Problems for combinatorial numbers satisfying a class of triangular arrays

Numbers satisfying a class of triangular arrays, defined by a bivariate first-order linear difference equation with linear coefficients, include a wide range of combinatorial numbers: binomial coefficients, Morgan numbers, Stirling numbers of the first and the second types, non-central Stirling numb...

Full description

Saved in:
Bibliographic Details
Published inLietuvos matematikos rinkinys Vol. 64; no. B; pp. 16 - 22
Main Author Belovas, Igoris
Format Journal Article
LanguageEnglish
Published Vilniaus universiteto leidykla / Vilnius University Press 20.11.2023
Vilnius University Press
Subjects
Online AccessGet full text
ISSN0132-2818
2335-898X
DOI10.15388/LMR.2023.33577

Cover

Abstract Numbers satisfying a class of triangular arrays, defined by a bivariate first-order linear difference equation with linear coefficients, include a wide range of combinatorial numbers: binomial coefficients, Morgan numbers, Stirling numbers of the first and the second types, non-central Stirling numbers, Eulerian numbers, Lah numbers, and their generalizations. In this work, we derive the general analytic expression of the numbers satisfying a class of triangular arrays and propose problems (both teaching and unsolved ones) for undergraduates studying probability theory and analytical combinatorics subjects in the study programs of the fields of mathematics and computer science. Some of the unsolved challenges can also be used as the basis for a thesis.
AbstractList Numbers satisfying a class of triangular arrays, defined by a bivariate first-order linear difference equation with linear coefficients, include a wide range of combinatorial numbers: binomial coefficients, Morgan numbers, Stirling numbers of the first and the second types, non-central Stirling numbers, Eulerian numbers, Lah numbers, and their generalizations. In this work, we derive the general analytic expression of the numbers satisfying a class of triangular arrays and propose problems (both teaching and unsolved ones) for undergraduates studying probability theory and analytical combinatorics subjects in the study programs of the fields of mathematics and computer science. Some of the unsolved challenges can also be used as the basis for a thesis.
Numbers satisfying a class of triangular arrays, defined by a bivariate first-order linear difference equation with linear coefficients, include a wide range of combinatorial numbers: binomial coefficients, Morgan numbers, Stirling numbers of the first and the second types, non-central Stirling numbers, Eulerian numbers, Lah numbers, and their generalizations. In this work, we derive the general analytic expression of the numbers satisfying a class of triangular arrays and propose problems (both teaching and unsolved ones) for undergraduates studying probability theory and analytical combinatorics subjects in the study programs of the fields of mathematics and computer science. Some of the unsolved challenges can also be used as the basis for a thesis. Trikampių masyvų klasės skaičiai, apibrėžiami pirmosios eilės tiesine dviejų kintamųjų skirtumine lygtimi su tiesiniais koeficientais, apima platų  kombinatorinių skaičių šeimų spektrą: binominius koeficientus, Morgano skaičius, Stirlingo pirmosios ir antrosios rūšių skaičius, necentrinius Stirlingo skaičius, Eulerio skaičius, Laho skaičius, ir jų apibendrinimus. Darbe yra išvedama trikampių masyvų klasės skaičių bendroji analizinė išraiška, bei siūlomos problemos (kaip lavinančios atitinkamą įrodymų techniką ir matematinį aparatą, taip ir dar neišspręstos) studijuojantiems matematikos ir informatikos krypčių studijų programose esančius tikimybių teorijos ir analizinės kombinatorikos dalykus bakalaurams. Kai kurie dar neišspręsti uždaviniai gali būti panaudoti ir kaip baigiamųjų darbų pagrindai.
Author Belovas, Igoris
Author_xml – sequence: 1
  givenname: Igoris
  surname: Belovas
  fullname: Belovas, Igoris
  organization: Vilnius University
BookMark eNo9kFtLAzEQhYNUsGqffY0_YGsum03yKMVLpaKIgm9hcitbtpuStEL_vWsrfZphOOfMzHeJRn3qA0I3lEyp4ErdLV4_powwPuVcSHmGxmxoKqXV9wiNCeWsYoqqCzQpZUUIYVIxofUYvbznZLuwLjimjF1a27aHbcotdLjfrW3IBRfYtiXu236JAbsOSsEp4u2g6Ze7DjKGnGFfrtF5hK6EyX-9Ql-PD5-z52rx9jSf3S8qRyWXlY_c0eBlqCmPzFpLIdSgvFde6-C9aCjVTQy6sY0UjijhGHjiGi1Z40DyKzQ_5voEK7PJ7Rry3iRozWGQ8tJA3rauC0YLp7gESwRhtYtC26A017wWfrihhiHr7pjlciolh3jKo8QcyJqBrPkjaw5kB8ft0fGz25hV2uV--PW08Kj5BRplelA
ContentType Journal Article
DBID ACQDZ
AAYXX
CITATION
DOA
DOI 10.15388/LMR.2023.33577
DatabaseName Vilnius University Press Open Access Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Trikampių masyvų klasės skaičių problemos
EISSN 2335-898X
EndPage 22
ExternalDocumentID oai_doaj_org_article_95c837ab05024cf59be8939345dc1e4a
10_15388_LMR_2023_33577
oai:ojs.www4063.vu.lt:article/33577
GroupedDBID -W8
AAHSB
ACQDZ
ALMA_UNASSIGNED_HOLDINGS
EN8
GROUPED_DOAJ
P2P
AAYXX
CITATION
ID FETCH-LOGICAL-c1737-df3c1ed7e413f2bbb1ae4a8dd8d99edd561196fe96b675c085c2ad0c69726ca73
IEDL.DBID DOA
ISSN 0132-2818
IngestDate Wed Aug 27 01:27:52 EDT 2025
Tue Jul 01 04:13:18 EDT 2025
Sat Sep 06 04:24:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue B
Keywords asymptotic normality
asimptotinis normalumas
ribinės teoremos
combinatorial numbers
limit theorems
kombinatoriniai skaičiai
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1737-df3c1ed7e413f2bbb1ae4a8dd8d99edd561196fe96b675c085c2ad0c69726ca73
OpenAccessLink https://doaj.org/article/95c837ab05024cf59be8939345dc1e4a
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_95c837ab05024cf59be8939345dc1e4a
crossref_primary_10_15388_LMR_2023_33577
vup_journals_article_33577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231120
PublicationDateYYYYMMDD 2023-11-20
PublicationDate_xml – month: 11
  year: 2023
  text: 20231120
  day: 20
PublicationDecade 2020
PublicationTitle Lietuvos matematikos rinkinys
PublicationTitleAbbrev lmr
PublicationYear 2023
Publisher Vilniaus universiteto leidykla / Vilnius University Press
Vilnius University Press
Publisher_xml – name: Vilniaus universiteto leidykla / Vilnius University Press
– name: Vilnius University Press
SSID ssj0002782599
Score 2.2386086
Snippet Numbers satisfying a class of triangular arrays, defined by a bivariate first-order linear difference equation with linear coefficients, include a wide range...
SourceID doaj
crossref
vup
SourceType Open Website
Index Database
Publisher
StartPage 16
SubjectTerms asymptotic normality
combinatorial numbers
limit theorems
Title Problems for combinatorial numbers satisfying a class of triangular arrays
URI https://www.journals.vu.lt/LMR/article/view/33577
https://doaj.org/article/95c837ab05024cf59be8939345dc1e4a
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwFLRQJxgQn6LlQx4YWNImcZzEIyCqqqIIISp1s_w5MKRV0iLx73nPCVWZWFijRHbOtt6dkndHyK0XGbc6KSPty2CqnUfKJRqkirYWP-dyjv3Os5d8Ms-mC77YifrCf8Jae-AWuJHgBjSU0jGHamI8F9pBiRUMhjCJywI1ikW8I6Y-2s9pwOsD9wW5FaHlUefrAwe8HD3P3oaYGz5kjBfFr5IUnPuh0HxuVjuFZnxEDjuGSO_bmR2TPVedkIPZ1l61OSXT1zYGpqFAOSnsGZC3KJ5hL9E24qOhTWhbwCYmqqhBjkyXnmJIR4Xp8zVVda2-mjMyHz-9P06iLhQhMknBish6Bu9tCwfVx6da60QBCqW1pRXCWQt8CA6VdyLXoAUMgG1SZWOTiyLNjSrYOelVy8pdEKoyZxhnNubegvBRIlU6Q8-5RMfe8bhP7n5wkavW-0KiZkAIJUAoEUIZIOyTB8RtexuaVocLsJSyW0r511L2yQBQl90harbPhREG_zHCJdnHOWMvYRpfkd663rhrIBVrfRP2zzf0scfC
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Problems+for+combinatorial+numbers+satisfying+a+class+of+triangular+arrays&rft.jtitle=Lietuvos+matematikos+rinkinys&rft.au=Belovas%2C+Igoris&rft.date=2023-11-20&rft.issn=0132-2818&rft.eissn=2335-898X&rft.volume=64&rft.spage=16&rft.epage=22&rft_id=info:doi/10.15388%2FLMR.2023.33577&rft.externalDBID=n%2Fa&rft.externalDocID=10_15388_LMR_2023_33577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0132-2818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0132-2818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0132-2818&client=summon