Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general...
Saved in:
Published in | Microbiological reviews Vol. 57; no. 3; pp. 543 - 594 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.09.1993
|
Online Access | Get full text |
Cover
Loading…
Abstract | Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function. |
---|---|
AbstractList | Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function. Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function. |
Author | Postma, P W Jacobson, G R Lengeler, J W |
Author_xml | – sequence: 1 givenname: P W surname: Postma fullname: Postma, P W organization: E. C. Slater Institute, University of Amsterdam, The Netherlands – sequence: 2 givenname: J W surname: Lengeler fullname: Lengeler, J W organization: E. C. Slater Institute, University of Amsterdam, The Netherlands – sequence: 3 givenname: G R surname: Jacobson fullname: Jacobson, G R organization: E. C. Slater Institute, University of Amsterdam, The Netherlands |
BookMark | eNp9kDtPwzAURj0UibbwDxgysSX4GcfdUMVLqgQDzNZ1cq0GJXGwU6T-e1KViYHp6krnfMNZkcUQBiTkhtGCMV7d9bFQuhCFkiJXRhbMGLEgS8pkmVMtzSVZpfRJKTeq5Evy9LYPadwHHEI3HuPhGybc1BBd2B-bOD_ZeAamCEPyGCFhlo5pwj5lwWcO6gljC1fkwkOX8Pr3rsnH48P79jnfvT69bO93ec20EDmAZ04rx6tGeqUb2jhU6LWunDHcK--w0t414IzgXNNGggHnSldV3FGFYk1uz7tjDF8HTJPt21Rj18GA4ZCsLmklBJczKM9gHUNKEb0dY9tDPFpG7amU7aNV2go7l7JzKXsqNWubP1rdTjC1YZgDtN3_8g85s3cA |
CitedBy_id | crossref_primary_10_1128_jb_178_20_6082_6086_1996 crossref_primary_10_1186_1471_2180_5_42 crossref_primary_10_1074_jbc_270_6_2489 crossref_primary_10_1074_jbc_M513614200 crossref_primary_10_1016_j_ifset_2021_102838 crossref_primary_10_1074_jbc_271_25_14819 crossref_primary_10_1128_jb_179_21_6657_6664_1997 crossref_primary_10_1128_jb_176_9_2694_2698_1994 crossref_primary_10_1128_JB_186_8_2385_2392_2004 crossref_primary_10_1128_jb_176_23_7378_7382_1994 crossref_primary_10_1074_jbc_271_52_33468 crossref_primary_10_1111_j_1471_0307_2010_00563_x crossref_primary_10_1111_j_1432_1033_1995_tb20325_x crossref_primary_10_1074_jbc_M501986200 crossref_primary_10_1038_srep13853 crossref_primary_10_1146_annurev_cellbio_100617_062818 crossref_primary_10_3389_fcimb_2022_746746 crossref_primary_10_1074_jbc_274_10_6091 crossref_primary_10_1128_spectrum_00485_24 crossref_primary_10_1016_j_ijbiomac_2020_10_233 crossref_primary_10_1073_pnas_1316629111 crossref_primary_10_1186_1475_2859_11_120 crossref_primary_10_1042_BJ20051183 crossref_primary_10_1111_j_1432_1033_1995_0798m_x crossref_primary_10_1007_s12602_024_10409_x crossref_primary_10_1111_j_1365_2958_2008_06403_x crossref_primary_10_1146_annurev_biochem_69_1_183 crossref_primary_10_1016_j_jbiosc_2011_09_014 crossref_primary_10_1074_jbc_271_52_33457 crossref_primary_10_1128_JB_01235_07 crossref_primary_10_1186_1475_2859_11_127 crossref_primary_10_1046_j_1365_2958_1998_00883_x crossref_primary_10_1186_1471_2180_13_94 crossref_primary_10_1111_j_1574_6968_2000_tb08947_x crossref_primary_10_1128_jb_179_16_5171_5177_1997 crossref_primary_10_1101_gr_9_12_1189 crossref_primary_10_1046_j_1432_1327_1999_00727_x crossref_primary_10_1073_pnas_2100298118 crossref_primary_10_1074_jbc_271_52_33440 crossref_primary_10_1128_JB_01624_09 crossref_primary_10_1074_jbc_271_52_33446 crossref_primary_10_3390_cancers12040850 crossref_primary_10_1016_j_ijhydene_2025_01_088 crossref_primary_10_1038_ismej_2017_142 crossref_primary_10_1038_s41467_019_13353_5 crossref_primary_10_1074_jbc_M509977200 crossref_primary_10_1111_mmi_13159 crossref_primary_10_1016_S0021_9258_17_37610_X crossref_primary_10_1016_j_yjsbx_2025_100124 crossref_primary_10_1074_jbc_M507417200 crossref_primary_10_1093_jambio_lxad077 crossref_primary_10_1073_pnas_94_24_12914 crossref_primary_10_1139_o06_182 crossref_primary_10_1046_j_1432_1327_2001_01878_x crossref_primary_10_1128_JB_185_14_4003_4010_2003 crossref_primary_10_1021_acs_jcim_1c00413 crossref_primary_10_1126_science_1226683 crossref_primary_10_1073_pnas_1412431111 crossref_primary_10_1002_bit_27004 crossref_primary_10_1128_JB_00219_06 crossref_primary_10_1016_j_bbrc_2021_11_072 crossref_primary_10_3390_biom13010160 crossref_primary_10_1046_j_1365_2958_1998_01123_x crossref_primary_10_1111_mmi_12171 crossref_primary_10_1002_jobm_201900599 crossref_primary_10_1128_JB_185_23_6809_6814_2003 crossref_primary_10_3390_jof8010067 crossref_primary_10_3390_fermentation7040216 crossref_primary_10_1016_j_febslet_2012_04_020 crossref_primary_10_1038_ncomms14316 crossref_primary_10_1073_pnas_1423570112 crossref_primary_10_3390_fermentation9050478 crossref_primary_10_1128_msphere_00772_24 crossref_primary_10_1016_j_bbrc_2008_03_145 crossref_primary_10_1002_pro_5560050825 crossref_primary_10_1111_febs_14283 crossref_primary_10_1099_mgen_0_000927 crossref_primary_10_1111_j_1432_1033_1995_116_1_x crossref_primary_10_1128_ecosalplus_3_4_1 crossref_primary_10_3389_fcimb_2021_783323 crossref_primary_10_3390_microorganisms9081591 crossref_primary_10_1074_jbc_M209052200 crossref_primary_10_1110_ps_041232805 crossref_primary_10_1111_j_1365_2958_2006_05328_x crossref_primary_10_1038_ki_1995_374 crossref_primary_10_1128_jb_178_12_3557_3563_1996 crossref_primary_10_1046_j_1365_2958_1998_00839_x crossref_primary_10_1016_j_ymben_2007_10_003 crossref_primary_10_1046_j_1365_2958_1998_00771_x crossref_primary_10_1021_bi962924y crossref_primary_10_1128_JB_185_7_2243_2250_2003 crossref_primary_10_1016_0923_2508_96_84007_1 crossref_primary_10_1016_j_bbamem_2020_183412 crossref_primary_10_1186_1475_2859_12_72 crossref_primary_10_1101_gr_3069205 crossref_primary_10_1111_mmi_14067 crossref_primary_10_1128_JB_00599_17 crossref_primary_10_1046_j_1365_2958_2002_02800_x crossref_primary_10_1085_jgp_201912377 crossref_primary_10_1128_aem_00828_24 crossref_primary_10_1074_jbc_M112_371492 crossref_primary_10_1046_j_1365_2443_2000_00322_x crossref_primary_10_1021_jp801319k crossref_primary_10_1016_S0300_9084_03_00134_2 crossref_primary_10_1074_jbc_M001041200 crossref_primary_10_1016_j_cell_2004_08_027 crossref_primary_10_1074_jbc_M410896200 crossref_primary_10_1046_j_1365_2958_1998_00685_x crossref_primary_10_1074_jbc_272_42_26511 crossref_primary_10_3390_microorganisms7020052 crossref_primary_10_1074_jbc_M104139200 crossref_primary_10_1111_mmi_13087 crossref_primary_10_2139_ssrn_4192544 crossref_primary_10_1038_s41598_017_18704_0 crossref_primary_10_1128_JB_01478_06 crossref_primary_10_1002_bit_26217 crossref_primary_10_1111_j_1365_2958_1995_tb02280_x crossref_primary_10_1046_j_1344_3941_2002_00044_x crossref_primary_10_1016_j_jbiotec_2017_04_011 crossref_primary_10_1021_bi961813w crossref_primary_10_1016_0923_2508_96_80558_4 crossref_primary_10_1021_bp070213t crossref_primary_10_1128_jb_177_23_6919_6927_1995 crossref_primary_10_3390_ijms221910805 crossref_primary_10_3389_fmicb_2021_775164 crossref_primary_10_1016_0923_2508_96_84008_3 crossref_primary_10_1186_s12934_014_0126_z crossref_primary_10_1016_S0923_2508_02_01339_6 crossref_primary_10_1002_prot_23177 crossref_primary_10_1111_j_1432_1033_1997_0306a_x crossref_primary_10_1007_s00284_022_02844_2 crossref_primary_10_1128_JB_00554_07 crossref_primary_10_1016_S1389_1723_01_80042_6 crossref_primary_10_1074_jbc_270_10_5258 crossref_primary_10_1016_j_resmic_2018_10_002 crossref_primary_10_1002_biot_200800296 crossref_primary_10_1074_jbc_M501617200 crossref_primary_10_1111_j_1365_2958_2007_05737_x crossref_primary_10_1074_jbc_274_36_25398 crossref_primary_10_1021_bi027182p crossref_primary_10_1038_srep33055 crossref_primary_10_1111_j_1365_2958_1995_tb02336_x crossref_primary_10_1128_JB_185_23_7019_7023_2003 crossref_primary_10_1128_JB_187_1_125_134_2005 crossref_primary_10_3389_fenvs_2022_855224 crossref_primary_10_3389_fmicb_2021_754464 crossref_primary_10_1111_j_1365_2958_2008_06504_x crossref_primary_10_1111_j_1432_1033_2004_4142_x crossref_primary_10_1111_j_1432_1033_2004_04447_x crossref_primary_10_1074_jbc_270_9_4822 crossref_primary_10_1186_s13068_022_02219_6 crossref_primary_10_1128_JB_02002_07 crossref_primary_10_1021_ja507614f crossref_primary_10_1021_bi060278p crossref_primary_10_1074_jbc_M807856200 crossref_primary_10_1128_spectrum_02101_22 crossref_primary_10_1038_s41368_021_00137_1 crossref_primary_10_1111_mmi_13691 crossref_primary_10_1128_JB_186_24_8453_8462_2004 crossref_primary_10_1016_j_procbio_2023_06_024 crossref_primary_10_1039_C6CC07522C crossref_primary_10_3390_fermentation9030205 crossref_primary_10_1128_JB_186_17_5906_5918_2004 crossref_primary_10_1016_0923_2508_96_84005_8 crossref_primary_10_1134_S0003683821030091 crossref_primary_10_1007_BF03218953 crossref_primary_10_1128_jb_177_19_5590_5597_1995 crossref_primary_10_1111_j_1365_2958_2011_07857_x crossref_primary_10_1128_JB_184_17_4819_4828_2002 crossref_primary_10_1007_s11274_023_03866_z crossref_primary_10_1016_S0021_9258_17_32389_X crossref_primary_10_1128_JB_01123_10 crossref_primary_10_1016_j_heliyon_2025_e42979 crossref_primary_10_1074_jbc_274_37_26185 crossref_primary_10_1046_j_1365_2958_1998_00781_x crossref_primary_10_1128_JB_185_6_1776_1782_2003 crossref_primary_10_3390_genes8010011 crossref_primary_10_1074_jbc_M508965200 crossref_primary_10_1111_1758_2229_12323 crossref_primary_10_1111_j_1432_1033_1995_tb20548_x crossref_primary_10_1046_j_1365_2958_2001_02608_x crossref_primary_10_1074_jbc_RA120_015121 crossref_primary_10_1128_JB_185_3_929_937_2003 crossref_primary_10_1038_srep13200 crossref_primary_10_1128_jb_177_19_5719_5722_1995 crossref_primary_10_1046_j_1365_2958_1999_01146_x crossref_primary_10_1016_j_cyto_2021_155424 crossref_primary_10_1016_S0923_2508_98_80024_7 crossref_primary_10_1111_mmi_13329 crossref_primary_10_1038_srep43431 crossref_primary_10_1042_BST0330220 crossref_primary_10_1074_jbc_M106504200 crossref_primary_10_1074_jbc_270_49_29096 crossref_primary_10_1002_jobm_200410403 crossref_primary_10_3390_foods10010097 crossref_primary_10_3390_microorganisms10122454 crossref_primary_10_1016_j_micpath_2024_106918 crossref_primary_10_1073_pnas_1500891112 crossref_primary_10_1128_JB_01737_07 crossref_primary_10_1128_JB_186_9_2708_2716_2004 crossref_primary_10_3390_ijms221810003 crossref_primary_10_1073_pnas_0407865101 crossref_primary_10_1021_bi9717946 crossref_primary_10_1046_j_1432_1033_2003_03507_x crossref_primary_10_1093_bbb_zbab147 crossref_primary_10_1128_JB_01037_08 crossref_primary_10_1021_acs_biochem_5b01286 crossref_primary_10_1128_JB_00101_06 crossref_primary_10_1128_jb_177_14_4043_4052_1995 crossref_primary_10_1529_biophysj_105_076935 crossref_primary_10_1111_j_1365_2958_2004_04321_x crossref_primary_10_1074_jbc_272_42_26530 crossref_primary_10_1038_s41598_018_35236_3 crossref_primary_10_1074_jbc_M603062200 crossref_primary_10_1016_j_job_2024_01_003 crossref_primary_10_1093_nargab_lqad029 crossref_primary_10_1038_s41522_023_00397_1 crossref_primary_10_1111_j_1365_2958_2004_04200_x crossref_primary_10_1046_j_1432_1033_2003_03594_x crossref_primary_10_1016_S0006_3495_03_74517_2 crossref_primary_10_1046_j_1365_2443_1999_00268_x crossref_primary_10_1186_1475_2859_11_77 crossref_primary_10_1016_S0923_2508_96_90150_3 crossref_primary_10_7554_eLife_92462_3 crossref_primary_10_1038_s41579_022_00818_6 crossref_primary_10_1002_pro_5560050305 crossref_primary_10_1074_jbc_M113_454751 crossref_primary_10_1128_JB_187_3_890_901_2005 crossref_primary_10_1038_s41467_019_09261_3 crossref_primary_10_1042_BST20130071 crossref_primary_10_1074_jbc_M101982200 crossref_primary_10_1128_JB_184_19_5307_5316_2002 crossref_primary_10_1074_jbc_M115_671826 crossref_primary_10_1016_S0021_9258_17_31986_5 crossref_primary_10_1128_JB_00375_21 crossref_primary_10_1074_mcp_M600464_MCP200 crossref_primary_10_1128_JB_00679_07 crossref_primary_10_1074_jbc_RA119_009930 crossref_primary_10_3390_ijms21051667 crossref_primary_10_1111_j_1365_2958_2005_04834_x crossref_primary_10_1046_j_1432_1033_2002_02864_x crossref_primary_10_1016_j_jfp_2024_100401 crossref_primary_10_3389_fonc_2024_1411983 crossref_primary_10_1046_j_0902_0055_2001_00087_x crossref_primary_10_1002_pro_5560061006 crossref_primary_10_1016_j_jbiotec_2011_12_009 crossref_primary_10_1128_JB_186_5_1448_1461_2004 crossref_primary_10_3390_bioengineering5010001 crossref_primary_10_1021_jf400792j crossref_primary_10_1111_j_1432_1033_1994_tb18576_x crossref_primary_10_1111_j_1365_2958_2006_05359_x crossref_primary_10_1128_JB_182_7_1895_1902_2000 crossref_primary_10_1016_j_ijfoodmicro_2021_109335 crossref_primary_10_1074_jbc_274_8_4754 crossref_primary_10_1016_S1389_1723_02_80103_7 crossref_primary_10_1046_j_1462_2920_2001_00231_x crossref_primary_10_1021_acssuschemeng_4c10295 crossref_primary_10_1074_jbc_275_10_7037 crossref_primary_10_1111_j_2041_1014_2011_00627_x crossref_primary_10_1021_bi011590w crossref_primary_10_1074_jbc_272_27_17230 crossref_primary_10_3390_microorganisms9030466 crossref_primary_10_3390_molecules27248941 crossref_primary_10_1074_jbc_273_40_25745 crossref_primary_10_1016_j_micres_2012_03_004 crossref_primary_10_1002_pmic_200800655 crossref_primary_10_1074_jbc_M513721200 crossref_primary_10_1016_0923_2508_94_90081_7 crossref_primary_10_1111_mmi_13230 crossref_primary_10_1111_j_1365_2958_1994_tb00501_x crossref_primary_10_1128_jb_177_10_2751_2759_1995 crossref_primary_10_1128_jb_176_17_5304_5311_1994 crossref_primary_10_1016_j_jenvman_2023_117493 crossref_primary_10_1021_acsinfecdis_4c00167 crossref_primary_10_1038_s41598_019_50249_2 crossref_primary_10_1186_1475_2859_8_19 crossref_primary_10_1021_bi963053v crossref_primary_10_1177_11779322211063993 crossref_primary_10_1128_JB_01214_10 crossref_primary_10_1128_JB_186_22_7593_7600_2004 crossref_primary_10_1073_pnas_94_25_13515 crossref_primary_10_1128_JB_01761_06 crossref_primary_10_1016_j_fbio_2024_104811 crossref_primary_10_1111_j_1365_2958_2006_05543_x crossref_primary_10_1128_JB_01237_07 crossref_primary_10_1016_S0923_2508_99_80033_3 crossref_primary_10_1021_bi952567b crossref_primary_10_1126_science_1258849 crossref_primary_10_1016_0923_2508_96_84015_0 crossref_primary_10_1002_bit_260470204 crossref_primary_10_1074_jbc_M508090200 crossref_primary_10_1038_ismej_2008_24 crossref_primary_10_1128_JB_180_17_4475_4480_1998 crossref_primary_10_1002_prot_10156 crossref_primary_10_1021_bi960863y crossref_primary_10_1111_mmi_13464 crossref_primary_10_1074_jbc_M110_122523 crossref_primary_10_1002__SICI_1097_0134_199611_26_3_314__AID_PROT7_3_0_CO_2_D crossref_primary_10_1128_jb_179_4_1298_1306_1997 crossref_primary_10_1007_s43393_022_00136_1 crossref_primary_10_1016_j_biortech_2009_07_035 crossref_primary_10_1110_ps_9_4_693 crossref_primary_10_1128_jb_179_22_7174_7180_1997 crossref_primary_10_1021_bp034050u crossref_primary_10_1128_jb_176_7_2133_2135_1994 crossref_primary_10_1110_ps_04877104 crossref_primary_10_1073_pnas_052461499 crossref_primary_10_1111_1348_0421_12717 crossref_primary_10_3390_toxins11090508 crossref_primary_10_1074_jbc_M611110200 crossref_primary_10_1128_JB_00156_12 crossref_primary_10_1016_0923_2508_96_84001_0 crossref_primary_10_1073_pnas_95_15_8491 crossref_primary_10_1128_jb_176_2_524_527_1994 crossref_primary_10_1128_jb_176_12_3484_3492_1994 crossref_primary_10_1002_pro_2988 crossref_primary_10_1021_bi991250z crossref_primary_10_1046_j_1365_2958_1998_00833_x crossref_primary_10_1074_jbc_274_33_22977 crossref_primary_10_1021_acssynbio_1c00456 crossref_primary_10_1073_pnas_212410399 crossref_primary_10_1021_bi9611016 crossref_primary_10_1074_jbc_M414300200 crossref_primary_10_1073_pnas_0305463397 crossref_primary_10_1016_j_jbiotec_2007_07_508 crossref_primary_10_1046_j_1365_2958_1998_00747_x crossref_primary_10_3390_fermentation8050229 crossref_primary_10_1128_JB_00213_06 crossref_primary_10_1046_j_1365_2958_2003_03375_x crossref_primary_10_1074_jbc_M114_609255 crossref_primary_10_1074_jbc_M001045200 crossref_primary_10_1007_BF00770244 crossref_primary_10_1074_jbc_M117_795294 crossref_primary_10_5458_bag_12_3_140 crossref_primary_10_1007_BF00770249 crossref_primary_10_1016_S0021_9258_17_31985_3 crossref_primary_10_1046_j_1365_2958_2000_01862_x crossref_primary_10_1128_jcm_00893_22 crossref_primary_10_1046_j_1432_1033_2002_02997_x crossref_primary_10_1002_bit_22103 crossref_primary_10_1016_0923_2508_96_84002_2 crossref_primary_10_1073_pnas_1722514115 crossref_primary_10_1111_j_1432_1033_1997_t01_1_00527_x crossref_primary_10_3389_fmicb_2022_985465 crossref_primary_10_1099_mic_0_000559 crossref_primary_10_1074_jbc_M201533200 crossref_primary_10_1128_jb_176_12_3518_3526_1994 crossref_primary_10_1021_bi960492l crossref_primary_10_1074_jbc_271_46_28898 crossref_primary_10_1006_anae_1996_0064 crossref_primary_10_1074_jbc_M113_489567 crossref_primary_10_1186_s12934_024_02523_w crossref_primary_10_1007_s11756_023_01525_0 crossref_primary_10_3390_molecules28062621 crossref_primary_10_1128_jb_179_5_1636_1645_1997 crossref_primary_10_1074_jbc_M406667200 crossref_primary_10_1002_pro_5560030309 crossref_primary_10_1128_JB_188_6_2027_2037_2006 crossref_primary_10_1073_pnas_1205952109 crossref_primary_10_1111_omi_12093 crossref_primary_10_1016_S0021_9258_17_31535_1 crossref_primary_10_1128_JB_01309_08 crossref_primary_10_1128_JB_01929_06 crossref_primary_10_1186_s13567_022_01124_y crossref_primary_10_1021_bi963090m crossref_primary_10_1128_jb_179_4_1135_1142_1997 crossref_primary_10_1038_s41598_021_03064_7 crossref_primary_10_1074_jbc_M206397200 crossref_primary_10_1111_j_1462_2920_2005_00846_x crossref_primary_10_3390_separations11090265 crossref_primary_10_1002_pro_5560041204 crossref_primary_10_1186_s12918_014_0117_z crossref_primary_10_1128_JB_00236_07 crossref_primary_10_1021_jm021043o crossref_primary_10_1073_pnas_95_18_10547 crossref_primary_10_1186_1471_2148_8_147 crossref_primary_10_1038_s42003_024_05816_3 crossref_primary_10_1111_j_1749_6632_1994_tb44361_x crossref_primary_10_1186_s12934_014_0172_6 crossref_primary_10_1021_sb300055e crossref_primary_10_1074_jbc_M000211200 crossref_primary_10_1128_JB_186_19_6383_6390_2004 crossref_primary_10_1038_s41598_018_34087_2 crossref_primary_10_1021_bi970221q crossref_primary_10_1021_bi7010948 crossref_primary_10_1007_s00203_006_0207_4 crossref_primary_10_7554_eLife_92462 crossref_primary_10_1074_jbc_M508966200 crossref_primary_10_1128_JB_180_18_4790_4798_1998 crossref_primary_10_1073_pnas_0607587103 crossref_primary_10_1128_JB_01641_08 crossref_primary_10_1073_pnas_132393599 crossref_primary_10_1073_pnas_0608775104 crossref_primary_10_1002_ddr_20362 crossref_primary_10_1038_srep27392 crossref_primary_10_1093_genetics_156_2_513 crossref_primary_10_1111_j_1432_1033_1995_0170i_x crossref_primary_10_1128_jb_176_11_3250_3256_1994 crossref_primary_10_1093_pnasnexus_pgae381 crossref_primary_10_1016_0923_2508_96_84010_1 crossref_primary_10_1002_bit_10428 crossref_primary_10_1111_j_1365_2958_1994_tb01061_x crossref_primary_10_1111_j_1432_1033_1996_00225_x crossref_primary_10_1111_j_1462_2920_2012_02808_x crossref_primary_10_1128_jb_177_11_3351_3354_1995 crossref_primary_10_1016_j_biocontrol_2022_104972 crossref_primary_10_1128_JB_01013_06 crossref_primary_10_1016_0923_2508_96_81381_7 crossref_primary_10_1111_mmi_12678 crossref_primary_10_1111_omi_12074 crossref_primary_10_1128_jb_179_13_4129_4137_1997 crossref_primary_10_1038_376560a0 crossref_primary_10_1016_S1016_8478_23_13473_X crossref_primary_10_1016_0923_2508_96_84000_9 crossref_primary_10_1128_JB_00296_21 crossref_primary_10_1074_jbc_M003512200 crossref_primary_10_1128_jb_178_23_6790_6795_1996 crossref_primary_10_1016_j_mib_2021_07_008 crossref_primary_10_1038_s41598_017_06918_1 crossref_primary_10_1146_annurev_micro_54_1_849 crossref_primary_10_1128_msystems_00877_23 crossref_primary_10_1074_jbc_M109_080937 crossref_primary_10_1128_jb_177_19_5704_5706_1995 crossref_primary_10_1126_science_270_5235_397 crossref_primary_10_3390_ijms151222539 crossref_primary_10_1021_bi025928d crossref_primary_10_1038_s41598_017_07972_5 crossref_primary_10_1128_JB_00169_06 crossref_primary_10_1021_bi981616s crossref_primary_10_1021_ac026340f crossref_primary_10_1007_s12192_015_0647_3 crossref_primary_10_1002_bit_26907 crossref_primary_10_1128_JB_00257_07 crossref_primary_10_1111_mmi_12537 crossref_primary_10_1046_j_1365_2958_1998_01053_x crossref_primary_10_1016_j_jmb_2024_168553 crossref_primary_10_1038_s41598_017_09102_7 crossref_primary_10_1111_j_1742_4658_2006_05148_x crossref_primary_10_1128_JB_01129_09 crossref_primary_10_1016_j_jbiosc_2018_05_018 crossref_primary_10_1021_cb300477w crossref_primary_10_1128_jb_177_23_6928_6936_1995 crossref_primary_10_1128_JB_185_19_5791_5799_2003 crossref_primary_10_1002_yea_320101308 crossref_primary_10_1016_j_jprot_2016_12_017 crossref_primary_10_1021_bi9603480 crossref_primary_10_1111_j_1365_2958_2009_07029_x crossref_primary_10_1074_jbc_M310733200 crossref_primary_10_1002_bit_20418 crossref_primary_10_1128_JB_01170_06 crossref_primary_10_1074_jbc_273_33_20785 crossref_primary_10_1074_jbc_274_22_15562 crossref_primary_10_1016_j_biortech_2024_131189 crossref_primary_10_1128_jb_178_19_5586_5591_1996 crossref_primary_10_1111_j_1432_1033_1996_0810u_x crossref_primary_10_1002_pro_5560031118 crossref_primary_10_1016_S0014_5793_97_00084_7 crossref_primary_10_1046_j_1365_2958_2003_03394_x crossref_primary_10_1073_pnas_1320063111 crossref_primary_10_1081_FBT_200025664 crossref_primary_10_1046_j_1365_2958_2002_02734_x crossref_primary_10_1146_annurev_genet_111212_133445 crossref_primary_10_1016_S0923_2508_01_01189_5 crossref_primary_10_1128_JB_01008_10 crossref_primary_10_1038_s41467_019_12027_6 crossref_primary_10_1074_jbc_M605449200 crossref_primary_10_1074_jbc_273_20_12239 crossref_primary_10_1128_JB_188_5_2014_2019_2006 crossref_primary_10_1016_j_jmb_2019_04_040 crossref_primary_10_1021_bi9629081 crossref_primary_10_1073_pnas_0709295105 crossref_primary_10_1046_j_1365_2958_1998_01035_x crossref_primary_10_1128_spectrum_03685_22 crossref_primary_10_1128_JB_02008_07 crossref_primary_10_1128_JB_187_9_3171_3179_2005 crossref_primary_10_1073_pnas_94_26_14367 crossref_primary_10_1128_jb_178_18_5480_5486_1996 crossref_primary_10_1128_JB_00033_07 crossref_primary_10_1002_jobm_200900236 crossref_primary_10_1111_j_1365_2958_2008_06564_x crossref_primary_10_1002_pro_5560031125 crossref_primary_10_1021_ie0496434 crossref_primary_10_1111_j_1399_302X_2006_00273_x crossref_primary_10_1128_jb_00227_24 crossref_primary_10_1021_bi9731652 crossref_primary_10_1021_bi9721647 crossref_primary_10_1111_j_1365_2958_2009_06704_x crossref_primary_10_1186_1471_2105_6_91 crossref_primary_10_1128_JB_181_22_6889_6897_1999 crossref_primary_10_1111_omi_12025 crossref_primary_10_1074_jbc_271_25_15285 crossref_primary_10_1002_1873_3468_12059 crossref_primary_10_1128_JB_181_22_6914_6921_1999 crossref_primary_10_1128_jb_178_24_7112_7119_1996 crossref_primary_10_3182_20070604_3_MX_2914_00006 crossref_primary_10_1529_biophysj_107_126664 crossref_primary_10_3389_fcimb_2023_1178547 crossref_primary_10_1074_jbc_M112_345660 crossref_primary_10_1021_acssynbio_7b00331 crossref_primary_10_1016_j_bbrc_2007_12_144 crossref_primary_10_1128_JB_00117_13 crossref_primary_10_1186_1471_2164_12_324 crossref_primary_10_1128_microbiolspec_GPP3_0042_2018 crossref_primary_10_1074_jbc_M501440200 crossref_primary_10_1002__SICI_1097_0290_19990620_63_6_712__AID_BIT9_3_0_CO_2_R crossref_primary_10_1111_1462_2920_12973 crossref_primary_10_1098_rsob_210206 crossref_primary_10_1074_jbc_M605010200 crossref_primary_10_1128_JB_00429_15 crossref_primary_10_1128_JB_185_23_6764_6772_2003 crossref_primary_10_1101_gr_9_11_1116 crossref_primary_10_1016_S0923_2508_02_01362_1 crossref_primary_10_1046_j_1365_2958_1998_01111_x crossref_primary_10_1073_pnas_0609897104 crossref_primary_10_1021_bi7002923 crossref_primary_10_1016_j_resmic_2004_01_004 crossref_primary_10_1074_jbc_M001044200 crossref_primary_10_1128_jb_178_21_6366_6368_1996 crossref_primary_10_1128_JB_182_17_4711_4718_2000 crossref_primary_10_1128_JB_185_6_1757_1767_2003 crossref_primary_10_1111_omi_12009 crossref_primary_10_1111_1751_7915_14407 crossref_primary_10_1111_j_1432_1033_1994_00179_x crossref_primary_10_1111_j_1365_2958_2004_04413_x crossref_primary_10_1128_JB_186_14_4543_4555_2004 crossref_primary_10_1128_JB_01220_07 crossref_primary_10_1099_mic_0_27649_0 crossref_primary_10_1002_bit_10820 crossref_primary_10_1110_ps_062337406 crossref_primary_10_1128_JB_01673_09 crossref_primary_10_1016_j_resmic_2017_04_003 crossref_primary_10_1128_jb_178_10_2846_2852_1996 crossref_primary_10_3390_ijms131216668 crossref_primary_10_1093_molbev_msad202 crossref_primary_10_1111_1462_2920_12551 crossref_primary_10_1074_jbc_270_31_18295 crossref_primary_10_1111_j_1574_6968_1998_tb13135_x crossref_primary_10_1074_jbc_M308002200 crossref_primary_10_1002_pro_4845 crossref_primary_10_1128_JB_00722_13 crossref_primary_10_1073_pnas_0506610103 crossref_primary_10_1046_j_1432_1033_2002_03197_x crossref_primary_10_1128_JB_00848_08 crossref_primary_10_1186_s12934_014_0096_1 crossref_primary_10_1007_s00284_024_03795_6 crossref_primary_10_1016_j_engmic_2024_100151 crossref_primary_10_1016_j_isci_2020_101740 crossref_primary_10_1021_bi992679t crossref_primary_10_1128_JB_186_2_411_418_2004 crossref_primary_10_1038_s41421_018_0037_y crossref_primary_10_1111_j_1348_0421_2001_tb02656_x crossref_primary_10_1074_jbc_M601183200 crossref_primary_10_1186_1471_2180_10_77 crossref_primary_10_1046_j_1365_2958_1999_01262_x crossref_primary_10_3390_antibiotics9040182 crossref_primary_10_1021_acssuschemeng_7b03636 crossref_primary_10_1074_jbc_M414642200 crossref_primary_10_1186_1471_2180_4_13 crossref_primary_10_1128_JB_180_3_556_562_1998 crossref_primary_10_1073_pnas_192368699 crossref_primary_10_1074_jbc_273_42_27347 crossref_primary_10_1111_1751_7915_13776 crossref_primary_10_1111_febs_13289 crossref_primary_10_9787_PBB_2022_10_4_203 crossref_primary_10_1128_JB_184_1_152_164_2002 crossref_primary_10_1021_bi952052k crossref_primary_10_1128_JB_180_13_3400_3404_1998 crossref_primary_10_1021_bi971999e crossref_primary_10_1046_j_1365_2958_1999_01319_x crossref_primary_10_1128_jb_179_17_5621_5624_1997 crossref_primary_10_1006_jmbi_1996_0820 crossref_primary_10_1021_bi980067n crossref_primary_10_1074_jbc_M103033200 crossref_primary_10_3390_genes16030348 crossref_primary_10_3168_jds_2022_21856 crossref_primary_10_1016_j_jmb_2004_11_058 crossref_primary_10_1002_jobm_201100525 crossref_primary_10_1021_bi971634u crossref_primary_10_3390_polym14040670 crossref_primary_10_1074_jbc_M805955200 crossref_primary_10_1099_acmi_0_000592_v3 crossref_primary_10_1111_1462_2920_15803 crossref_primary_10_1046_j_1432_1327_2000_01583_x crossref_primary_10_1111_mmi_12936 crossref_primary_10_1074_jbc_274_21_15167 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1128/mr.57.3.543-594.1993 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EndPage | 594 |
ExternalDocumentID | 10_1128_mr_57_3_543_594_1993 |
GroupedDBID | -~X .55 .GJ 123 186 18M 29M 2WC 3O- 53G 5RE 6TJ 85S 9M8 AAGFI AAIKC AAMNW AAYJJ AAYXX ABPPZ ACNCT ADBBV ADXHL AFFNX AGHSJ ALMA_UNASSIGNED_HOLDINGS CITATION D0L E3Z F5P HYE H~9 IH2 MVM NHB OHT RHI RPM RSF TR2 UBC UKR W8F WH7 WOQ X7M YNT YQT ZGI ZXP ~KM 7X8 |
ID | FETCH-LOGICAL-c1733-aaf1b75b28d4f57d0dbe5ef778b992f5fbe87fbdab932270d4a9abb6b882b05e3 |
ISSN | 0146-0749 |
IngestDate | Fri Jul 11 16:09:33 EDT 2025 Tue Jul 01 00:59:33 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1733-aaf1b75b28d4f57d0dbe5ef778b992f5fbe87fbdab932270d4a9abb6b882b05e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://journals.asm.org/doi/pdf/10.1128/mr.57.3.543-594.1993 |
PQID | 76083324 |
PQPubID | 23479 |
PageCount | 52 |
ParticipantIDs | proquest_miscellaneous_76083324 crossref_primary_10_1128_mr_57_3_543_594_1993 crossref_citationtrail_10_1128_mr_57_3_543_594_1993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1993-09-00 19930901 |
PublicationDateYYYYMMDD | 1993-09-01 |
PublicationDate_xml | – month: 09 year: 1993 text: 1993-09-00 |
PublicationDecade | 1990 |
PublicationTitle | Microbiological reviews |
PublicationYear | 1993 |
SSID | ssj0029562 |
Score | 1.2237033 |
SecondaryResourceType | review_article |
Snippet | Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS).... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 543 |
Title | Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria |
URI | https://www.proquest.com/docview/76083324 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSqGX0idN04cPvQVvvZJl2b2F0iYsTckhgdyExpLYQtZevN7C9tdnZMn2plnaphdjhDTYmmEe0sw3hHwoCyqmJtVxmYN114xJ7I4aYlqYjCqTpWXuCoVPv2cnF-nskl-OPVu76pIWJuWvnXUl_8NVHEO-uirZO3B2IIoD-I78xSdyGJ__xOOzeb1azmtT1VfLTbP-6VAo2FGpGqjnG-1AIA6Xfkrb-aemQZsVwJu7FA7wWM1q20U9_TFgM3UMDHilgw6tV-2i8zjPDofzmW9dbqzn_mwcnqG67fuTH4fURB1K7tiQQjUeOmYxuhrFttb0sNJBOtiWCuQedilYU-5bGN9W1NQVHyyaCRcTNsE1Mc50pZNsNEz9Zfxv9mrIIuziF5rLRSO5kEwiFYlUpKNynzygGDiw_vwmhOAYDVKf1Or_KBRTIpWPu77lprNy01Z3Dsj5E_I4RA7RkReDp-SeqZ6Rh76X6OY5Od4hDJ-2RSG6LQpREIWotlEvCi_Ixdcv559P4tAlIy6ngrFYKTsFwYHmOrVc6ESD4cYKkUNRUMstmFxY0ArQVaci0akqFEAGGFtBwg17SfaqujKvSKRpolSR05LnLAXLwaL2pw46Nk2ZzmGfsH47ZBkg5F0nkyv5J1bsk3hYtfQQKn-Z_77faYm6zl1gqcrU65UUGQYMGAG8viPFA_JolOs3ZK9t1uYt-pItvOvE4xqq3XRe |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphoenolpyruvate%3Acarbohydrate+phosphotransferase+systems+of+bacteria&rft.jtitle=Microbiological+reviews&rft.au=Postma%2C+P+W&rft.au=Lengeler%2C+J+W&rft.au=Jacobson%2C+G+R&rft.date=1993-09-01&rft.issn=0146-0749&rft.volume=57&rft.issue=3&rft.spage=543&rft.epage=594&rft_id=info:doi/10.1128%2Fmr.57.3.543-594.1993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mr_57_3_543_594_1993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-0749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-0749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-0749&client=summon |