstacb3ebbib5) 2014 Toffoli (mstacb3ebbib2) 2017; 118 Salin (mstacb3ebbib12) 2015; 58 Bengio (mstacb3ebbib21) 2017; vol 1 Shao (mstacb3ebbib14) 2019; 45 Zappa (mstacb3ebbib8) 2008; 19 Hasselmann (mstacb3ebbib19) 1973; 46 Harker (mstacb3ebbib24) 2015; 51 Sun (mstacb3ebbib6) 2005; 22 Dean (mstacb3ebbib18) 1984 Caballero (mstacb3ebbib22) 2020; 2 Duan (mstacb3ebbib16) 2020; 372 Mas (mstacb3ebbib17) 2008; 29 Smith (mstacb3ebbib9) 2007; 75 Baxter (mstacb3ebbib10) 2009 Harker (mstacb3ebbib23) 2022 |
References_xml | – start-page: 3 year: 2005 ident: mstacb3ebbib1 article-title: Theory, instruments and methods of analysis doi: 10.25607/OBP-811 contributor: fullname: Harald – volume: 26 start-page: 1901 year: 1996 ident: mstacb3ebbib4 article-title: Nonstationary analysis of the directional properties of propagating waves publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2 contributor: fullname: Donelan – volume: 58 start-page: 114 year: 2015 ident: mstacb3ebbib12 article-title: Combined method for measuring 3D wave spectra. I. algorithms to transform the optical-brightness field into the wave-height distribution publication-title: Radiophys. Quantum Electron. doi: 10.1007/s11141-015-9586-1 contributor: fullname: Salin – volume: 12 start-page: 761 year: 2020 ident: mstacb3ebbib13 article-title: Unravelling the relationship between microseisms and spatial distribution of sea wave height by statistical and machine learning approaches publication-title: Remote Sens. doi: 10.3390/rs12050761 contributor: fullname: Cannata – year: 2016 ident: mstacb3ebbib20 article-title: Neural network toolbox TM reference 255 contributor: fullname: Beale – volume: vol 1 year: 2017 ident: mstacb3ebbib21 contributor: fullname: Bengio – year: 2022 ident: mstacb3ebbib23 article-title: Surface reconstruction from gradient fields: grad2Surf version 1.0 contributor: fullname: Harker – start-page: 1 year: 2009 ident: mstacb3ebbib10 article-title: Polarimetric remote sensing of ocean waves doi: 10.23919/OCEANS.2009.5422147 contributor: fullname: Baxter – volume: 45 start-page: 723 year: 2019 ident: mstacb3ebbib14 article-title: Wave retrieval under typhoon conditions using a machine learning method applied to Gaofen-3 SAR imagery publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2019.1683444 contributor: fullname: Shao – volume: 118 year: 2017 ident: mstacb3ebbib2 article-title: Wind generated rogue waves in an annular wave flume publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.144503 contributor: fullname: Toffoli – year: 2014 ident: mstacb3ebbib5 article-title: Non-intrusive wave field measurement contributor: fullname: Bourdier – volume: 75 start-page: 25 year: 2007 ident: mstacb3ebbib9 article-title: The polarization of skylight: an example from nature publication-title: Am. J. Phys. doi: 10.1119/1.2360991 contributor: fullname: Smith – year: 1984 ident: mstacb3ebbib18 doi: 10.1142/1232 contributor: fullname: Dean – volume: 2 start-page: 1 year: 2020 ident: mstacb3ebbib22 article-title: Optimized neural networks in industrial data analysis publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2060-5 contributor: fullname: Caballero – volume: 22 start-page: 869 year: 2005 ident: mstacb3ebbib6 article-title: Measurement of directional wave spectra using aircraft laser altimeters publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH1729.1 contributor: fullname: Sun – volume: 19 year: 2008 ident: mstacb3ebbib8 article-title: Retrieval of short ocean wave slope using polarimetric imaging publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/19/5/055503 contributor: fullname: Zappa – volume: 46 start-page: 95 year: 1973 ident: mstacb3ebbib19 article-title: Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP) publication-title: Ergnzungsheft Zur Deutschen Hydrographischen Zeitschrift Reihe A contributor: fullname: Hasselmann – volume: 62 start-page: 1 year: 2021 ident: mstacb3ebbib7 article-title: A single-camera synthetic Schlieren method for the measurement of free liquid surfaces publication-title: Exp. Fluids doi: 10.1007/s00348-021-03326-0 contributor: fullname: Li – volume: 137 start-page: 1 year: 2018 ident: mstacb3ebbib15 article-title: A machine learning framework to forecast wave conditions publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.03.004 contributor: fullname: James – volume: 51 start-page: 46 year: 2015 ident: mstacb3ebbib24 article-title: Regularized reconstruction of a surface from its measured gradient field publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-014-0505-4 contributor: fullname: Harker – volume: 372 year: 2020 ident: mstacb3ebbib16 article-title: Phase-resolved wave prediction model for long-crest waves based on machine learning publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113350 contributor: fullname: Duan – volume: 29 start-page: 617 year: 2008 ident: mstacb3ebbib17 article-title: The application of artificial neural networks to the analysis of remotely sensed data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701352154 contributor: fullname: Mas – volume: 3 start-page: 103 year: 1997 ident: mstacb3ebbib3 article-title: Analysis of the directional wave spectrum from field data publication-title: Adv. Coast. Ocean Eng. doi: 10.1142/9789812797568_0004 contributor: fullname: Hashimoto – volume: 38 start-page: 930 year: 2020 ident: mstacb3ebbib11 article-title: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China publication-title: J. Oceanol. Limnol. doi: 10.1007/s00343-020-0157-8 contributor: fullname: Zhang |
SSID | ssj0007099 |
Score | 2.4573553 |
Snippet | Abstract
Accurate and cost-effective sea state measurements, in terms of spatio-temporal distribution of water surface elevation (water waves), is of great... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 55801 |
Title | Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fTxQxEG5OjIkvBFCjgqYPPkgule12f_WRIEpMUB8g4W3Tdrtmg7cge4SEv8c_1Jm2u1TERHzZbHqXye3Od9POzDczhLxpVSKavEoY51axTPKMad4oJnWbtrkVwiqsRj78XBwcZ59O8pPZ7GfEWrpc6nfm-s66kv_RKqyBXrFK9h6anYTCAtyDfuEKGobrP-l43_V_wGz-wnEi7TgE4luYDO1IhIMjTbPQhOr7_EphY8Th8qJV8Ke-Uth31vnFUy9ZX3Ryjl5vt8CRW2beLcDwDPFR9vAmujgfi4MQR8s_gvUfu74780kitZgYQEhVufY5__cRMQjbN_Za-fHLMalf-TntWoUJ8-pCncYxizRiCE7Bx5LBujdt1pteUXAG50Ue2-YQ6Ozi7LcztDngi9-5BYDZxGjEKA33OqOF1Tcb3pjkv7UPTuxEl5evqhpl1Cij9hIekIcp9uPHMtEvX6f9vkxk6Ojonykkw0HCzvQrdryE6PATnWKO1shqcD_orsfSOpnZfoM8cjRgM2yQ9WDqB_o29CPffkJ-TDCjAWZ0hBn1MKMAM3oLZtTBjAaYUQcz-jvMKMKMxjCjHmZPyfGH_aO9AxYmdTDDS7FkXFhb2MaUJdLwW5E20rTgEMlW5qJJteXYCY6rIjECbEJmigJuEtNI8B-skOIZWenPevucUFlllbY2VUbAYdeAP60rg059U8BHbfmCbI-vsD73DVnqvyns5T2-u0kee6RidG2LrMCrsK_gvLnUr526fwG8YoY2 |
link.rule.ids | 315,786,790,27946,27947 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+machine+learning+method+for+spatio-temporal+water+surface+waves+reconstruction+from+polarimetric+images&rft.jtitle=Measurement+science+%26+technology&rft.au=Ginio%2C+Noam&rft.au=Liberzon%2C+Dan&rft.au=Lindenbaum%2C+Michael&rft.au=Fishbain%2C+Barak&rft.date=2023-05-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=5&rft.spage=55801&rft_id=info:doi/10.1088%2F1361-6501%2Facb3eb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acb3eb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |