Monoidal logics: completeness and classical systems

Monoidal logics were introduced as a foundational framework to analyze the proof theory of logical systems. Inspired by Lambek's seminal work in categorical logic, the objective is to define logical systems in order to make explicit their categorical (monoidal) structure. In this setting, logic...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied non-classical logics Vol. 29; no. 2; pp. 121 - 151
Main Author Peterson, Clayton
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monoidal logics were introduced as a foundational framework to analyze the proof theory of logical systems. Inspired by Lambek's seminal work in categorical logic, the objective is to define logical systems in order to make explicit their categorical (monoidal) structure. In this setting, logical connectives can be proven to be functors with specific properties. Accordingly, monoidal logics allow a classification of logical systems in function of their categorical structure and the functorial properties of their connectives. As they stand, however, strong parallels can be made between monoidal logics and the broader proof-theoretical framework of display logics. In this paper, we extend the results presented in Peterson ((2016). A comparison between monoidal and substructural logics. Journal of Applied Non-Classical Logics, 26(2), 126-159) and we show that monoidal logics are sound and complete with respect to associative display logics, thus providing a completeness result with regards to the algebraic semantics of display and substructural logics. In addition, we discuss the notions of classical and intuitionistic systems. Starting from Lambek's and Grishin's analyses, we explore the role played by partial De Morgan dualities and discuss the necessary and sufficient conditions required for the definitions of classical and intuitionistic deductive systems.
AbstractList Monoidal logics were introduced as a foundational framework to analyze the proof theory of logical systems. Inspired by Lambek's seminal work in categorical logic, the objective is to define logical systems in order to make explicit their categorical (monoidal) structure. In this setting, logical connectives can be proven to be functors with specific properties. Accordingly, monoidal logics allow a classification of logical systems in function of their categorical structure and the functorial properties of their connectives. As they stand, however, strong parallels can be made between monoidal logics and the broader proof-theoretical framework of display logics. In this paper, we extend the results presented in Peterson ((2016). A comparison between monoidal and substructural logics. Journal of Applied Non-Classical Logics, 26(2), 126-159) and we show that monoidal logics are sound and complete with respect to associative display logics, thus providing a completeness result with regards to the algebraic semantics of display and substructural logics. In addition, we discuss the notions of classical and intuitionistic systems. Starting from Lambek's and Grishin's analyses, we explore the role played by partial De Morgan dualities and discuss the necessary and sufficient conditions required for the definitions of classical and intuitionistic deductive systems.
Author Peterson, Clayton
Author_xml – sequence: 1
  givenname: Clayton
  surname: Peterson
  fullname: Peterson, Clayton
  email: clayton.peterson@outlook.com
  organization: Munich Center for Mathematical Philosophy, Ludwig-Maximilians-Universität München
BookMark eNp9j8tKAzEYhYNUsK0-gjAvMPX_J9e6Uoo3qLjRdUhzkZFMUpIB6ds7pbp1dc7iOwe-BZmlnDwh1wgrBAU3iEJQULjqANUKOZMc6RmZ45qrlksFs6lPTHuELsii1i8Azjro5oS-5pR7Z2IT82dv621j87CPfvTJ19qY5BobTa29nZB6qKMf6iU5DyZWf_WbS_Lx-PC-eW63b08vm_tta1HSsUUKxhlhhRBmxziVDAN0GIRFkFYw53bcWLBUCmBrRRWTgaJyco28k52jS8JPv7bkWosPel_6wZSDRtBHc_1nro_m-td82t2ddn0KuQzmO5fo9GgOMZdQTLJ91fT_ix9EZmBF
Cites_doi 10.1007/s11787-014-0111-7
10.1080/11663081.2016.1179528
10.1016/0304-3975(87)90045-4
10.1007/BF01703261
10.1016/j.entcs.2010.08.012
10.1002/malq.19900360405
10.1007/s00153-011-0254-7
10.4324/9780203252642
10.1016/0022-4049(95)00160-3
10.1093/logcom/exu068
10.1016/0168-0072(93)90146-5
10.1007/978-1-4612-9839-7
10.1080/00029890.1958.11989160
10.1002/malq.19900360103
10.1093/jigpal/6.3.451
10.1093/logcom/ext035
10.1007/BF00284976
10.1016/j.ic.2009.11.005
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
DBID AAYXX
CITATION
DOI 10.1080/11663081.2018.1547513
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Philosophy
EISSN 1958-5780
EndPage 151
ExternalDocumentID 10_1080_11663081_2018_1547513
1547513
Genre Articles
GrantInformation_xml – fundername: Social Sciences and Humanities Research Council of Canada
  grantid: 756-2014-0108
  funderid: 10.13039/501100000155
– fundername: Deutsche Forschungsgemeinschaft
  grantid: RO 4548/4-1
  funderid: 10.13039/501100001659
GroupedDBID .DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
8R4
8R5
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
AEGYZ
AEISY
AEOZL
AEPSL
AEYOC
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NX~
Q2X
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TTHFI
UT5
V1K
ZGOLN
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
AWYRJ
CITATION
TBQAZ
TDBHL
TUROJ
ID FETCH-LOGICAL-c173t-130ada6c666ab453741f021f6c107c64ddb5ac0c37604983847f318d7915272d3
ISSN 1166-3081
IngestDate Fri Aug 23 00:57:33 EDT 2024
Tue Jun 13 19:49:47 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c173t-130ada6c666ab453741f021f6c107c64ddb5ac0c37604983847f318d7915272d3
PageCount 31
ParticipantIDs crossref_primary_10_1080_11663081_2018_1547513
informaworld_taylorfrancis_310_1080_11663081_2018_1547513
PublicationCentury 2000
PublicationDate 4/3/2019
2019-04-03
PublicationDateYYYYMMDD 2019-04-03
PublicationDate_xml – month: 04
  year: 2019
  text: 4/3/2019
  day: 03
PublicationDecade 2010
PublicationTitle Journal of applied non-classical logics
PublicationYear 2019
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0010
CIT0021
CIT0032
Szabo M. E. (CIT0037) 1978
CIT0001
CIT0012
CIT0023
Yankov V. A. (CIT0040) 1968; 32
CIT0022
CIT0033
Greco G. (CIT0015) 2018
Buszkowski W. (CIT0006) 2006; 36
Lambek J. (CIT0026) 1986
CIT0003
CIT0036
CIT0002
CIT0013
CIT0005
CIT0004
CIT0007
CIT0028
CIT0039
CIT0009
References_xml – ident: CIT0032
  doi: 10.1007/s11787-014-0111-7
– volume-title: Introduction to higher order categorical logic
  year: 1986
  ident: CIT0026
  contributor:
    fullname: Lambek J.
– ident: CIT0033
  doi: 10.1080/11663081.2016.1179528
– ident: CIT0012
  doi: 10.1016/0304-3975(87)90045-4
– ident: CIT0023
  doi: 10.1007/BF01703261
– ident: CIT0005
  doi: 10.1016/j.entcs.2010.08.012
– volume: 32
  start-page: 1044
  issue: 5
  year: 1968
  ident: CIT0040
  publication-title: Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
  contributor:
    fullname: Yankov V. A.
– volume: 36
  start-page: 15
  issue: 1
  year: 2006
  ident: CIT0006
  publication-title: Linguistic Analysis
  contributor:
    fullname: Buszkowski W.
– ident: CIT0002
  doi: 10.1002/malq.19900360405
– ident: CIT0009
  doi: 10.1007/s00153-011-0254-7
– ident: CIT0036
  doi: 10.4324/9780203252642
– ident: CIT0007
  doi: 10.1016/0022-4049(95)00160-3
– ident: CIT0010
  doi: 10.1093/logcom/exu068
– ident: CIT0021
  doi: 10.1016/0168-0072(93)90146-5
– ident: CIT0028
  doi: 10.1007/978-1-4612-9839-7
– ident: CIT0022
  doi: 10.1080/00029890.1958.11989160
– ident: CIT0001
  doi: 10.1002/malq.19900360103
– year: 2018
  ident: CIT0015
  publication-title: Fuzzy Sets and Systems
  contributor:
    fullname: Greco G.
– ident: CIT0013
  doi: 10.1093/jigpal/6.3.451
– ident: CIT0039
  doi: 10.1093/logcom/ext035
– ident: CIT0003
  doi: 10.1007/BF00284976
– volume-title: Algebra of proofs
  year: 1978
  ident: CIT0037
  contributor:
    fullname: Szabo M. E.
– ident: CIT0004
  doi: 10.1016/j.ic.2009.11.005
SSID ssj0054202
Score 2.1877365
Snippet Monoidal logics were introduced as a foundational framework to analyze the proof theory of logical systems. Inspired by Lambek's seminal work in categorical...
SourceID crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 121
SubjectTerms De Morgan logic
display logics
intuitionistic logic
Lambek calculus
linear logic
Non-classical logics
Title Monoidal logics: completeness and classical systems
URI https://www.tandfonline.com/doi/abs/10.1080/11663081.2018.1547513
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA7aXnoRV9yZg9fUyayJt-JC8SAeWixehkwyAwVpRcZD_fW-bG1qi7hchjIlSXnfm2--pG9B6IJRLiS4AuZ5nONEMI4BZo6JpGFJRKhqpKloi4esP0zuR-nItXe32SVN2RUfa_NK_oIq3ANcVZbsL5CdTwo34DPgC1dAGK4_whgeyOlYgpE1gengNh0iroSwYjCds6bkscl99IqTr8pRbuXoZDrBizFm4gV_Nlqg69PVFz5rLKb21IDoP0DCeI7zYKWBh8eBJFPhcKaTSrcy91hKMTzcoU-c9qhi7O1fDQuSiHgvVGIqyq5wtQluVKupxVSUHVXnXHlqklO_lMG232yidgSUQluo3evfPD-5t26aRCa-1P14l61Fw8u1SyzpkKUqtZ6-GGyjLYtE0DMo76CNarKLOo-u08RsD8UO7sCgchX4YAcAdjAHLrBg76Ph3e3guo9tzwssSB43GCQFlzwTsKvkZZLGIPhqkGF1JmCfLrJEyjLlIhQqlilhNAZxUQMty5yp_sSRjA9QCxylOkSBqEqRctWJGWYJk5pliq9rwnhZZ5yyI9R1FiheTWmTgtiKsc5khTJZYU12hJhvp6LRTlQb_ynib8ce_2PsCeosXPgUtZq39-oMpGBTnlsv-AQtblaN
link.rule.ids 315,783,787,27938,27939,60220,61009
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOLALb8R49sC1o1natOGGENOAMXHYpN2qPBoJIW2IdQf49dhNK21IcOHcOm2dxHbcz58BrmSmjMWlEKqUp2FspApxmlXIbBZpZiLiSCO0xUgMJvHjNJmu1MIQrJLO0M4TRVS2mjY3JaMbSNw1Y-gn0ZcRMiuj3EiaUOPaTUFlo1TGEY0aa5zEPY87RJGQZJoqnt-GWfNPa-ylK36nvwOmeWMPN3nrLkvdNV8_yBz_90m7sF2HpcGtX0d7sFHM9qH90vQ5-DwAjrt__mrxpspaLm6CCo1OMTcaywCfHBiKxGnSA88PvTiESf9-fDcI644LoWEpp770kbJKGDzTKB0nHMMNh0GAEwZPiUbE1upEmcgQkiaWGUfX5tAo2FRSd9ye5UfQms1nxTEEptAmUdQHGEeJYicFWQvHpNJOqEx2oNvoOX_3xBo5q_lKG2XkpIy8VkYH5Ops5GWV0XC-_UjO_5Q9-YfsJWwNxs_DfPgwejqFNl6q_iZF_Axa5ceyOMegpNQX1ar7BvkT0V0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kgvTiW6zPHLymbrqbx3oTtdQHpQcL3sI-siBCW2x60F_vTJKFVtBLz8lsktnJzLebL_MBXMlMGYuhEKqUp6EwUoU4zSqMbMZ0ZBj1SCO2xTAZjMXTW-zZhPOGVklraFc3iqhyNb3cM-s8I-46irBMYikjYlZGWyNpTLq1m4gEGAU2Z0OfjGPRq2mHaBKSjf-J569hVsrTSvPSpbLT3wHtb7hmm3x0F6Xumu9fvRzXeqJd2G5AaXBbR9EebBSTfWiPvMrB1wFwfPen7xZPqnLl_CaouOiEuDFVBnjhwBAOpykP6u7Q80MY9x9e7wZho7cQmijlpErPlFWJwRWN0iLmCDYcQgCXGFwjmkRYq2NlmCEejZAZx8LmMCXYVJI2bs_yI2hNppPiGAJTaBMrUgHGUZhwMqFc4SKptEtUJjvQ9W7OZ3VbjTxqupV6Z-TkjLxxRgfk8mTkZbWf4WrxkZz_a3uyhu0lbI3u-_nL4_D5FNp4pPqUxPgZtMrPRXGOiKTUF1XM_QCp_tAT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monoidal+logics%3A+completeness+and+classical+systems&rft.jtitle=Journal+of+applied+non-classical+logics&rft.au=Peterson%2C+Clayton&rft.date=2019-04-03&rft.pub=Taylor+%26+Francis&rft.issn=1166-3081&rft.eissn=1958-5780&rft.volume=29&rft.issue=2&rft.spage=121&rft.epage=151&rft_id=info:doi/10.1080%2F11663081.2018.1547513&rft.externalDocID=1547513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1166-3081&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1166-3081&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1166-3081&client=summon