Harnessing expert knowledge and legacy data for digital soil mapping with no new field surveys

Legacy soil maps, derived from extensive soil surveys, contain invaluable information crucial for soil management practices. However, these maps risk obsolescence due to outdated technology, changes in classification systems, and evolving soil types. Addressing the need for high-precision and high-r...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 42; p. e00998
Main Authors Yang, Jiawei, Wang, Tianwei, Bi, Yihui, Li, Zhaoxia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Legacy soil maps, derived from extensive soil surveys, contain invaluable information crucial for soil management practices. However, these maps risk obsolescence due to outdated technology, changes in classification systems, and evolving soil types. Addressing the need for high-precision and high-resolution soil maps, particularly in regions lacking comprehensive survey data, this study proposes an innovative framework for Expert Knowledge and Diagnostic Information-based Digital Soil Mapping (ED-DSM), enabling digital soil mapping with no new field surveys by integrating expert knowledge with diagnostic information. The framework leverages diagnostic horizons and attributes from Chinese Soil Taxonomy (CST), combined with expert assessments of the probability of certain diagnostic features within legacy map units, to extract pseudo-points and assign diagnostic feature types using expert-guided probability-constrained deterministic annealing clustering. Through repeated random sampling and random forest modeling, probability distributions for all diagnostic features are generated, and retrieval rules are constructed to create probabilistic soil type maps. Application of the framework in a county in China yielded the following key findings: (1) ED-DSM successfully generated probability distributions for 16 diagnostic features and produced maximum and secondary probability distribution maps of soil types at the order, suborder, group, and subgroup levels based on the CST, demonstrating exceptional spatial detail; (2) Validation using 33 soil profiles showed an average mapping accuracy for diagnostic features ranging from 0.62 to 0.99, while the average accuracy for soil types at the order, suborder, group, and subgroup levels under maximum probability were 65.86 %, 65.03 %, 47.85 %, and 44.15 %, respectively; and (3) Considering secondary probabilities improved soil type mapping accuracy by 3.55 %–7.19 %, further confirming the method's efficiency and robustness. The ED-DSM framework enables rapid mapping of soil diagnostic features and types without the need for additional soil surveys, offering a cost-effective and scalable solution for resource-limited regions and providing actionable scientific support for soil management practices. •The concept of soil diagnostic information indicators was proposed.•The digital soil mapping framework based on a retrieval process was proposed.•The pseudo-points in legacy soil map can be used for digital soil mapping.•Expert knowledge enables point assignment of diagnostic information.•The spatial details of soil type distribution are preserved in the fuzzy soil mapping results.
AbstractList Legacy soil maps, derived from extensive soil surveys, contain invaluable information crucial for soil management practices. However, these maps risk obsolescence due to outdated technology, changes in classification systems, and evolving soil types. Addressing the need for high-precision and high-resolution soil maps, particularly in regions lacking comprehensive survey data, this study proposes an innovative framework for Expert Knowledge and Diagnostic Information-based Digital Soil Mapping (ED-DSM), enabling digital soil mapping with no new field surveys by integrating expert knowledge with diagnostic information. The framework leverages diagnostic horizons and attributes from Chinese Soil Taxonomy (CST), combined with expert assessments of the probability of certain diagnostic features within legacy map units, to extract pseudo-points and assign diagnostic feature types using expert-guided probability-constrained deterministic annealing clustering. Through repeated random sampling and random forest modeling, probability distributions for all diagnostic features are generated, and retrieval rules are constructed to create probabilistic soil type maps. Application of the framework in a county in China yielded the following key findings: (1) ED-DSM successfully generated probability distributions for 16 diagnostic features and produced maximum and secondary probability distribution maps of soil types at the order, suborder, group, and subgroup levels based on the CST, demonstrating exceptional spatial detail; (2) Validation using 33 soil profiles showed an average mapping accuracy for diagnostic features ranging from 0.62 to 0.99, while the average accuracy for soil types at the order, suborder, group, and subgroup levels under maximum probability were 65.86 %, 65.03 %, 47.85 %, and 44.15 %, respectively; and (3) Considering secondary probabilities improved soil type mapping accuracy by 3.55 %–7.19 %, further confirming the method's efficiency and robustness. The ED-DSM framework enables rapid mapping of soil diagnostic features and types without the need for additional soil surveys, offering a cost-effective and scalable solution for resource-limited regions and providing actionable scientific support for soil management practices. •The concept of soil diagnostic information indicators was proposed.•The digital soil mapping framework based on a retrieval process was proposed.•The pseudo-points in legacy soil map can be used for digital soil mapping.•Expert knowledge enables point assignment of diagnostic information.•The spatial details of soil type distribution are preserved in the fuzzy soil mapping results.
ArticleNumber e00998
Author Wang, Tianwei
Li, Zhaoxia
Bi, Yihui
Yang, Jiawei
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Yang
  fullname: Yang, Jiawei
  organization: Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450000, China
– sequence: 2
  givenname: Tianwei
  surname: Wang
  fullname: Wang, Tianwei
  email: wangtianwei@webmail.hzau.edu.cn
  organization: College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
– sequence: 3
  givenname: Yihui
  surname: Bi
  fullname: Bi, Yihui
  organization: College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
– sequence: 4
  givenname: Zhaoxia
  surname: Li
  fullname: Li, Zhaoxia
  organization: College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
BookMark eNp9kLFOwzAURS1UJErpHzD4BxocJ7GTBQlVQJEqscCK9bCfg0tqR3Zo6d_TKgxMTO--4VxdnUsy8cEjIdc5y3KWi5tN1mIwMWWc8SpDxpqmPiNTXlR8cXzKyZ98QeYpbRhjvKkKKfiUvK0gekzJ-Zbid49xoJ8-7Ds0LVLwhnbYgj5QAwNQGyI1rnUDdDQF19Et9P2J3Lvhg_pAPe6pddgZmr7iDg_pipxb6BLOf--MvD7cvyxXi_Xz49Pybr3QueTDwpraSmmr-l1rMFBIKEzFWWMtWCasqEEYKUsQEspCSFszNLVh0hZCGJazYkbKsVfHkFJEq_rothAPKmfqpElt1KhJnTSpUdMRux0xPG7bOYwqaYdeo3ER9aBMcP8X_ADXEXa4
Cites_doi 10.1016/j.geoderma.2014.04.020
10.1016/j.geoderma.2015.07.017
10.1016/j.geoderma.2016.05.014
10.1016/j.catena.2023.107198
10.1111/j.1467-985X.2007.00499.x
10.1016/j.catena.2017.10.016
10.1016/S1002-0160(06)60037-4
10.1016/j.geoderma.2016.12.001
10.1038/s41893-018-0076-2
10.1023/A:1010933404324
10.1016/j.geoderma.2017.01.012
10.2136/sh2004.4.0129
10.1016/j.geoderma.2021.115567
10.1177/1555343411432339
10.1016/j.geoderma.2007.01.018
10.1016/j.envsoft.2022.105423
10.1016/S0893-6080(97)00133-0
10.1016/j.geoderma.2009.04.023
10.1016/j.geoderma.2013.09.016
10.1016/j.geodrs.2017.02.001
10.1016/j.geoderma.2013.05.003
10.1016/j.geoderma.2014.09.019
10.1016/j.geoderma.2021.115041
10.2136/sssaj2010.0002
10.1016/j.geoderma.2013.09.024
10.1016/j.geoderma.2022.115802
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.geodrs.2025.e00998
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2025_e00998
S2352009425000835
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AHEUO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFKBS
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSA
SSJ
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c172t-fd8f77f58bccada37a3d5209ffaf06f68a6d774a67a4367f80ed8d07f366d0103
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Wed Aug 27 16:28:27 EDT 2025
Sat Aug 30 17:17:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Expert knowledge
Legacy soil map
Diagnostic horizon
Digital soil mapping
Diagnostic characteristics
Probabilistic mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-fd8f77f58bccada37a3d5209ffaf06f68a6d774a67a4367f80ed8d07f366d0103
ParticipantIDs crossref_primary_10_1016_j_geodrs_2025_e00998
elsevier_sciencedirect_doi_10_1016_j_geodrs_2025_e00998
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Gong (bb0190) 2012
Liaw, Wiener (bb0090) 2002; 2
Gong (bb0045) 2001
Breiman (bb0010) 2001; 45
The Office of the Leading Group of the Third National Soil Survey of the State Council (bb0150) 2022
Yang, Jiao, Fahmy, Zhu, Hann, Burt, Qi (bb0165) 2011; 75
Hartemink, Krasilnikov, Bockheim (bb0050) 2013; 207-208
Lamichhane, Kumar, Adhikari (bb0080) 2021; 394
Janssen, Brumby, Garnett (bb0065) 2012; 6
Heung, Bulmer, Schmidt (bb0055) 2014; 214-215
Ueda, Nakano (bb0155) 1998; 11
Minasny, McBratney (bb0105) 2015; 264
Pahlavan-Rad, Khormali, Toomanian, Brungard, Kiani, Komaki, Bogaert (bb0115) 2016; 279
Soil Survey Staff (bb0145) 2010
Kempen, Brus, Heuvelink, Stoorvogel (bb0070) 2009; 151
Zhi, Zhang, Yang, Yang, Liu, Song, Zhao, Li (bb0195) 2017; 10
Lamichhane, Adhikari, Kumar (bb0085) 2022; 30
Brungard, Boettinger, Duniway, Wills, Edwards (bb0020) 2015; 239-240
Rasaei, Rossiter, Farshad (bb0120) 2020; 21
Wang, Chen, Wang, Wang, Tan (bb0160) 2020; 57
Yang, Shen, Wang, Wu, Li, Li, Dai, Liang, Zhang (bb0175) 2022; 155
Zuo, Zhang, Carlson, MacDonald, Brauman, Liu, Zhang, Zhang, Wu, Zhao, Wang, Liu, Yi, Wen, Liu, Xu, Hu, Sun, Gerber, West (bb0205) 2018; 1
Carré, McBratney, Minasny (bb0030) 2007; 141
Shi, Yu, Yang, Wang, Sun, Du, Gong (bb0140) 2006; 16
Rossiter, Zeng, Zhang (bb0130) 2017; 292
Chen, Chao Arrouays, Leatitia Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Meersmans, Richer-de-Forges, Walter (bb0035) 2022; 409
Yang, Guan, Luo, Wang (bb0170) 2022; 28
Zhu, Yang, Fan, Zeng, Zhang (bb0200) 2018; 37
Shi, Yu, Warner, Pan, Petersen, Gong (bb0135) 2004; 45
Chinese Soil Taxonomy Research Group (bb0040) 2001
Bockheim (bb0005) 2018; 168
Zhang (bb0185) 2001
Heung, Hodúl, Schmidt (bb0060) 2017; 290
Rossiter (bb0125) 2008
Odgers, Sun, McBratney, Minasny, Clifford (bb0110) 2014; 214-215
Breiman, Friedman, Olshen, Stone (bb0015) 1984; 40
Liu, Zhu, Yang, Pei, Qi, Liu, Wang, Zeng, Ma (bb0095) 2022; 416
Canada Department of Agriculture (bb0025) 1974
Yang, Que, Wang, Bi, Li, Su (bb0180) 2023; 229
Miller, Schaetzl (bb0100) 2014; 230-231
Kynn (bb0075) 2008; 171
Rossiter (10.1016/j.geodrs.2025.e00998_bb0130) 2017; 292
Odgers (10.1016/j.geodrs.2025.e00998_bb0110) 2014; 214-215
Rasaei (10.1016/j.geodrs.2025.e00998_bb0120) 2020; 21
Lamichhane (10.1016/j.geodrs.2025.e00998_bb0080) 2021; 394
Lamichhane (10.1016/j.geodrs.2025.e00998_bb0085) 2022; 30
Minasny (10.1016/j.geodrs.2025.e00998_bb0105) 2015; 264
Zuo (10.1016/j.geodrs.2025.e00998_bb0205) 2018; 1
The Office of the Leading Group of the Third National Soil Survey of the State Council (10.1016/j.geodrs.2025.e00998_bb0150) 2022
Shi (10.1016/j.geodrs.2025.e00998_bb0135) 2004; 45
Soil Survey Staff (10.1016/j.geodrs.2025.e00998_bb0145) 2010
Heung (10.1016/j.geodrs.2025.e00998_bb0060) 2017; 290
Zhu (10.1016/j.geodrs.2025.e00998_bb0200) 2018; 37
Zhang (10.1016/j.geodrs.2025.e00998_bb0190) 2012
Yang (10.1016/j.geodrs.2025.e00998_bb0170) 2022; 28
Breiman (10.1016/j.geodrs.2025.e00998_bb0010) 2001; 45
Canada Department of Agriculture (10.1016/j.geodrs.2025.e00998_bb0025) 1974
Kynn (10.1016/j.geodrs.2025.e00998_bb0075) 2008; 171
Chinese Soil Taxonomy Research Group (10.1016/j.geodrs.2025.e00998_bb0040) 2001
Carré (10.1016/j.geodrs.2025.e00998_bb0030) 2007; 141
Miller (10.1016/j.geodrs.2025.e00998_bb0100) 2014; 230-231
Yang (10.1016/j.geodrs.2025.e00998_bb0175) 2022; 155
Brungard (10.1016/j.geodrs.2025.e00998_bb0020) 2015; 239-240
Zhang (10.1016/j.geodrs.2025.e00998_bb0185) 2001
Heung (10.1016/j.geodrs.2025.e00998_bb0055) 2014; 214-215
Yang (10.1016/j.geodrs.2025.e00998_bb0180) 2023; 229
Janssen (10.1016/j.geodrs.2025.e00998_bb0065) 2012; 6
Bockheim (10.1016/j.geodrs.2025.e00998_bb0005) 2018; 168
Hartemink (10.1016/j.geodrs.2025.e00998_bb0050) 2013; 207-208
Ueda (10.1016/j.geodrs.2025.e00998_bb0155) 1998; 11
Liu (10.1016/j.geodrs.2025.e00998_bb0095) 2022; 416
Zhi (10.1016/j.geodrs.2025.e00998_bb0195) 2017; 10
Liaw (10.1016/j.geodrs.2025.e00998_bb0090) 2002; 2
Shi (10.1016/j.geodrs.2025.e00998_bb0140) 2006; 16
Wang (10.1016/j.geodrs.2025.e00998_bb0160) 2020; 57
Yang (10.1016/j.geodrs.2025.e00998_bb0165) 2011; 75
Gong (10.1016/j.geodrs.2025.e00998_bb0045) 2001
Chen (10.1016/j.geodrs.2025.e00998_bb0035) 2022; 409
Rossiter (10.1016/j.geodrs.2025.e00998_bb0125) 2008
Breiman (10.1016/j.geodrs.2025.e00998_bb0015) 1984; 40
Pahlavan-Rad (10.1016/j.geodrs.2025.e00998_bb0115) 2016; 279
Kempen (10.1016/j.geodrs.2025.e00998_bb0070) 2009; 151
References_xml – volume: 45
  start-page: 129
  year: 2004
  end-page: 136
  ident: bb0135
  article-title: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system
  publication-title: Soil Surv Horiz
– volume: 1
  start-page: 304
  year: 2018
  end-page: 313
  ident: bb0205
  article-title: Progress towards sustainable intensification in China challenged by land-use change
  publication-title: Nature Sustainabil.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0010
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 416
  year: 2022
  ident: bb0095
  article-title: Influence of legacy soil map accuracy on soil map updating with data mining methods
  publication-title: Geoderma
– volume: 230-231
  start-page: 329
  year: 2014
  end-page: 339
  ident: bb0100
  article-title: The historical role of base maps in soil geography
  publication-title: Geoderma
– year: 2001
  ident: bb0040
  article-title: Chinese Soil Taxonomy
– volume: 292
  start-page: 118
  year: 2017
  end-page: 127
  ident: bb0130
  article-title: Accounting for taxonomic distance in accuracy assessment of soil class predictions
  publication-title: Geoderma
– volume: 207-208
  start-page: 256
  year: 2013
  end-page: 267
  ident: bb0050
  article-title: Soil maps of the world
  publication-title: Geoderma
– volume: 11
  start-page: 271
  year: 1998
  end-page: 282
  ident: bb0155
  article-title: Deterministic annealing EM algorithm
  publication-title: Neural Netw.
– volume: 155
  year: 2022
  ident: bb0175
  article-title: PEF-MODFLOW: a framework for preliminary soil profile horizon delineation based on soil color captured by smartphone images
  publication-title: Environ. Model. Softw.
– year: 2001
  ident: bb0045
  article-title: Chinese Soil Taxonomy, Revised (in English)
– volume: 229
  year: 2023
  ident: bb0180
  article-title: Diagnostic surface horizon vs. conventional surface horizon: the impact of topsoil delineation on the results of topsoil organic carbon density assessment in China
  publication-title: Catena
– volume: 6
  start-page: 5
  year: 2012
  end-page: 29
  ident: bb0065
  article-title: Natural break points: the influence of priorities and cognitive and motor cues on dual-task interleaving
  publication-title: J. Cognit. Engi. Decision Mak.
– volume: 57
  start-page: 1378
  year: 2020
  end-page: 1386
  ident: bb0160
  article-title: Logic expression and retrieval of soil taxonomy based on pedon
  publication-title: Acta Pedol. Sin.
– volume: 141
  start-page: 1
  year: 2007
  end-page: 14
  ident: bb0030
  article-title: Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping
  publication-title: Geoderma
– year: 1974
  ident: bb0025
  article-title: The System of Soil Classification for Canada
– year: 2022
  ident: bb0150
  article-title: The third National Soil Survey Soil Type Mapping Technical Specification, Beijing
– volume: 10
  start-page: 1
  year: 2017
  end-page: 10
  ident: bb0195
  article-title: Predicting mattic epipedons in the northeastern Qinghai-Tibetan Plateau using random forest
  publication-title: Geoderm. Reg.
– volume: 168
  start-page: 5
  year: 2018
  end-page: 13
  ident: bb0005
  article-title: Diversity of diagnostic horizons in soils of the contiguous USA: a case study
  publication-title: Catena
– volume: 394
  year: 2021
  ident: bb0080
  article-title: Updating the national soil map of Nepal through digital soil mapping
  publication-title: Geoderma
– volume: 214-215
  start-page: 141
  year: 2014
  end-page: 154
  ident: bb0055
  article-title: Predictive soil parent material mapping at a regional-scale: a random Forest approach
  publication-title: Geoderma
– volume: 171
  start-page: 239
  year: 2008
  end-page: 264
  ident: bb0075
  article-title: The ‘heuristics and biases’ bias in expert elicitation
  publication-title: J R Stat. Soc. A Stat. Soc.
– volume: 30
  year: 2022
  ident: bb0085
  article-title: National soil organic carbon map of agricultural lands in Nepal
  publication-title: Geoderm. Reg.
– volume: 151
  start-page: 311
  year: 2009
  end-page: 326
  ident: bb0070
  article-title: Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach
  publication-title: Geoderma
– volume: 279
  start-page: 141
  year: 2016
  end-page: 148
  ident: bb0115
  article-title: Legacy soil maps as a covariate in digital soil mapping: a case study from northern Iran
  publication-title: Geoderma
– volume: 28
  year: 2022
  ident: bb0170
  article-title: Cross-system legacy data applied to digital soil mapping: a case study of second National Soil Survey data in China
  publication-title: Geoderm. Reg.
– volume: 409
  year: 2022
  ident: bb0035
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review
  publication-title: Geoderma
– volume: 290
  start-page: 51
  year: 2017
  end-page: 68
  ident: bb0060
  article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes
  publication-title: Geoderma
– volume: 21
  year: 2020
  ident: bb0120
  article-title: Rescue and renewal of legacy soil resource inventories in Iran as an input to digital soil mapping
  publication-title: Geoderm. Reg.
– volume: 239-240
  start-page: 68
  year: 2015
  end-page: 83
  ident: bb0020
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0090
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 264
  start-page: 301
  year: 2015
  end-page: 311
  ident: bb0105
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
– start-page: 69
  year: 2008
  end-page: 80
  ident: bb0125
  article-title: Digital soil mapping as a component of data renewal for areas with sparse soil data infrastructures
  publication-title: Digital Soil Mapping with Limited Data
– year: 2012
  ident: bb0190
  article-title: Soil Survey Laboratory Methods
– volume: 75
  start-page: 1044
  year: 2011
  end-page: 1053
  ident: bb0165
  article-title: Updating conventional soil maps through digital soil mapping
  publication-title: Soil Sci. Soc. Am. J.
– volume: 16
  start-page: 147
  year: 2006
  end-page: 153
  ident: bb0140
  article-title: Cross-reference benchmarks for translating the genetic soil classification of China into the Chinese soil taxonomy
  publication-title: Pedosphere
– volume: 37
  start-page: 66
  year: 2018
  end-page: 78
  ident: bb0200
  article-title: The review and outlook of digital soil mapping
  publication-title: Progr. Geogr. (in China)
– volume: 214-215
  start-page: 91
  year: 2014
  end-page: 100
  ident: bb0110
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
– year: 2010
  ident: bb0145
  article-title: Keys to Soil Taxonomy
– year: 2001
  ident: bb0185
  article-title: Soil Series Research and Mapping
– volume: 40
  start-page: 358
  year: 1984
  ident: bb0015
  article-title: Classification and regression trees
  publication-title: Biometrics
– volume: 230-231
  start-page: 329
  year: 2014
  ident: 10.1016/j.geodrs.2025.e00998_bb0100
  article-title: The historical role of base maps in soil geography
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.020
– volume: 264
  start-page: 301
  year: 2015
  ident: 10.1016/j.geodrs.2025.e00998_bb0105
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 279
  start-page: 141
  year: 2016
  ident: 10.1016/j.geodrs.2025.e00998_bb0115
  article-title: Legacy soil maps as a covariate in digital soil mapping: a case study from northern Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.05.014
– volume: 229
  year: 2023
  ident: 10.1016/j.geodrs.2025.e00998_bb0180
  article-title: Diagnostic surface horizon vs. conventional surface horizon: the impact of topsoil delineation on the results of topsoil organic carbon density assessment in China
  publication-title: Catena
  doi: 10.1016/j.catena.2023.107198
– volume: 171
  start-page: 239
  year: 2008
  ident: 10.1016/j.geodrs.2025.e00998_bb0075
  article-title: The ‘heuristics and biases’ bias in expert elicitation
  publication-title: J R Stat. Soc. A Stat. Soc.
  doi: 10.1111/j.1467-985X.2007.00499.x
– volume: 168
  start-page: 5
  issue: 168
  year: 2018
  ident: 10.1016/j.geodrs.2025.e00998_bb0005
  article-title: Diversity of diagnostic horizons in soils of the contiguous USA: a case study
  publication-title: Catena
  doi: 10.1016/j.catena.2017.10.016
– volume: 16
  start-page: 147
  issue: 2
  year: 2006
  ident: 10.1016/j.geodrs.2025.e00998_bb0140
  article-title: Cross-reference benchmarks for translating the genetic soil classification of China into the Chinese soil taxonomy
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(06)60037-4
– volume: 37
  start-page: 66
  issue: 1
  year: 2018
  ident: 10.1016/j.geodrs.2025.e00998_bb0200
  article-title: The review and outlook of digital soil mapping
  publication-title: Progr. Geogr. (in China)
– volume: 290
  start-page: 51
  year: 2017
  ident: 10.1016/j.geodrs.2025.e00998_bb0060
  article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.001
– volume: 1
  start-page: 304
  issue: 6
  year: 2018
  ident: 10.1016/j.geodrs.2025.e00998_bb0205
  article-title: Progress towards sustainable intensification in China challenged by land-use change
  publication-title: Nature Sustainabil.
  doi: 10.1038/s41893-018-0076-2
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geodrs.2025.e00998_bb0010
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 292
  start-page: 118
  year: 2017
  ident: 10.1016/j.geodrs.2025.e00998_bb0130
  article-title: Accounting for taxonomic distance in accuracy assessment of soil class predictions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.012
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.geodrs.2025.e00998_bb0090
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 45
  start-page: 129
  issue: 4
  year: 2004
  ident: 10.1016/j.geodrs.2025.e00998_bb0135
  article-title: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system
  publication-title: Soil Surv Horiz
  doi: 10.2136/sh2004.4.0129
– volume: 409
  year: 2022
  ident: 10.1016/j.geodrs.2025.e00998_bb0035
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115567
– volume: 6
  start-page: 5
  issue: 1
  year: 2012
  ident: 10.1016/j.geodrs.2025.e00998_bb0065
  article-title: Natural break points: the influence of priorities and cognitive and motor cues on dual-task interleaving
  publication-title: J. Cognit. Engi. Decision Mak.
  doi: 10.1177/1555343411432339
– year: 2001
  ident: 10.1016/j.geodrs.2025.e00998_bb0040
– year: 2001
  ident: 10.1016/j.geodrs.2025.e00998_bb0045
– volume: 141
  start-page: 1
  year: 2007
  ident: 10.1016/j.geodrs.2025.e00998_bb0030
  article-title: Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.01.018
– volume: 57
  start-page: 1378
  issue: 6
  year: 2020
  ident: 10.1016/j.geodrs.2025.e00998_bb0160
  article-title: Logic expression and retrieval of soil taxonomy based on pedon
  publication-title: Acta Pedol. Sin.
– year: 1974
  ident: 10.1016/j.geodrs.2025.e00998_bb0025
– volume: 155
  year: 2022
  ident: 10.1016/j.geodrs.2025.e00998_bb0175
  article-title: PEF-MODFLOW: a framework for preliminary soil profile horizon delineation based on soil color captured by smartphone images
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2022.105423
– volume: 11
  start-page: 271
  year: 1998
  ident: 10.1016/j.geodrs.2025.e00998_bb0155
  article-title: Deterministic annealing EM algorithm
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(97)00133-0
– volume: 151
  start-page: 311
  issue: 3–4
  year: 2009
  ident: 10.1016/j.geodrs.2025.e00998_bb0070
  article-title: Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.04.023
– volume: 21
  year: 2020
  ident: 10.1016/j.geodrs.2025.e00998_bb0120
  article-title: Rescue and renewal of legacy soil resource inventories in Iran as an input to digital soil mapping
  publication-title: Geoderm. Reg.
– volume: 28
  year: 2022
  ident: 10.1016/j.geodrs.2025.e00998_bb0170
  article-title: Cross-system legacy data applied to digital soil mapping: a case study of second National Soil Survey data in China
  publication-title: Geoderm. Reg.
– volume: 214-215
  start-page: 141
  year: 2014
  ident: 10.1016/j.geodrs.2025.e00998_bb0055
  article-title: Predictive soil parent material mapping at a regional-scale: a random Forest approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.016
– volume: 30
  year: 2022
  ident: 10.1016/j.geodrs.2025.e00998_bb0085
  article-title: National soil organic carbon map of agricultural lands in Nepal
  publication-title: Geoderm. Reg.
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.geodrs.2025.e00998_bb0195
  article-title: Predicting mattic epipedons in the northeastern Qinghai-Tibetan Plateau using random forest
  publication-title: Geoderm. Reg.
  doi: 10.1016/j.geodrs.2017.02.001
– volume: 207-208
  start-page: 256
  year: 2013
  ident: 10.1016/j.geodrs.2025.e00998_bb0050
  article-title: Soil maps of the world
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.05.003
– year: 2010
  ident: 10.1016/j.geodrs.2025.e00998_bb0145
– volume: 239-240
  start-page: 68
  year: 2015
  ident: 10.1016/j.geodrs.2025.e00998_bb0020
  article-title: Machine learning for predicting soil classes in three semi-arid landscapes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.019
– volume: 40
  start-page: 358
  issue: 3
  year: 1984
  ident: 10.1016/j.geodrs.2025.e00998_bb0015
  article-title: Classification and regression trees
  publication-title: Biometrics
– volume: 394
  year: 2021
  ident: 10.1016/j.geodrs.2025.e00998_bb0080
  article-title: Updating the national soil map of Nepal through digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115041
– volume: 75
  start-page: 1044
  issue: 3
  year: 2011
  ident: 10.1016/j.geodrs.2025.e00998_bb0165
  article-title: Updating conventional soil maps through digital soil mapping
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0002
– year: 2001
  ident: 10.1016/j.geodrs.2025.e00998_bb0185
– volume: 214-215
  start-page: 91
  year: 2014
  ident: 10.1016/j.geodrs.2025.e00998_bb0110
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.024
– year: 2012
  ident: 10.1016/j.geodrs.2025.e00998_bb0190
– start-page: 69
  year: 2008
  ident: 10.1016/j.geodrs.2025.e00998_bb0125
  article-title: Digital soil mapping as a component of data renewal for areas with sparse soil data infrastructures
– volume: 416
  year: 2022
  ident: 10.1016/j.geodrs.2025.e00998_bb0095
  article-title: Influence of legacy soil map accuracy on soil map updating with data mining methods
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.115802
– year: 2022
  ident: 10.1016/j.geodrs.2025.e00998_bb0150
SSID ssj0002953762
Score 2.3199089
Snippet Legacy soil maps, derived from extensive soil surveys, contain invaluable information crucial for soil management practices. However, these maps risk...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage e00998
SubjectTerms Diagnostic characteristics
Diagnostic horizon
Digital soil mapping
Expert knowledge
Legacy soil map
Probabilistic mapping
Title Harnessing expert knowledge and legacy data for digital soil mapping with no new field surveys
URI https://dx.doi.org/10.1016/j.geodrs.2025.e00998
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5RQ5e47J-JOlxDEd1uIM63MmSNUmpaDu6TvC_N68fQ0E8eCotPCi_JO_9ePm99xC6CoSK4bqMaM19uGakRKpAEOWpQBrPF9SBeuf7GQvn3t3CX3TQuK2FAVll4_trn1556-bLoEFzsErTwaPjVi2D7KaricQO6jk2utIu6o1up-Fsm2pxAuhZ4lRj5nyHgE1bRFcpvRKdqwJadzv-tQbKJH4PUt8Cz2Qf7TWMEY_qnzpAHZ0dopdQFuCkbODBVZP-Em-zY1hmCr_pRMafGASg2PJSrNIExoPgdZ6-4XcJXRkSDElYnOXYUmtcSdnwelN82LU9QvPJzdM4JM2oBBJbBlISo4Th3PhiaVdESZdLV4HAxRhpKDNMSKYs0ZOMS89l3AiqlVCUG5cxBaMejlE3yzN9gjBdmoC6JjCQ3wgED6RFdajhpMuhjlUfkRabaFV3xIhaqdhrVGMZAZZRjWUf8RbA6MfKRtZp_2l5-m_LM7QLb7UW7Bx1y2KjLyx5KJeXzeaA5_ThefoFDhvGFg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZKO8CCQIB4cwOMoanTxPbAUAFVSh8LRWIiuLVdFZW06gPU38UfxJdHBRJiQGJN5Cj5crn7cv7ujpBzwVUft8scrZmP24yuI5XgjqoqIU3V5y7Feud2JwgfqneP_mOBfOS1MCirzHx_6tMTb50dKWdolifDYfmeeknLIGt0KZHIlJVNvXy3_22zq8aNfckXlNZvu9ehk40WcPo2Ys8do7hhzPi8Z59ASY9JT6EgxBhp3MAEXAbKEiMZMFn1Ama4qxVXLjNeECgcjWCvu0ZK2A3LflalWqMZdlapHSqwRwpNxtr51MF7zIv2EmXZQI_VFFuFU_9SI0XjPwfFL4GuvkU2M4YKtRSEbVLQ8Q55CuUUnaINdJAMBZjDKhsHMlYw0gPZXwIKTsHyYFDDAY4jgdl4OIJXiV0gBoBJX4jHYKk8JNI5mC2mb9aWdsnDv-C3R4rxONb7BNyeEa5nhMF8iuBMSOqJikbPIiu6rw6Ik2MTTdIOHFEuTXuJUiwjxDJKsTwgLAcw-mZJkQ0Sv648_PPKM7IedtutqNXoNI_IBp5JdWjHpDifLvSJJS7z3mlmKECe_9s2PwH3aQKP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+expert+knowledge+and+legacy+data+for+digital+soil+mapping+with+no+new+field+surveys&rft.jtitle=Geoderma+Regional&rft.au=Yang%2C+Jiawei&rft.au=Wang%2C+Tianwei&rft.au=Bi%2C+Yihui&rft.au=Li%2C+Zhaoxia&rft.date=2025-09-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=42&rft.spage=e00998&rft_id=info:doi/10.1016%2Fj.geodrs.2025.e00998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geodrs_2025_e00998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon