Gradient estimates for a nonlinear elliptic equation on a smooth metric measure space

Let (M, g, e −f dv) be a smooth metric measure space. We consider local gradient estimates for positive solutions to the following elliptic equation ∆ f u + au log u + bu = 0 where a, b are two real constants and f be a smooth function defined on M. As an application, we obtain a Liouville type resu...

Full description

Saved in:
Bibliographic Details
Published inCommunications in Mathematics Vol. 32 (2024), Issue 1
Main Authors Wang, Xiaoshan, Cao, Linfen
Format Journal Article
LanguageEnglish
Published University of Ostrava 27.02.2023
Subjects
Online AccessGet full text
ISSN2336-1298
1804-1388
2336-1298
DOI10.46298/cm.10951

Cover

Abstract Let (M, g, e −f dv) be a smooth metric measure space. We consider local gradient estimates for positive solutions to the following elliptic equation ∆ f u + au log u + bu = 0 where a, b are two real constants and f be a smooth function defined on M. As an application, we obtain a Liouville type result for such equation in the case a < 0 under the m-dimensions Bakry-Émery Ricci curvature.
AbstractList Let (M, g, e −f dv) be a smooth metric measure space. We consider local gradient estimates for positive solutions to the following elliptic equation ∆ f u + au log u + bu = 0 where a, b are two real constants and f be a smooth function defined on M. As an application, we obtain a Liouville type result for such equation in the case a < 0 under the m-dimensions Bakry-Émery Ricci curvature.
Author Wang, Xiaoshan
Cao, Linfen
Author_xml – sequence: 1
  givenname: Xiaoshan
  surname: Wang
  fullname: Wang, Xiaoshan
  organization: Luoyang Normal University
– sequence: 2
  givenname: Linfen
  surname: Cao
  fullname: Cao, Linfen
  organization: Henan Normal University
BackLink https://hal.science/hal-03984127$$DView record in HAL
BookMark eNpNUE1LAzEQDVLBWnvwH-TqYWu-urs5lqKtsODFnsM0O6GR3U1NUsF_71pFCgMzvJn3mPduyWQIAxJyz9lClULXj7ZfcKaX_IpMhZRlwUdwcjHfkHlK74wxrgVTXE3JbhOh9Thkiin7HjIm6kKkQEftzg8IkWLX-WP2luLHCbIPAx0LaOpDyAfaY47jrkdIp4g0HcHiHbl20CWc__UZ2T0_va23RfO6eVmvmsLySvICgHHQtd2jQtUunXC8lCVb1pWqbAmg2b4WusK9tqMpp5XgziFDWVaubbWQM_Lwq3uAzhzj-H_8MgG82a4a84MxqWvFRfV5cWtjSCmi-ydwZs7xGdubc3zyGxw_Y9k
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.46298/cm.10951
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2336-1298
ExternalDocumentID oai_HAL_hal_03984127v2
10_46298_cm_10951
GroupedDBID 6HX
AAFWJ
AAYXX
ACGFS
ACIPV
ADBBV
ADBLJ
ADQAK
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
FRJ
FRP
LO0
1XC
VOOES
ID FETCH-LOGICAL-c1731-aa01a98cbe4e4d5f2f1636058747c6aa90b8297eb9c951f9421ffe0e367fdd923
ISSN 2336-1298
1804-1388
IngestDate Fri May 09 12:20:40 EDT 2025
Tue Jul 01 03:59:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Liouville type property
m-dimensions Bakry-Émery Ricci curvature
2010 Mathematics Subject Classification. Primary 58J35
2010 Mathematics Subject Classification. Primary 58J35 Secondary 35B45 gradient estimates nonlinear equation m-dimensions Bakry-Émery Ricci curvature Liouville type property
Secondary 35B45 gradient estimates
nonlinear equation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1731-aa01a98cbe4e4d5f2f1636058747c6aa90b8297eb9c951f9421ffe0e367fdd923
OpenAccessLink https://hal.science/hal-03984127
ParticipantIDs hal_primary_oai_HAL_hal_03984127v2
crossref_primary_10_46298_cm_10951
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-27
PublicationDateYYYYMMDD 2023-02-27
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-27
  day: 27
PublicationDecade 2020
PublicationTitle Communications in Mathematics
PublicationYear 2023
Publisher University of Ostrava
Publisher_xml – name: University of Ostrava
SSID ssj0001920414
ssib044733361
Score 2.2114818
Snippet Let (M, g, e −f dv) be a smooth metric measure space. We consider local gradient estimates for positive solutions to the following elliptic equation ∆ f u + au...
SourceID hal
crossref
SourceType Open Access Repository
Index Database
SubjectTerms Mathematics
Title Gradient estimates for a nonlinear elliptic equation on a smooth metric measure space
URI https://hal.science/hal-03984127
Volume 32 (2024), Issue 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbYuMAB8VPAYLIQnKoM_0ocH6uxUaDdkFhFb5Hj2CqHtFvX7cCBv51nO0kbqYeBFEWR47SOv0-vz6_vfUbovTKlIJryJM-ETATTMtHMsaQiFUsr5XIqfTXy5CwbTcXXWTrbJGSG6pJ1eWR-76wr-R9UoQ1w9VWy_4Bs96HQANeAL5wBYTjfCePPq5CwtR54qYzae40xKXKwiAIYejXwepuXXpTVXt003uECOlzXS4DI7x_tM-nrGCgcgHUxfe2C7fKRkDk76WReO2f8ZxNynv3Sy-v5hm3Hetms-l1Tb9ZEFxgP1dpyE_7rZYec--jLrd4yl7lXPeRxY74jG9oY535nn7i3dGtjOfMOM3yB-MBUsH6eVQO6y4iLDB6GqTe117pq5Gh7Qtmj4Y_i-6fTYvzl7Fv_bqeYPRqOizkASrjKBWXyFn6m7zMpw1_5kz8nrc0RQnLe6M_EuJxiRARJ-O7loiBVGNbHdlA9N2Zv3kbhg1dy8Rg9apYTeBi58QTds4un6OEWSM_QtGUJ7liCgSVY444luGUJblmC4dA4sgRHluCGJTiw5Dmanp5cHI-SZjONxFDJaaI1oVrlprTCiip1zFEvFZfmsJ40mdaKlL7K2pbKwOs5JRh1zhLLM-mqCpYBL9A-DMu-RDglBp4oK2VTLXJVKsYo5ypzOYPupHqF3rVzU1xGzZQC1pphAgtTF2ECoZPHp72_G7PXd-l0gB5smPsG7a9XN_YteIrr8hDtjc_JYQD8L_v7afE
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+estimates+for+a+nonlinear+elliptic+equation+on+a+smooth+metric+measure+space&rft.jtitle=Communications+in+Mathematics&rft.au=Wang%2C+Xiaoshan&rft.au=Cao%2C+Linfen&rft.date=2023-02-27&rft.pub=University+of+Ostrava&rft.issn=1804-1388&rft.eissn=2336-1298&rft.volume=32+%282024%29%2C+Issue+1&rft_id=info:doi/10.46298%2Fcm.10951&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03984127v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2336-1298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2336-1298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2336-1298&client=summon