Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria

Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general...

Full description

Saved in:
Bibliographic Details
Published inMicrobiological reviews Vol. 57; no. 3; pp. 543 - 594
Main Authors Postma, P W, Lengeler, J W, Jacobson, G R
Format Journal Article
LanguageEnglish
Published 01.09.1993
Online AccessGet full text

Cover

Loading…
Abstract Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
AbstractList Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Author Postma, P W
Jacobson, G R
Lengeler, J W
Author_xml – sequence: 1
  givenname: P W
  surname: Postma
  fullname: Postma, P W
  organization: E. C. Slater Institute, University of Amsterdam, The Netherlands
– sequence: 2
  givenname: J W
  surname: Lengeler
  fullname: Lengeler, J W
  organization: E. C. Slater Institute, University of Amsterdam, The Netherlands
– sequence: 3
  givenname: G R
  surname: Jacobson
  fullname: Jacobson, G R
  organization: E. C. Slater Institute, University of Amsterdam, The Netherlands
BookMark eNp9kDtPwzAURj0UibbwDxgysSX4GcfdUMVLqgQDzNZ1cq0GJXGwU6T-e1KViYHp6krnfMNZkcUQBiTkhtGCMV7d9bFQuhCFkiJXRhbMGLEgS8pkmVMtzSVZpfRJKTeq5Evy9LYPadwHHEI3HuPhGybc1BBd2B-bOD_ZeAamCEPyGCFhlo5pwj5lwWcO6gljC1fkwkOX8Pr3rsnH48P79jnfvT69bO93ec20EDmAZ04rx6tGeqUb2jhU6LWunDHcK--w0t414IzgXNNGggHnSldV3FGFYk1uz7tjDF8HTJPt21Rj18GA4ZCsLmklBJczKM9gHUNKEb0dY9tDPFpG7amU7aNV2go7l7JzKXsqNWubP1rdTjC1YZgDtN3_8g85s3cA
CitedBy_id crossref_primary_10_1128_jb_178_20_6082_6086_1996
crossref_primary_10_1186_1471_2180_5_42
crossref_primary_10_1074_jbc_270_6_2489
crossref_primary_10_1074_jbc_M513614200
crossref_primary_10_1016_j_ifset_2021_102838
crossref_primary_10_1074_jbc_271_25_14819
crossref_primary_10_1128_jb_179_21_6657_6664_1997
crossref_primary_10_1128_jb_176_9_2694_2698_1994
crossref_primary_10_1128_JB_186_8_2385_2392_2004
crossref_primary_10_1128_jb_176_23_7378_7382_1994
crossref_primary_10_1074_jbc_271_52_33468
crossref_primary_10_1111_j_1471_0307_2010_00563_x
crossref_primary_10_1111_j_1432_1033_1995_tb20325_x
crossref_primary_10_1074_jbc_M501986200
crossref_primary_10_1038_srep13853
crossref_primary_10_1146_annurev_cellbio_100617_062818
crossref_primary_10_3389_fcimb_2022_746746
crossref_primary_10_1074_jbc_274_10_6091
crossref_primary_10_1128_spectrum_00485_24
crossref_primary_10_1016_j_ijbiomac_2020_10_233
crossref_primary_10_1073_pnas_1316629111
crossref_primary_10_1186_1475_2859_11_120
crossref_primary_10_1042_BJ20051183
crossref_primary_10_1111_j_1432_1033_1995_0798m_x
crossref_primary_10_1007_s12602_024_10409_x
crossref_primary_10_1111_j_1365_2958_2008_06403_x
crossref_primary_10_1146_annurev_biochem_69_1_183
crossref_primary_10_1016_j_jbiosc_2011_09_014
crossref_primary_10_1074_jbc_271_52_33457
crossref_primary_10_1128_JB_01235_07
crossref_primary_10_1186_1475_2859_11_127
crossref_primary_10_1046_j_1365_2958_1998_00883_x
crossref_primary_10_1186_1471_2180_13_94
crossref_primary_10_1111_j_1574_6968_2000_tb08947_x
crossref_primary_10_1128_jb_179_16_5171_5177_1997
crossref_primary_10_1101_gr_9_12_1189
crossref_primary_10_1046_j_1432_1327_1999_00727_x
crossref_primary_10_1073_pnas_2100298118
crossref_primary_10_1074_jbc_271_52_33440
crossref_primary_10_1128_JB_01624_09
crossref_primary_10_1074_jbc_271_52_33446
crossref_primary_10_3390_cancers12040850
crossref_primary_10_1016_j_ijhydene_2025_01_088
crossref_primary_10_1038_ismej_2017_142
crossref_primary_10_1038_s41467_019_13353_5
crossref_primary_10_1074_jbc_M509977200
crossref_primary_10_1111_mmi_13159
crossref_primary_10_1016_S0021_9258_17_37610_X
crossref_primary_10_1016_j_yjsbx_2025_100124
crossref_primary_10_1074_jbc_M507417200
crossref_primary_10_1093_jambio_lxad077
crossref_primary_10_1073_pnas_94_24_12914
crossref_primary_10_1139_o06_182
crossref_primary_10_1046_j_1432_1327_2001_01878_x
crossref_primary_10_1128_JB_185_14_4003_4010_2003
crossref_primary_10_1021_acs_jcim_1c00413
crossref_primary_10_1126_science_1226683
crossref_primary_10_1073_pnas_1412431111
crossref_primary_10_1002_bit_27004
crossref_primary_10_1128_JB_00219_06
crossref_primary_10_1016_j_bbrc_2021_11_072
crossref_primary_10_3390_biom13010160
crossref_primary_10_1046_j_1365_2958_1998_01123_x
crossref_primary_10_1111_mmi_12171
crossref_primary_10_1002_jobm_201900599
crossref_primary_10_1128_JB_185_23_6809_6814_2003
crossref_primary_10_3390_jof8010067
crossref_primary_10_3390_fermentation7040216
crossref_primary_10_1016_j_febslet_2012_04_020
crossref_primary_10_1038_ncomms14316
crossref_primary_10_1073_pnas_1423570112
crossref_primary_10_3390_fermentation9050478
crossref_primary_10_1128_msphere_00772_24
crossref_primary_10_1016_j_bbrc_2008_03_145
crossref_primary_10_1002_pro_5560050825
crossref_primary_10_1111_febs_14283
crossref_primary_10_1099_mgen_0_000927
crossref_primary_10_1111_j_1432_1033_1995_116_1_x
crossref_primary_10_1128_ecosalplus_3_4_1
crossref_primary_10_3389_fcimb_2021_783323
crossref_primary_10_3390_microorganisms9081591
crossref_primary_10_1074_jbc_M209052200
crossref_primary_10_1110_ps_041232805
crossref_primary_10_1111_j_1365_2958_2006_05328_x
crossref_primary_10_1038_ki_1995_374
crossref_primary_10_1128_jb_178_12_3557_3563_1996
crossref_primary_10_1046_j_1365_2958_1998_00839_x
crossref_primary_10_1016_j_ymben_2007_10_003
crossref_primary_10_1046_j_1365_2958_1998_00771_x
crossref_primary_10_1021_bi962924y
crossref_primary_10_1128_JB_185_7_2243_2250_2003
crossref_primary_10_1016_0923_2508_96_84007_1
crossref_primary_10_1016_j_bbamem_2020_183412
crossref_primary_10_1186_1475_2859_12_72
crossref_primary_10_1101_gr_3069205
crossref_primary_10_1111_mmi_14067
crossref_primary_10_1128_JB_00599_17
crossref_primary_10_1046_j_1365_2958_2002_02800_x
crossref_primary_10_1085_jgp_201912377
crossref_primary_10_1128_aem_00828_24
crossref_primary_10_1074_jbc_M112_371492
crossref_primary_10_1046_j_1365_2443_2000_00322_x
crossref_primary_10_1021_jp801319k
crossref_primary_10_1016_S0300_9084_03_00134_2
crossref_primary_10_1074_jbc_M001041200
crossref_primary_10_1016_j_cell_2004_08_027
crossref_primary_10_1074_jbc_M410896200
crossref_primary_10_1046_j_1365_2958_1998_00685_x
crossref_primary_10_1074_jbc_272_42_26511
crossref_primary_10_3390_microorganisms7020052
crossref_primary_10_1074_jbc_M104139200
crossref_primary_10_1111_mmi_13087
crossref_primary_10_2139_ssrn_4192544
crossref_primary_10_1038_s41598_017_18704_0
crossref_primary_10_1128_JB_01478_06
crossref_primary_10_1002_bit_26217
crossref_primary_10_1111_j_1365_2958_1995_tb02280_x
crossref_primary_10_1046_j_1344_3941_2002_00044_x
crossref_primary_10_1016_j_jbiotec_2017_04_011
crossref_primary_10_1021_bi961813w
crossref_primary_10_1016_0923_2508_96_80558_4
crossref_primary_10_1021_bp070213t
crossref_primary_10_1128_jb_177_23_6919_6927_1995
crossref_primary_10_3390_ijms221910805
crossref_primary_10_3389_fmicb_2021_775164
crossref_primary_10_1016_0923_2508_96_84008_3
crossref_primary_10_1186_s12934_014_0126_z
crossref_primary_10_1016_S0923_2508_02_01339_6
crossref_primary_10_1002_prot_23177
crossref_primary_10_1111_j_1432_1033_1997_0306a_x
crossref_primary_10_1007_s00284_022_02844_2
crossref_primary_10_1128_JB_00554_07
crossref_primary_10_1016_S1389_1723_01_80042_6
crossref_primary_10_1074_jbc_270_10_5258
crossref_primary_10_1016_j_resmic_2018_10_002
crossref_primary_10_1002_biot_200800296
crossref_primary_10_1074_jbc_M501617200
crossref_primary_10_1111_j_1365_2958_2007_05737_x
crossref_primary_10_1074_jbc_274_36_25398
crossref_primary_10_1021_bi027182p
crossref_primary_10_1038_srep33055
crossref_primary_10_1111_j_1365_2958_1995_tb02336_x
crossref_primary_10_1128_JB_185_23_7019_7023_2003
crossref_primary_10_1128_JB_187_1_125_134_2005
crossref_primary_10_3389_fenvs_2022_855224
crossref_primary_10_3389_fmicb_2021_754464
crossref_primary_10_1111_j_1365_2958_2008_06504_x
crossref_primary_10_1111_j_1432_1033_2004_4142_x
crossref_primary_10_1111_j_1432_1033_2004_04447_x
crossref_primary_10_1074_jbc_270_9_4822
crossref_primary_10_1186_s13068_022_02219_6
crossref_primary_10_1128_JB_02002_07
crossref_primary_10_1021_ja507614f
crossref_primary_10_1021_bi060278p
crossref_primary_10_1074_jbc_M807856200
crossref_primary_10_1128_spectrum_02101_22
crossref_primary_10_1038_s41368_021_00137_1
crossref_primary_10_1111_mmi_13691
crossref_primary_10_1128_JB_186_24_8453_8462_2004
crossref_primary_10_1016_j_procbio_2023_06_024
crossref_primary_10_1039_C6CC07522C
crossref_primary_10_3390_fermentation9030205
crossref_primary_10_1128_JB_186_17_5906_5918_2004
crossref_primary_10_1016_0923_2508_96_84005_8
crossref_primary_10_1134_S0003683821030091
crossref_primary_10_1007_BF03218953
crossref_primary_10_1128_jb_177_19_5590_5597_1995
crossref_primary_10_1111_j_1365_2958_2011_07857_x
crossref_primary_10_1128_JB_184_17_4819_4828_2002
crossref_primary_10_1007_s11274_023_03866_z
crossref_primary_10_1016_S0021_9258_17_32389_X
crossref_primary_10_1128_JB_01123_10
crossref_primary_10_1016_j_heliyon_2025_e42979
crossref_primary_10_1074_jbc_274_37_26185
crossref_primary_10_1046_j_1365_2958_1998_00781_x
crossref_primary_10_1128_JB_185_6_1776_1782_2003
crossref_primary_10_3390_genes8010011
crossref_primary_10_1074_jbc_M508965200
crossref_primary_10_1111_1758_2229_12323
crossref_primary_10_1111_j_1432_1033_1995_tb20548_x
crossref_primary_10_1046_j_1365_2958_2001_02608_x
crossref_primary_10_1074_jbc_RA120_015121
crossref_primary_10_1128_JB_185_3_929_937_2003
crossref_primary_10_1038_srep13200
crossref_primary_10_1128_jb_177_19_5719_5722_1995
crossref_primary_10_1046_j_1365_2958_1999_01146_x
crossref_primary_10_1016_j_cyto_2021_155424
crossref_primary_10_1016_S0923_2508_98_80024_7
crossref_primary_10_1111_mmi_13329
crossref_primary_10_1038_srep43431
crossref_primary_10_1042_BST0330220
crossref_primary_10_1074_jbc_M106504200
crossref_primary_10_1074_jbc_270_49_29096
crossref_primary_10_1002_jobm_200410403
crossref_primary_10_3390_foods10010097
crossref_primary_10_3390_microorganisms10122454
crossref_primary_10_1016_j_micpath_2024_106918
crossref_primary_10_1073_pnas_1500891112
crossref_primary_10_1128_JB_01737_07
crossref_primary_10_1128_JB_186_9_2708_2716_2004
crossref_primary_10_3390_ijms221810003
crossref_primary_10_1073_pnas_0407865101
crossref_primary_10_1021_bi9717946
crossref_primary_10_1046_j_1432_1033_2003_03507_x
crossref_primary_10_1093_bbb_zbab147
crossref_primary_10_1128_JB_01037_08
crossref_primary_10_1021_acs_biochem_5b01286
crossref_primary_10_1128_JB_00101_06
crossref_primary_10_1128_jb_177_14_4043_4052_1995
crossref_primary_10_1529_biophysj_105_076935
crossref_primary_10_1111_j_1365_2958_2004_04321_x
crossref_primary_10_1074_jbc_272_42_26530
crossref_primary_10_1038_s41598_018_35236_3
crossref_primary_10_1074_jbc_M603062200
crossref_primary_10_1016_j_job_2024_01_003
crossref_primary_10_1093_nargab_lqad029
crossref_primary_10_1038_s41522_023_00397_1
crossref_primary_10_1111_j_1365_2958_2004_04200_x
crossref_primary_10_1046_j_1432_1033_2003_03594_x
crossref_primary_10_1016_S0006_3495_03_74517_2
crossref_primary_10_1046_j_1365_2443_1999_00268_x
crossref_primary_10_1186_1475_2859_11_77
crossref_primary_10_1016_S0923_2508_96_90150_3
crossref_primary_10_7554_eLife_92462_3
crossref_primary_10_1038_s41579_022_00818_6
crossref_primary_10_1002_pro_5560050305
crossref_primary_10_1074_jbc_M113_454751
crossref_primary_10_1128_JB_187_3_890_901_2005
crossref_primary_10_1038_s41467_019_09261_3
crossref_primary_10_1042_BST20130071
crossref_primary_10_1074_jbc_M101982200
crossref_primary_10_1128_JB_184_19_5307_5316_2002
crossref_primary_10_1074_jbc_M115_671826
crossref_primary_10_1016_S0021_9258_17_31986_5
crossref_primary_10_1128_JB_00375_21
crossref_primary_10_1074_mcp_M600464_MCP200
crossref_primary_10_1128_JB_00679_07
crossref_primary_10_1074_jbc_RA119_009930
crossref_primary_10_3390_ijms21051667
crossref_primary_10_1111_j_1365_2958_2005_04834_x
crossref_primary_10_1046_j_1432_1033_2002_02864_x
crossref_primary_10_1016_j_jfp_2024_100401
crossref_primary_10_3389_fonc_2024_1411983
crossref_primary_10_1046_j_0902_0055_2001_00087_x
crossref_primary_10_1002_pro_5560061006
crossref_primary_10_1016_j_jbiotec_2011_12_009
crossref_primary_10_1128_JB_186_5_1448_1461_2004
crossref_primary_10_3390_bioengineering5010001
crossref_primary_10_1021_jf400792j
crossref_primary_10_1111_j_1432_1033_1994_tb18576_x
crossref_primary_10_1111_j_1365_2958_2006_05359_x
crossref_primary_10_1128_JB_182_7_1895_1902_2000
crossref_primary_10_1016_j_ijfoodmicro_2021_109335
crossref_primary_10_1074_jbc_274_8_4754
crossref_primary_10_1016_S1389_1723_02_80103_7
crossref_primary_10_1046_j_1462_2920_2001_00231_x
crossref_primary_10_1021_acssuschemeng_4c10295
crossref_primary_10_1074_jbc_275_10_7037
crossref_primary_10_1111_j_2041_1014_2011_00627_x
crossref_primary_10_1021_bi011590w
crossref_primary_10_1074_jbc_272_27_17230
crossref_primary_10_3390_microorganisms9030466
crossref_primary_10_3390_molecules27248941
crossref_primary_10_1074_jbc_273_40_25745
crossref_primary_10_1016_j_micres_2012_03_004
crossref_primary_10_1002_pmic_200800655
crossref_primary_10_1074_jbc_M513721200
crossref_primary_10_1016_0923_2508_94_90081_7
crossref_primary_10_1111_mmi_13230
crossref_primary_10_1111_j_1365_2958_1994_tb00501_x
crossref_primary_10_1128_jb_177_10_2751_2759_1995
crossref_primary_10_1128_jb_176_17_5304_5311_1994
crossref_primary_10_1016_j_jenvman_2023_117493
crossref_primary_10_1021_acsinfecdis_4c00167
crossref_primary_10_1038_s41598_019_50249_2
crossref_primary_10_1186_1475_2859_8_19
crossref_primary_10_1021_bi963053v
crossref_primary_10_1177_11779322211063993
crossref_primary_10_1128_JB_01214_10
crossref_primary_10_1128_JB_186_22_7593_7600_2004
crossref_primary_10_1073_pnas_94_25_13515
crossref_primary_10_1128_JB_01761_06
crossref_primary_10_1016_j_fbio_2024_104811
crossref_primary_10_1111_j_1365_2958_2006_05543_x
crossref_primary_10_1128_JB_01237_07
crossref_primary_10_1016_S0923_2508_99_80033_3
crossref_primary_10_1021_bi952567b
crossref_primary_10_1126_science_1258849
crossref_primary_10_1016_0923_2508_96_84015_0
crossref_primary_10_1002_bit_260470204
crossref_primary_10_1074_jbc_M508090200
crossref_primary_10_1038_ismej_2008_24
crossref_primary_10_1128_JB_180_17_4475_4480_1998
crossref_primary_10_1002_prot_10156
crossref_primary_10_1021_bi960863y
crossref_primary_10_1111_mmi_13464
crossref_primary_10_1074_jbc_M110_122523
crossref_primary_10_1002__SICI_1097_0134_199611_26_3_314__AID_PROT7_3_0_CO_2_D
crossref_primary_10_1128_jb_179_4_1298_1306_1997
crossref_primary_10_1007_s43393_022_00136_1
crossref_primary_10_1016_j_biortech_2009_07_035
crossref_primary_10_1110_ps_9_4_693
crossref_primary_10_1128_jb_179_22_7174_7180_1997
crossref_primary_10_1021_bp034050u
crossref_primary_10_1128_jb_176_7_2133_2135_1994
crossref_primary_10_1110_ps_04877104
crossref_primary_10_1073_pnas_052461499
crossref_primary_10_1111_1348_0421_12717
crossref_primary_10_3390_toxins11090508
crossref_primary_10_1074_jbc_M611110200
crossref_primary_10_1128_JB_00156_12
crossref_primary_10_1016_0923_2508_96_84001_0
crossref_primary_10_1073_pnas_95_15_8491
crossref_primary_10_1128_jb_176_2_524_527_1994
crossref_primary_10_1128_jb_176_12_3484_3492_1994
crossref_primary_10_1002_pro_2988
crossref_primary_10_1021_bi991250z
crossref_primary_10_1046_j_1365_2958_1998_00833_x
crossref_primary_10_1074_jbc_274_33_22977
crossref_primary_10_1021_acssynbio_1c00456
crossref_primary_10_1073_pnas_212410399
crossref_primary_10_1021_bi9611016
crossref_primary_10_1074_jbc_M414300200
crossref_primary_10_1073_pnas_0305463397
crossref_primary_10_1016_j_jbiotec_2007_07_508
crossref_primary_10_1046_j_1365_2958_1998_00747_x
crossref_primary_10_3390_fermentation8050229
crossref_primary_10_1128_JB_00213_06
crossref_primary_10_1046_j_1365_2958_2003_03375_x
crossref_primary_10_1074_jbc_M114_609255
crossref_primary_10_1074_jbc_M001045200
crossref_primary_10_1007_BF00770244
crossref_primary_10_1074_jbc_M117_795294
crossref_primary_10_5458_bag_12_3_140
crossref_primary_10_1007_BF00770249
crossref_primary_10_1016_S0021_9258_17_31985_3
crossref_primary_10_1046_j_1365_2958_2000_01862_x
crossref_primary_10_1128_jcm_00893_22
crossref_primary_10_1046_j_1432_1033_2002_02997_x
crossref_primary_10_1002_bit_22103
crossref_primary_10_1016_0923_2508_96_84002_2
crossref_primary_10_1073_pnas_1722514115
crossref_primary_10_1111_j_1432_1033_1997_t01_1_00527_x
crossref_primary_10_3389_fmicb_2022_985465
crossref_primary_10_1099_mic_0_000559
crossref_primary_10_1074_jbc_M201533200
crossref_primary_10_1128_jb_176_12_3518_3526_1994
crossref_primary_10_1021_bi960492l
crossref_primary_10_1074_jbc_271_46_28898
crossref_primary_10_1006_anae_1996_0064
crossref_primary_10_1074_jbc_M113_489567
crossref_primary_10_1186_s12934_024_02523_w
crossref_primary_10_1007_s11756_023_01525_0
crossref_primary_10_3390_molecules28062621
crossref_primary_10_1128_jb_179_5_1636_1645_1997
crossref_primary_10_1074_jbc_M406667200
crossref_primary_10_1002_pro_5560030309
crossref_primary_10_1128_JB_188_6_2027_2037_2006
crossref_primary_10_1073_pnas_1205952109
crossref_primary_10_1111_omi_12093
crossref_primary_10_1016_S0021_9258_17_31535_1
crossref_primary_10_1128_JB_01309_08
crossref_primary_10_1128_JB_01929_06
crossref_primary_10_1186_s13567_022_01124_y
crossref_primary_10_1021_bi963090m
crossref_primary_10_1128_jb_179_4_1135_1142_1997
crossref_primary_10_1038_s41598_021_03064_7
crossref_primary_10_1074_jbc_M206397200
crossref_primary_10_1111_j_1462_2920_2005_00846_x
crossref_primary_10_3390_separations11090265
crossref_primary_10_1002_pro_5560041204
crossref_primary_10_1186_s12918_014_0117_z
crossref_primary_10_1128_JB_00236_07
crossref_primary_10_1021_jm021043o
crossref_primary_10_1073_pnas_95_18_10547
crossref_primary_10_1186_1471_2148_8_147
crossref_primary_10_1038_s42003_024_05816_3
crossref_primary_10_1111_j_1749_6632_1994_tb44361_x
crossref_primary_10_1186_s12934_014_0172_6
crossref_primary_10_1021_sb300055e
crossref_primary_10_1074_jbc_M000211200
crossref_primary_10_1128_JB_186_19_6383_6390_2004
crossref_primary_10_1038_s41598_018_34087_2
crossref_primary_10_1021_bi970221q
crossref_primary_10_1021_bi7010948
crossref_primary_10_1007_s00203_006_0207_4
crossref_primary_10_7554_eLife_92462
crossref_primary_10_1074_jbc_M508966200
crossref_primary_10_1128_JB_180_18_4790_4798_1998
crossref_primary_10_1073_pnas_0607587103
crossref_primary_10_1128_JB_01641_08
crossref_primary_10_1073_pnas_132393599
crossref_primary_10_1073_pnas_0608775104
crossref_primary_10_1002_ddr_20362
crossref_primary_10_1038_srep27392
crossref_primary_10_1093_genetics_156_2_513
crossref_primary_10_1111_j_1432_1033_1995_0170i_x
crossref_primary_10_1128_jb_176_11_3250_3256_1994
crossref_primary_10_1093_pnasnexus_pgae381
crossref_primary_10_1016_0923_2508_96_84010_1
crossref_primary_10_1002_bit_10428
crossref_primary_10_1111_j_1365_2958_1994_tb01061_x
crossref_primary_10_1111_j_1432_1033_1996_00225_x
crossref_primary_10_1111_j_1462_2920_2012_02808_x
crossref_primary_10_1128_jb_177_11_3351_3354_1995
crossref_primary_10_1016_j_biocontrol_2022_104972
crossref_primary_10_1128_JB_01013_06
crossref_primary_10_1016_0923_2508_96_81381_7
crossref_primary_10_1111_mmi_12678
crossref_primary_10_1111_omi_12074
crossref_primary_10_1128_jb_179_13_4129_4137_1997
crossref_primary_10_1038_376560a0
crossref_primary_10_1016_S1016_8478_23_13473_X
crossref_primary_10_1016_0923_2508_96_84000_9
crossref_primary_10_1128_JB_00296_21
crossref_primary_10_1074_jbc_M003512200
crossref_primary_10_1128_jb_178_23_6790_6795_1996
crossref_primary_10_1016_j_mib_2021_07_008
crossref_primary_10_1038_s41598_017_06918_1
crossref_primary_10_1146_annurev_micro_54_1_849
crossref_primary_10_1128_msystems_00877_23
crossref_primary_10_1074_jbc_M109_080937
crossref_primary_10_1128_jb_177_19_5704_5706_1995
crossref_primary_10_1126_science_270_5235_397
crossref_primary_10_3390_ijms151222539
crossref_primary_10_1021_bi025928d
crossref_primary_10_1038_s41598_017_07972_5
crossref_primary_10_1128_JB_00169_06
crossref_primary_10_1021_bi981616s
crossref_primary_10_1021_ac026340f
crossref_primary_10_1007_s12192_015_0647_3
crossref_primary_10_1002_bit_26907
crossref_primary_10_1128_JB_00257_07
crossref_primary_10_1111_mmi_12537
crossref_primary_10_1046_j_1365_2958_1998_01053_x
crossref_primary_10_1016_j_jmb_2024_168553
crossref_primary_10_1038_s41598_017_09102_7
crossref_primary_10_1111_j_1742_4658_2006_05148_x
crossref_primary_10_1128_JB_01129_09
crossref_primary_10_1016_j_jbiosc_2018_05_018
crossref_primary_10_1021_cb300477w
crossref_primary_10_1128_jb_177_23_6928_6936_1995
crossref_primary_10_1128_JB_185_19_5791_5799_2003
crossref_primary_10_1002_yea_320101308
crossref_primary_10_1016_j_jprot_2016_12_017
crossref_primary_10_1021_bi9603480
crossref_primary_10_1111_j_1365_2958_2009_07029_x
crossref_primary_10_1074_jbc_M310733200
crossref_primary_10_1002_bit_20418
crossref_primary_10_1128_JB_01170_06
crossref_primary_10_1074_jbc_273_33_20785
crossref_primary_10_1074_jbc_274_22_15562
crossref_primary_10_1016_j_biortech_2024_131189
crossref_primary_10_1128_jb_178_19_5586_5591_1996
crossref_primary_10_1111_j_1432_1033_1996_0810u_x
crossref_primary_10_1002_pro_5560031118
crossref_primary_10_1016_S0014_5793_97_00084_7
crossref_primary_10_1046_j_1365_2958_2003_03394_x
crossref_primary_10_1073_pnas_1320063111
crossref_primary_10_1081_FBT_200025664
crossref_primary_10_1046_j_1365_2958_2002_02734_x
crossref_primary_10_1146_annurev_genet_111212_133445
crossref_primary_10_1016_S0923_2508_01_01189_5
crossref_primary_10_1128_JB_01008_10
crossref_primary_10_1038_s41467_019_12027_6
crossref_primary_10_1074_jbc_M605449200
crossref_primary_10_1074_jbc_273_20_12239
crossref_primary_10_1128_JB_188_5_2014_2019_2006
crossref_primary_10_1016_j_jmb_2019_04_040
crossref_primary_10_1021_bi9629081
crossref_primary_10_1073_pnas_0709295105
crossref_primary_10_1046_j_1365_2958_1998_01035_x
crossref_primary_10_1128_spectrum_03685_22
crossref_primary_10_1128_JB_02008_07
crossref_primary_10_1128_JB_187_9_3171_3179_2005
crossref_primary_10_1073_pnas_94_26_14367
crossref_primary_10_1128_jb_178_18_5480_5486_1996
crossref_primary_10_1128_JB_00033_07
crossref_primary_10_1002_jobm_200900236
crossref_primary_10_1111_j_1365_2958_2008_06564_x
crossref_primary_10_1002_pro_5560031125
crossref_primary_10_1021_ie0496434
crossref_primary_10_1111_j_1399_302X_2006_00273_x
crossref_primary_10_1128_jb_00227_24
crossref_primary_10_1021_bi9731652
crossref_primary_10_1021_bi9721647
crossref_primary_10_1111_j_1365_2958_2009_06704_x
crossref_primary_10_1186_1471_2105_6_91
crossref_primary_10_1128_JB_181_22_6889_6897_1999
crossref_primary_10_1111_omi_12025
crossref_primary_10_1074_jbc_271_25_15285
crossref_primary_10_1002_1873_3468_12059
crossref_primary_10_1128_JB_181_22_6914_6921_1999
crossref_primary_10_1128_jb_178_24_7112_7119_1996
crossref_primary_10_3182_20070604_3_MX_2914_00006
crossref_primary_10_1529_biophysj_107_126664
crossref_primary_10_3389_fcimb_2023_1178547
crossref_primary_10_1074_jbc_M112_345660
crossref_primary_10_1021_acssynbio_7b00331
crossref_primary_10_1016_j_bbrc_2007_12_144
crossref_primary_10_1128_JB_00117_13
crossref_primary_10_1186_1471_2164_12_324
crossref_primary_10_1128_microbiolspec_GPP3_0042_2018
crossref_primary_10_1074_jbc_M501440200
crossref_primary_10_1002__SICI_1097_0290_19990620_63_6_712__AID_BIT9_3_0_CO_2_R
crossref_primary_10_1111_1462_2920_12973
crossref_primary_10_1098_rsob_210206
crossref_primary_10_1074_jbc_M605010200
crossref_primary_10_1128_JB_00429_15
crossref_primary_10_1128_JB_185_23_6764_6772_2003
crossref_primary_10_1101_gr_9_11_1116
crossref_primary_10_1016_S0923_2508_02_01362_1
crossref_primary_10_1046_j_1365_2958_1998_01111_x
crossref_primary_10_1073_pnas_0609897104
crossref_primary_10_1021_bi7002923
crossref_primary_10_1016_j_resmic_2004_01_004
crossref_primary_10_1074_jbc_M001044200
crossref_primary_10_1128_jb_178_21_6366_6368_1996
crossref_primary_10_1128_JB_182_17_4711_4718_2000
crossref_primary_10_1128_JB_185_6_1757_1767_2003
crossref_primary_10_1111_omi_12009
crossref_primary_10_1111_1751_7915_14407
crossref_primary_10_1111_j_1432_1033_1994_00179_x
crossref_primary_10_1111_j_1365_2958_2004_04413_x
crossref_primary_10_1128_JB_186_14_4543_4555_2004
crossref_primary_10_1128_JB_01220_07
crossref_primary_10_1099_mic_0_27649_0
crossref_primary_10_1002_bit_10820
crossref_primary_10_1110_ps_062337406
crossref_primary_10_1128_JB_01673_09
crossref_primary_10_1016_j_resmic_2017_04_003
crossref_primary_10_1128_jb_178_10_2846_2852_1996
crossref_primary_10_3390_ijms131216668
crossref_primary_10_1093_molbev_msad202
crossref_primary_10_1111_1462_2920_12551
crossref_primary_10_1074_jbc_270_31_18295
crossref_primary_10_1111_j_1574_6968_1998_tb13135_x
crossref_primary_10_1074_jbc_M308002200
crossref_primary_10_1002_pro_4845
crossref_primary_10_1128_JB_00722_13
crossref_primary_10_1073_pnas_0506610103
crossref_primary_10_1046_j_1432_1033_2002_03197_x
crossref_primary_10_1128_JB_00848_08
crossref_primary_10_1186_s12934_014_0096_1
crossref_primary_10_1007_s00284_024_03795_6
crossref_primary_10_1016_j_engmic_2024_100151
crossref_primary_10_1016_j_isci_2020_101740
crossref_primary_10_1021_bi992679t
crossref_primary_10_1128_JB_186_2_411_418_2004
crossref_primary_10_1038_s41421_018_0037_y
crossref_primary_10_1111_j_1348_0421_2001_tb02656_x
crossref_primary_10_1074_jbc_M601183200
crossref_primary_10_1186_1471_2180_10_77
crossref_primary_10_1046_j_1365_2958_1999_01262_x
crossref_primary_10_3390_antibiotics9040182
crossref_primary_10_1021_acssuschemeng_7b03636
crossref_primary_10_1074_jbc_M414642200
crossref_primary_10_1186_1471_2180_4_13
crossref_primary_10_1128_JB_180_3_556_562_1998
crossref_primary_10_1073_pnas_192368699
crossref_primary_10_1074_jbc_273_42_27347
crossref_primary_10_1111_1751_7915_13776
crossref_primary_10_1111_febs_13289
crossref_primary_10_9787_PBB_2022_10_4_203
crossref_primary_10_1128_JB_184_1_152_164_2002
crossref_primary_10_1021_bi952052k
crossref_primary_10_1128_JB_180_13_3400_3404_1998
crossref_primary_10_1021_bi971999e
crossref_primary_10_1046_j_1365_2958_1999_01319_x
crossref_primary_10_1128_jb_179_17_5621_5624_1997
crossref_primary_10_1006_jmbi_1996_0820
crossref_primary_10_1021_bi980067n
crossref_primary_10_1074_jbc_M103033200
crossref_primary_10_3390_genes16030348
crossref_primary_10_3168_jds_2022_21856
crossref_primary_10_1016_j_jmb_2004_11_058
crossref_primary_10_1002_jobm_201100525
crossref_primary_10_1021_bi971634u
crossref_primary_10_3390_polym14040670
crossref_primary_10_1074_jbc_M805955200
crossref_primary_10_1099_acmi_0_000592_v3
crossref_primary_10_1111_1462_2920_15803
crossref_primary_10_1046_j_1432_1327_2000_01583_x
crossref_primary_10_1111_mmi_12936
crossref_primary_10_1074_jbc_274_21_15167
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1128/mr.57.3.543-594.1993
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EndPage 594
ExternalDocumentID 10_1128_mr_57_3_543_594_1993
GroupedDBID -~X
.55
.GJ
123
186
18M
29M
2WC
3O-
53G
5RE
6TJ
85S
9M8
AAGFI
AAIKC
AAMNW
AAYJJ
AAYXX
ABPPZ
ACNCT
ADBBV
ADXHL
AFFNX
AGHSJ
ALMA_UNASSIGNED_HOLDINGS
CITATION
D0L
E3Z
F5P
HYE
H~9
IH2
MVM
NHB
OHT
RHI
RPM
RSF
TR2
UBC
UKR
W8F
WH7
WOQ
X7M
YNT
YQT
ZGI
ZXP
~KM
7X8
ID FETCH-LOGICAL-c1733-aaf1b75b28d4f57d0dbe5ef778b992f5fbe87fbdab932270d4a9abb6b882b05e3
ISSN 0146-0749
IngestDate Fri Jul 11 16:09:33 EDT 2025
Tue Jul 01 00:59:33 EDT 2025
Thu Apr 24 23:05:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1733-aaf1b75b28d4f57d0dbe5ef778b992f5fbe87fbdab932270d4a9abb6b882b05e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://journals.asm.org/doi/pdf/10.1128/mr.57.3.543-594.1993
PQID 76083324
PQPubID 23479
PageCount 52
ParticipantIDs proquest_miscellaneous_76083324
crossref_primary_10_1128_mr_57_3_543_594_1993
crossref_citationtrail_10_1128_mr_57_3_543_594_1993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1993-09-00
19930901
PublicationDateYYYYMMDD 1993-09-01
PublicationDate_xml – month: 09
  year: 1993
  text: 1993-09-00
PublicationDecade 1990
PublicationTitle Microbiological reviews
PublicationYear 1993
SSID ssj0029562
Score 1.2237033
SecondaryResourceType review_article
Snippet Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS)....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 543
Title Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria
URI https://www.proquest.com/docview/76083324
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSqGX0idN04cPvQVvvZJl2b2F0iYsTckhgdyExpLYQtZevN7C9tdnZMn2plnaphdjhDTYmmEe0sw3hHwoCyqmJtVxmYN114xJ7I4aYlqYjCqTpWXuCoVPv2cnF-nskl-OPVu76pIWJuWvnXUl_8NVHEO-uirZO3B2IIoD-I78xSdyGJ__xOOzeb1azmtT1VfLTbP-6VAo2FGpGqjnG-1AIA6Xfkrb-aemQZsVwJu7FA7wWM1q20U9_TFgM3UMDHilgw6tV-2i8zjPDofzmW9dbqzn_mwcnqG67fuTH4fURB1K7tiQQjUeOmYxuhrFttb0sNJBOtiWCuQedilYU-5bGN9W1NQVHyyaCRcTNsE1Mc50pZNsNEz9Zfxv9mrIIuziF5rLRSO5kEwiFYlUpKNynzygGDiw_vwmhOAYDVKf1Or_KBRTIpWPu77lprNy01Z3Dsj5E_I4RA7RkReDp-SeqZ6Rh76X6OY5Od4hDJ-2RSG6LQpREIWotlEvCi_Ixdcv559P4tAlIy6ngrFYKTsFwYHmOrVc6ESD4cYKkUNRUMstmFxY0ArQVaci0akqFEAGGFtBwg17SfaqujKvSKRpolSR05LnLAXLwaL2pw46Nk2ZzmGfsH47ZBkg5F0nkyv5J1bsk3hYtfQQKn-Z_77faYm6zl1gqcrU65UUGQYMGAG8viPFA_JolOs3ZK9t1uYt-pItvOvE4xqq3XRe
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphoenolpyruvate%3Acarbohydrate+phosphotransferase+systems+of+bacteria&rft.jtitle=Microbiological+reviews&rft.au=Postma%2C+P+W&rft.au=Lengeler%2C+J+W&rft.au=Jacobson%2C+G+R&rft.date=1993-09-01&rft.issn=0146-0749&rft.volume=57&rft.issue=3&rft.spage=543&rft.epage=594&rft_id=info:doi/10.1128%2Fmr.57.3.543-594.1993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mr_57_3_543_594_1993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-0749&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-0749&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-0749&client=summon