Harnessing expert knowledge and legacy data for digital soil mapping with no new field surveys
Legacy soil maps, derived from extensive soil surveys, contain invaluable information crucial for soil management practices. However, these maps risk obsolescence due to outdated technology, changes in classification systems, and evolving soil types. Addressing the need for high-precision and high-r...
Saved in:
Published in | Geoderma Regional Vol. 42; p. e00998 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Legacy soil maps, derived from extensive soil surveys, contain invaluable information crucial for soil management practices. However, these maps risk obsolescence due to outdated technology, changes in classification systems, and evolving soil types. Addressing the need for high-precision and high-resolution soil maps, particularly in regions lacking comprehensive survey data, this study proposes an innovative framework for Expert Knowledge and Diagnostic Information-based Digital Soil Mapping (ED-DSM), enabling digital soil mapping with no new field surveys by integrating expert knowledge with diagnostic information. The framework leverages diagnostic horizons and attributes from Chinese Soil Taxonomy (CST), combined with expert assessments of the probability of certain diagnostic features within legacy map units, to extract pseudo-points and assign diagnostic feature types using expert-guided probability-constrained deterministic annealing clustering. Through repeated random sampling and random forest modeling, probability distributions for all diagnostic features are generated, and retrieval rules are constructed to create probabilistic soil type maps. Application of the framework in a county in China yielded the following key findings: (1) ED-DSM successfully generated probability distributions for 16 diagnostic features and produced maximum and secondary probability distribution maps of soil types at the order, suborder, group, and subgroup levels based on the CST, demonstrating exceptional spatial detail; (2) Validation using 33 soil profiles showed an average mapping accuracy for diagnostic features ranging from 0.62 to 0.99, while the average accuracy for soil types at the order, suborder, group, and subgroup levels under maximum probability were 65.86 %, 65.03 %, 47.85 %, and 44.15 %, respectively; and (3) Considering secondary probabilities improved soil type mapping accuracy by 3.55 %–7.19 %, further confirming the method's efficiency and robustness. The ED-DSM framework enables rapid mapping of soil diagnostic features and types without the need for additional soil surveys, offering a cost-effective and scalable solution for resource-limited regions and providing actionable scientific support for soil management practices.
•The concept of soil diagnostic information indicators was proposed.•The digital soil mapping framework based on a retrieval process was proposed.•The pseudo-points in legacy soil map can be used for digital soil mapping.•Expert knowledge enables point assignment of diagnostic information.•The spatial details of soil type distribution are preserved in the fuzzy soil mapping results. |
---|---|
AbstractList | Legacy soil maps, derived from extensive soil surveys, contain invaluable information crucial for soil management practices. However, these maps risk obsolescence due to outdated technology, changes in classification systems, and evolving soil types. Addressing the need for high-precision and high-resolution soil maps, particularly in regions lacking comprehensive survey data, this study proposes an innovative framework for Expert Knowledge and Diagnostic Information-based Digital Soil Mapping (ED-DSM), enabling digital soil mapping with no new field surveys by integrating expert knowledge with diagnostic information. The framework leverages diagnostic horizons and attributes from Chinese Soil Taxonomy (CST), combined with expert assessments of the probability of certain diagnostic features within legacy map units, to extract pseudo-points and assign diagnostic feature types using expert-guided probability-constrained deterministic annealing clustering. Through repeated random sampling and random forest modeling, probability distributions for all diagnostic features are generated, and retrieval rules are constructed to create probabilistic soil type maps. Application of the framework in a county in China yielded the following key findings: (1) ED-DSM successfully generated probability distributions for 16 diagnostic features and produced maximum and secondary probability distribution maps of soil types at the order, suborder, group, and subgroup levels based on the CST, demonstrating exceptional spatial detail; (2) Validation using 33 soil profiles showed an average mapping accuracy for diagnostic features ranging from 0.62 to 0.99, while the average accuracy for soil types at the order, suborder, group, and subgroup levels under maximum probability were 65.86 %, 65.03 %, 47.85 %, and 44.15 %, respectively; and (3) Considering secondary probabilities improved soil type mapping accuracy by 3.55 %–7.19 %, further confirming the method's efficiency and robustness. The ED-DSM framework enables rapid mapping of soil diagnostic features and types without the need for additional soil surveys, offering a cost-effective and scalable solution for resource-limited regions and providing actionable scientific support for soil management practices.
•The concept of soil diagnostic information indicators was proposed.•The digital soil mapping framework based on a retrieval process was proposed.•The pseudo-points in legacy soil map can be used for digital soil mapping.•Expert knowledge enables point assignment of diagnostic information.•The spatial details of soil type distribution are preserved in the fuzzy soil mapping results. |
ArticleNumber | e00998 |
Author | Wang, Tianwei Li, Zhaoxia Bi, Yihui Yang, Jiawei |
Author_xml | – sequence: 1 givenname: Jiawei surname: Yang fullname: Yang, Jiawei organization: Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450000, China – sequence: 2 givenname: Tianwei surname: Wang fullname: Wang, Tianwei email: wangtianwei@webmail.hzau.edu.cn organization: College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China – sequence: 3 givenname: Yihui surname: Bi fullname: Bi, Yihui organization: College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China – sequence: 4 givenname: Zhaoxia surname: Li fullname: Li, Zhaoxia organization: College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China |
BookMark | eNp9kLFOwzAURS1UJErpHzD4BxocJ7GTBQlVQJEqscCK9bCfg0tqR3Zo6d_TKgxMTO--4VxdnUsy8cEjIdc5y3KWi5tN1mIwMWWc8SpDxpqmPiNTXlR8cXzKyZ98QeYpbRhjvKkKKfiUvK0gekzJ-Zbid49xoJ8-7Ds0LVLwhnbYgj5QAwNQGyI1rnUDdDQF19Et9P2J3Lvhg_pAPe6pddgZmr7iDg_pipxb6BLOf--MvD7cvyxXi_Xz49Pybr3QueTDwpraSmmr-l1rMFBIKEzFWWMtWCasqEEYKUsQEspCSFszNLVh0hZCGJazYkbKsVfHkFJEq_rothAPKmfqpElt1KhJnTSpUdMRux0xPG7bOYwqaYdeo3ER9aBMcP8X_ADXEXa4 |
Cites_doi | 10.1016/j.geoderma.2014.04.020 10.1016/j.geoderma.2015.07.017 10.1016/j.geoderma.2016.05.014 10.1016/j.catena.2023.107198 10.1111/j.1467-985X.2007.00499.x 10.1016/j.catena.2017.10.016 10.1016/S1002-0160(06)60037-4 10.1016/j.geoderma.2016.12.001 10.1038/s41893-018-0076-2 10.1023/A:1010933404324 10.1016/j.geoderma.2017.01.012 10.2136/sh2004.4.0129 10.1016/j.geoderma.2021.115567 10.1177/1555343411432339 10.1016/j.geoderma.2007.01.018 10.1016/j.envsoft.2022.105423 10.1016/S0893-6080(97)00133-0 10.1016/j.geoderma.2009.04.023 10.1016/j.geoderma.2013.09.016 10.1016/j.geodrs.2017.02.001 10.1016/j.geoderma.2013.05.003 10.1016/j.geoderma.2014.09.019 10.1016/j.geoderma.2021.115041 10.2136/sssaj2010.0002 10.1016/j.geoderma.2013.09.024 10.1016/j.geoderma.2022.115802 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.geodrs.2025.e00998 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2025_e00998 S2352009425000835 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO AAYWO ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AHEUO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFKBS EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSA SSJ SSZ T5K ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c172t-fd8f77f58bccada37a3d5209ffaf06f68a6d774a67a4367f80ed8d07f366d0103 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Wed Aug 27 16:28:27 EDT 2025 Sat Aug 30 17:17:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Expert knowledge Legacy soil map Diagnostic horizon Digital soil mapping Diagnostic characteristics Probabilistic mapping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-fd8f77f58bccada37a3d5209ffaf06f68a6d774a67a4367f80ed8d07f366d0103 |
ParticipantIDs | crossref_primary_10_1016_j_geodrs_2025_e00998 elsevier_sciencedirect_doi_10_1016_j_geodrs_2025_e00998 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Gong (bb0190) 2012 Liaw, Wiener (bb0090) 2002; 2 Gong (bb0045) 2001 Breiman (bb0010) 2001; 45 The Office of the Leading Group of the Third National Soil Survey of the State Council (bb0150) 2022 Yang, Jiao, Fahmy, Zhu, Hann, Burt, Qi (bb0165) 2011; 75 Hartemink, Krasilnikov, Bockheim (bb0050) 2013; 207-208 Lamichhane, Kumar, Adhikari (bb0080) 2021; 394 Janssen, Brumby, Garnett (bb0065) 2012; 6 Heung, Bulmer, Schmidt (bb0055) 2014; 214-215 Ueda, Nakano (bb0155) 1998; 11 Minasny, McBratney (bb0105) 2015; 264 Pahlavan-Rad, Khormali, Toomanian, Brungard, Kiani, Komaki, Bogaert (bb0115) 2016; 279 Soil Survey Staff (bb0145) 2010 Kempen, Brus, Heuvelink, Stoorvogel (bb0070) 2009; 151 Zhi, Zhang, Yang, Yang, Liu, Song, Zhao, Li (bb0195) 2017; 10 Lamichhane, Adhikari, Kumar (bb0085) 2022; 30 Brungard, Boettinger, Duniway, Wills, Edwards (bb0020) 2015; 239-240 Rasaei, Rossiter, Farshad (bb0120) 2020; 21 Wang, Chen, Wang, Wang, Tan (bb0160) 2020; 57 Yang, Shen, Wang, Wu, Li, Li, Dai, Liang, Zhang (bb0175) 2022; 155 Zuo, Zhang, Carlson, MacDonald, Brauman, Liu, Zhang, Zhang, Wu, Zhao, Wang, Liu, Yi, Wen, Liu, Xu, Hu, Sun, Gerber, West (bb0205) 2018; 1 Carré, McBratney, Minasny (bb0030) 2007; 141 Shi, Yu, Yang, Wang, Sun, Du, Gong (bb0140) 2006; 16 Rossiter, Zeng, Zhang (bb0130) 2017; 292 Chen, Chao Arrouays, Leatitia Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Meersmans, Richer-de-Forges, Walter (bb0035) 2022; 409 Yang, Guan, Luo, Wang (bb0170) 2022; 28 Zhu, Yang, Fan, Zeng, Zhang (bb0200) 2018; 37 Shi, Yu, Warner, Pan, Petersen, Gong (bb0135) 2004; 45 Chinese Soil Taxonomy Research Group (bb0040) 2001 Bockheim (bb0005) 2018; 168 Zhang (bb0185) 2001 Heung, Hodúl, Schmidt (bb0060) 2017; 290 Rossiter (bb0125) 2008 Odgers, Sun, McBratney, Minasny, Clifford (bb0110) 2014; 214-215 Breiman, Friedman, Olshen, Stone (bb0015) 1984; 40 Liu, Zhu, Yang, Pei, Qi, Liu, Wang, Zeng, Ma (bb0095) 2022; 416 Canada Department of Agriculture (bb0025) 1974 Yang, Que, Wang, Bi, Li, Su (bb0180) 2023; 229 Miller, Schaetzl (bb0100) 2014; 230-231 Kynn (bb0075) 2008; 171 Rossiter (10.1016/j.geodrs.2025.e00998_bb0130) 2017; 292 Odgers (10.1016/j.geodrs.2025.e00998_bb0110) 2014; 214-215 Rasaei (10.1016/j.geodrs.2025.e00998_bb0120) 2020; 21 Lamichhane (10.1016/j.geodrs.2025.e00998_bb0080) 2021; 394 Lamichhane (10.1016/j.geodrs.2025.e00998_bb0085) 2022; 30 Minasny (10.1016/j.geodrs.2025.e00998_bb0105) 2015; 264 Zuo (10.1016/j.geodrs.2025.e00998_bb0205) 2018; 1 The Office of the Leading Group of the Third National Soil Survey of the State Council (10.1016/j.geodrs.2025.e00998_bb0150) 2022 Shi (10.1016/j.geodrs.2025.e00998_bb0135) 2004; 45 Soil Survey Staff (10.1016/j.geodrs.2025.e00998_bb0145) 2010 Heung (10.1016/j.geodrs.2025.e00998_bb0060) 2017; 290 Zhu (10.1016/j.geodrs.2025.e00998_bb0200) 2018; 37 Zhang (10.1016/j.geodrs.2025.e00998_bb0190) 2012 Yang (10.1016/j.geodrs.2025.e00998_bb0170) 2022; 28 Breiman (10.1016/j.geodrs.2025.e00998_bb0010) 2001; 45 Canada Department of Agriculture (10.1016/j.geodrs.2025.e00998_bb0025) 1974 Kynn (10.1016/j.geodrs.2025.e00998_bb0075) 2008; 171 Chinese Soil Taxonomy Research Group (10.1016/j.geodrs.2025.e00998_bb0040) 2001 Carré (10.1016/j.geodrs.2025.e00998_bb0030) 2007; 141 Miller (10.1016/j.geodrs.2025.e00998_bb0100) 2014; 230-231 Yang (10.1016/j.geodrs.2025.e00998_bb0175) 2022; 155 Brungard (10.1016/j.geodrs.2025.e00998_bb0020) 2015; 239-240 Zhang (10.1016/j.geodrs.2025.e00998_bb0185) 2001 Heung (10.1016/j.geodrs.2025.e00998_bb0055) 2014; 214-215 Yang (10.1016/j.geodrs.2025.e00998_bb0180) 2023; 229 Janssen (10.1016/j.geodrs.2025.e00998_bb0065) 2012; 6 Bockheim (10.1016/j.geodrs.2025.e00998_bb0005) 2018; 168 Hartemink (10.1016/j.geodrs.2025.e00998_bb0050) 2013; 207-208 Ueda (10.1016/j.geodrs.2025.e00998_bb0155) 1998; 11 Liu (10.1016/j.geodrs.2025.e00998_bb0095) 2022; 416 Zhi (10.1016/j.geodrs.2025.e00998_bb0195) 2017; 10 Liaw (10.1016/j.geodrs.2025.e00998_bb0090) 2002; 2 Shi (10.1016/j.geodrs.2025.e00998_bb0140) 2006; 16 Wang (10.1016/j.geodrs.2025.e00998_bb0160) 2020; 57 Yang (10.1016/j.geodrs.2025.e00998_bb0165) 2011; 75 Gong (10.1016/j.geodrs.2025.e00998_bb0045) 2001 Chen (10.1016/j.geodrs.2025.e00998_bb0035) 2022; 409 Rossiter (10.1016/j.geodrs.2025.e00998_bb0125) 2008 Breiman (10.1016/j.geodrs.2025.e00998_bb0015) 1984; 40 Pahlavan-Rad (10.1016/j.geodrs.2025.e00998_bb0115) 2016; 279 Kempen (10.1016/j.geodrs.2025.e00998_bb0070) 2009; 151 |
References_xml | – volume: 45 start-page: 129 year: 2004 end-page: 136 ident: bb0135 article-title: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system publication-title: Soil Surv Horiz – volume: 1 start-page: 304 year: 2018 end-page: 313 ident: bb0205 article-title: Progress towards sustainable intensification in China challenged by land-use change publication-title: Nature Sustainabil. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0010 article-title: Random forests publication-title: Mach. Learn. – volume: 416 year: 2022 ident: bb0095 article-title: Influence of legacy soil map accuracy on soil map updating with data mining methods publication-title: Geoderma – volume: 230-231 start-page: 329 year: 2014 end-page: 339 ident: bb0100 article-title: The historical role of base maps in soil geography publication-title: Geoderma – year: 2001 ident: bb0040 article-title: Chinese Soil Taxonomy – volume: 292 start-page: 118 year: 2017 end-page: 127 ident: bb0130 article-title: Accounting for taxonomic distance in accuracy assessment of soil class predictions publication-title: Geoderma – volume: 207-208 start-page: 256 year: 2013 end-page: 267 ident: bb0050 article-title: Soil maps of the world publication-title: Geoderma – volume: 11 start-page: 271 year: 1998 end-page: 282 ident: bb0155 article-title: Deterministic annealing EM algorithm publication-title: Neural Netw. – volume: 155 year: 2022 ident: bb0175 article-title: PEF-MODFLOW: a framework for preliminary soil profile horizon delineation based on soil color captured by smartphone images publication-title: Environ. Model. Softw. – year: 2001 ident: bb0045 article-title: Chinese Soil Taxonomy, Revised (in English) – volume: 229 year: 2023 ident: bb0180 article-title: Diagnostic surface horizon vs. conventional surface horizon: the impact of topsoil delineation on the results of topsoil organic carbon density assessment in China publication-title: Catena – volume: 6 start-page: 5 year: 2012 end-page: 29 ident: bb0065 article-title: Natural break points: the influence of priorities and cognitive and motor cues on dual-task interleaving publication-title: J. Cognit. Engi. Decision Mak. – volume: 57 start-page: 1378 year: 2020 end-page: 1386 ident: bb0160 article-title: Logic expression and retrieval of soil taxonomy based on pedon publication-title: Acta Pedol. Sin. – volume: 141 start-page: 1 year: 2007 end-page: 14 ident: bb0030 article-title: Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping publication-title: Geoderma – year: 1974 ident: bb0025 article-title: The System of Soil Classification for Canada – year: 2022 ident: bb0150 article-title: The third National Soil Survey Soil Type Mapping Technical Specification, Beijing – volume: 10 start-page: 1 year: 2017 end-page: 10 ident: bb0195 article-title: Predicting mattic epipedons in the northeastern Qinghai-Tibetan Plateau using random forest publication-title: Geoderm. Reg. – volume: 168 start-page: 5 year: 2018 end-page: 13 ident: bb0005 article-title: Diversity of diagnostic horizons in soils of the contiguous USA: a case study publication-title: Catena – volume: 394 year: 2021 ident: bb0080 article-title: Updating the national soil map of Nepal through digital soil mapping publication-title: Geoderma – volume: 214-215 start-page: 141 year: 2014 end-page: 154 ident: bb0055 article-title: Predictive soil parent material mapping at a regional-scale: a random Forest approach publication-title: Geoderma – volume: 171 start-page: 239 year: 2008 end-page: 264 ident: bb0075 article-title: The ‘heuristics and biases’ bias in expert elicitation publication-title: J R Stat. Soc. A Stat. Soc. – volume: 30 year: 2022 ident: bb0085 article-title: National soil organic carbon map of agricultural lands in Nepal publication-title: Geoderm. Reg. – volume: 151 start-page: 311 year: 2009 end-page: 326 ident: bb0070 article-title: Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach publication-title: Geoderma – volume: 279 start-page: 141 year: 2016 end-page: 148 ident: bb0115 article-title: Legacy soil maps as a covariate in digital soil mapping: a case study from northern Iran publication-title: Geoderma – volume: 28 year: 2022 ident: bb0170 article-title: Cross-system legacy data applied to digital soil mapping: a case study of second National Soil Survey data in China publication-title: Geoderm. Reg. – volume: 409 year: 2022 ident: bb0035 article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review publication-title: Geoderma – volume: 290 start-page: 51 year: 2017 end-page: 68 ident: bb0060 article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes publication-title: Geoderma – volume: 21 year: 2020 ident: bb0120 article-title: Rescue and renewal of legacy soil resource inventories in Iran as an input to digital soil mapping publication-title: Geoderm. Reg. – volume: 239-240 start-page: 68 year: 2015 end-page: 83 ident: bb0020 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0090 article-title: Classification and regression by randomForest publication-title: R News – volume: 264 start-page: 301 year: 2015 end-page: 311 ident: bb0105 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma – start-page: 69 year: 2008 end-page: 80 ident: bb0125 article-title: Digital soil mapping as a component of data renewal for areas with sparse soil data infrastructures publication-title: Digital Soil Mapping with Limited Data – year: 2012 ident: bb0190 article-title: Soil Survey Laboratory Methods – volume: 75 start-page: 1044 year: 2011 end-page: 1053 ident: bb0165 article-title: Updating conventional soil maps through digital soil mapping publication-title: Soil Sci. Soc. Am. J. – volume: 16 start-page: 147 year: 2006 end-page: 153 ident: bb0140 article-title: Cross-reference benchmarks for translating the genetic soil classification of China into the Chinese soil taxonomy publication-title: Pedosphere – volume: 37 start-page: 66 year: 2018 end-page: 78 ident: bb0200 article-title: The review and outlook of digital soil mapping publication-title: Progr. Geogr. (in China) – volume: 214-215 start-page: 91 year: 2014 end-page: 100 ident: bb0110 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma – year: 2010 ident: bb0145 article-title: Keys to Soil Taxonomy – year: 2001 ident: bb0185 article-title: Soil Series Research and Mapping – volume: 40 start-page: 358 year: 1984 ident: bb0015 article-title: Classification and regression trees publication-title: Biometrics – volume: 230-231 start-page: 329 year: 2014 ident: 10.1016/j.geodrs.2025.e00998_bb0100 article-title: The historical role of base maps in soil geography publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.020 – volume: 264 start-page: 301 year: 2015 ident: 10.1016/j.geodrs.2025.e00998_bb0105 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.017 – volume: 279 start-page: 141 year: 2016 ident: 10.1016/j.geodrs.2025.e00998_bb0115 article-title: Legacy soil maps as a covariate in digital soil mapping: a case study from northern Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2016.05.014 – volume: 229 year: 2023 ident: 10.1016/j.geodrs.2025.e00998_bb0180 article-title: Diagnostic surface horizon vs. conventional surface horizon: the impact of topsoil delineation on the results of topsoil organic carbon density assessment in China publication-title: Catena doi: 10.1016/j.catena.2023.107198 – volume: 171 start-page: 239 year: 2008 ident: 10.1016/j.geodrs.2025.e00998_bb0075 article-title: The ‘heuristics and biases’ bias in expert elicitation publication-title: J R Stat. Soc. A Stat. Soc. doi: 10.1111/j.1467-985X.2007.00499.x – volume: 168 start-page: 5 issue: 168 year: 2018 ident: 10.1016/j.geodrs.2025.e00998_bb0005 article-title: Diversity of diagnostic horizons in soils of the contiguous USA: a case study publication-title: Catena doi: 10.1016/j.catena.2017.10.016 – volume: 16 start-page: 147 issue: 2 year: 2006 ident: 10.1016/j.geodrs.2025.e00998_bb0140 article-title: Cross-reference benchmarks for translating the genetic soil classification of China into the Chinese soil taxonomy publication-title: Pedosphere doi: 10.1016/S1002-0160(06)60037-4 – volume: 37 start-page: 66 issue: 1 year: 2018 ident: 10.1016/j.geodrs.2025.e00998_bb0200 article-title: The review and outlook of digital soil mapping publication-title: Progr. Geogr. (in China) – volume: 290 start-page: 51 year: 2017 ident: 10.1016/j.geodrs.2025.e00998_bb0060 article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.001 – volume: 1 start-page: 304 issue: 6 year: 2018 ident: 10.1016/j.geodrs.2025.e00998_bb0205 article-title: Progress towards sustainable intensification in China challenged by land-use change publication-title: Nature Sustainabil. doi: 10.1038/s41893-018-0076-2 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geodrs.2025.e00998_bb0010 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 292 start-page: 118 year: 2017 ident: 10.1016/j.geodrs.2025.e00998_bb0130 article-title: Accounting for taxonomic distance in accuracy assessment of soil class predictions publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.012 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.geodrs.2025.e00998_bb0090 article-title: Classification and regression by randomForest publication-title: R News – volume: 45 start-page: 129 issue: 4 year: 2004 ident: 10.1016/j.geodrs.2025.e00998_bb0135 article-title: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system publication-title: Soil Surv Horiz doi: 10.2136/sh2004.4.0129 – volume: 409 year: 2022 ident: 10.1016/j.geodrs.2025.e00998_bb0035 article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115567 – volume: 6 start-page: 5 issue: 1 year: 2012 ident: 10.1016/j.geodrs.2025.e00998_bb0065 article-title: Natural break points: the influence of priorities and cognitive and motor cues on dual-task interleaving publication-title: J. Cognit. Engi. Decision Mak. doi: 10.1177/1555343411432339 – year: 2001 ident: 10.1016/j.geodrs.2025.e00998_bb0040 – year: 2001 ident: 10.1016/j.geodrs.2025.e00998_bb0045 – volume: 141 start-page: 1 year: 2007 ident: 10.1016/j.geodrs.2025.e00998_bb0030 article-title: Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2007.01.018 – volume: 57 start-page: 1378 issue: 6 year: 2020 ident: 10.1016/j.geodrs.2025.e00998_bb0160 article-title: Logic expression and retrieval of soil taxonomy based on pedon publication-title: Acta Pedol. Sin. – year: 1974 ident: 10.1016/j.geodrs.2025.e00998_bb0025 – volume: 155 year: 2022 ident: 10.1016/j.geodrs.2025.e00998_bb0175 article-title: PEF-MODFLOW: a framework for preliminary soil profile horizon delineation based on soil color captured by smartphone images publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2022.105423 – volume: 11 start-page: 271 year: 1998 ident: 10.1016/j.geodrs.2025.e00998_bb0155 article-title: Deterministic annealing EM algorithm publication-title: Neural Netw. doi: 10.1016/S0893-6080(97)00133-0 – volume: 151 start-page: 311 issue: 3–4 year: 2009 ident: 10.1016/j.geodrs.2025.e00998_bb0070 article-title: Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach publication-title: Geoderma doi: 10.1016/j.geoderma.2009.04.023 – volume: 21 year: 2020 ident: 10.1016/j.geodrs.2025.e00998_bb0120 article-title: Rescue and renewal of legacy soil resource inventories in Iran as an input to digital soil mapping publication-title: Geoderm. Reg. – volume: 28 year: 2022 ident: 10.1016/j.geodrs.2025.e00998_bb0170 article-title: Cross-system legacy data applied to digital soil mapping: a case study of second National Soil Survey data in China publication-title: Geoderm. Reg. – volume: 214-215 start-page: 141 year: 2014 ident: 10.1016/j.geodrs.2025.e00998_bb0055 article-title: Predictive soil parent material mapping at a regional-scale: a random Forest approach publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.016 – volume: 30 year: 2022 ident: 10.1016/j.geodrs.2025.e00998_bb0085 article-title: National soil organic carbon map of agricultural lands in Nepal publication-title: Geoderm. Reg. – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.geodrs.2025.e00998_bb0195 article-title: Predicting mattic epipedons in the northeastern Qinghai-Tibetan Plateau using random forest publication-title: Geoderm. Reg. doi: 10.1016/j.geodrs.2017.02.001 – volume: 207-208 start-page: 256 year: 2013 ident: 10.1016/j.geodrs.2025.e00998_bb0050 article-title: Soil maps of the world publication-title: Geoderma doi: 10.1016/j.geoderma.2013.05.003 – year: 2010 ident: 10.1016/j.geodrs.2025.e00998_bb0145 – volume: 239-240 start-page: 68 year: 2015 ident: 10.1016/j.geodrs.2025.e00998_bb0020 article-title: Machine learning for predicting soil classes in three semi-arid landscapes publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.019 – volume: 40 start-page: 358 issue: 3 year: 1984 ident: 10.1016/j.geodrs.2025.e00998_bb0015 article-title: Classification and regression trees publication-title: Biometrics – volume: 394 year: 2021 ident: 10.1016/j.geodrs.2025.e00998_bb0080 article-title: Updating the national soil map of Nepal through digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115041 – volume: 75 start-page: 1044 issue: 3 year: 2011 ident: 10.1016/j.geodrs.2025.e00998_bb0165 article-title: Updating conventional soil maps through digital soil mapping publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0002 – year: 2001 ident: 10.1016/j.geodrs.2025.e00998_bb0185 – volume: 214-215 start-page: 91 year: 2014 ident: 10.1016/j.geodrs.2025.e00998_bb0110 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.024 – year: 2012 ident: 10.1016/j.geodrs.2025.e00998_bb0190 – start-page: 69 year: 2008 ident: 10.1016/j.geodrs.2025.e00998_bb0125 article-title: Digital soil mapping as a component of data renewal for areas with sparse soil data infrastructures – volume: 416 year: 2022 ident: 10.1016/j.geodrs.2025.e00998_bb0095 article-title: Influence of legacy soil map accuracy on soil map updating with data mining methods publication-title: Geoderma doi: 10.1016/j.geoderma.2022.115802 – year: 2022 ident: 10.1016/j.geodrs.2025.e00998_bb0150 |
SSID | ssj0002953762 |
Score | 2.3199089 |
Snippet | Legacy soil maps, derived from extensive soil surveys, contain invaluable information crucial for soil management practices. However, these maps risk... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | e00998 |
SubjectTerms | Diagnostic characteristics Diagnostic horizon Digital soil mapping Expert knowledge Legacy soil map Probabilistic mapping |
Title | Harnessing expert knowledge and legacy data for digital soil mapping with no new field surveys |
URI | https://dx.doi.org/10.1016/j.geodrs.2025.e00998 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5RQ5e47J-JOlxDEd1uIM63MmSNUmpaDu6TvC_N68fQ0E8eCotPCi_JO_9ePm99xC6CoSK4bqMaM19uGakRKpAEOWpQBrPF9SBeuf7GQvn3t3CX3TQuK2FAVll4_trn1556-bLoEFzsErTwaPjVi2D7KaricQO6jk2utIu6o1up-Fsm2pxAuhZ4lRj5nyHgE1bRFcpvRKdqwJadzv-tQbKJH4PUt8Cz2Qf7TWMEY_qnzpAHZ0dopdQFuCkbODBVZP-Em-zY1hmCr_pRMafGASg2PJSrNIExoPgdZ6-4XcJXRkSDElYnOXYUmtcSdnwelN82LU9QvPJzdM4JM2oBBJbBlISo4Th3PhiaVdESZdLV4HAxRhpKDNMSKYs0ZOMS89l3AiqlVCUG5cxBaMejlE3yzN9gjBdmoC6JjCQ3wgED6RFdajhpMuhjlUfkRabaFV3xIhaqdhrVGMZAZZRjWUf8RbA6MfKRtZp_2l5-m_LM7QLb7UW7Bx1y2KjLyx5KJeXzeaA5_ThefoFDhvGFg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZKO8CCQIB4cwOMoanTxPbAUAFVSh8LRWIiuLVdFZW06gPU38UfxJdHBRJiQGJN5Cj5crn7cv7ujpBzwVUft8scrZmP24yuI5XgjqoqIU3V5y7Feud2JwgfqneP_mOBfOS1MCirzHx_6tMTb50dKWdolifDYfmeeknLIGt0KZHIlJVNvXy3_22zq8aNfckXlNZvu9ehk40WcPo2Ys8do7hhzPi8Z59ASY9JT6EgxBhp3MAEXAbKEiMZMFn1Ama4qxVXLjNeECgcjWCvu0ZK2A3LflalWqMZdlapHSqwRwpNxtr51MF7zIv2EmXZQI_VFFuFU_9SI0XjPwfFL4GuvkU2M4YKtRSEbVLQ8Q55CuUUnaINdJAMBZjDKhsHMlYw0gPZXwIKTsHyYFDDAY4jgdl4OIJXiV0gBoBJX4jHYKk8JNI5mC2mb9aWdsnDv-C3R4rxONb7BNyeEa5nhMF8iuBMSOqJikbPIiu6rw6Ik2MTTdIOHFEuTXuJUiwjxDJKsTwgLAcw-mZJkQ0Sv648_PPKM7IedtutqNXoNI_IBp5JdWjHpDifLvSJJS7z3mlmKECe_9s2PwH3aQKP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+expert+knowledge+and+legacy+data+for+digital+soil+mapping+with+no+new+field+surveys&rft.jtitle=Geoderma+Regional&rft.au=Yang%2C+Jiawei&rft.au=Wang%2C+Tianwei&rft.au=Bi%2C+Yihui&rft.au=Li%2C+Zhaoxia&rft.date=2025-09-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=42&rft.spage=e00998&rft_id=info:doi/10.1016%2Fj.geodrs.2025.e00998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geodrs_2025_e00998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |