Dynamics of a stochastic prey–predator eco-epidemiological system with distributed delay and impulsive perturbations
A stochastic prey–predator eco-epidemiological model with distributed delay and impulsive perturbations is proposed and studied. The existence and uniqueness of the global positive solution are studied. The pth moment boundedness and the asymptotic pathwise estimation are discussed. And then, the su...
Saved in:
Published in | Mathematics and computers in simulation Vol. 240; pp. 153 - 176 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2026
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4754 |
DOI | 10.1016/j.matcom.2025.07.002 |
Cover
Loading…
Abstract | A stochastic prey–predator eco-epidemiological model with distributed delay and impulsive perturbations is proposed and studied. The existence and uniqueness of the global positive solution are studied. The pth moment boundedness and the asymptotic pathwise estimation are discussed. And then, the sufficient conditions for the extinction, stability in the mean and the global attractivity of the system are given. Finally, some numerical examples are presented to validate our main theoretical findings. Our results indicate that the impulsive perturbations do not influence the survival of the population when the impulsive perturbations are bounded. However, the extinction and the stability in the mean of the population can change significantly when the impulsive perturbations are periodic. Furthermore, the distributed delay has no effect on the extinction, stability in the mean and global attractivity of the system whether the impulsive perturbation is bounded or periodic. |
---|---|
AbstractList | A stochastic prey–predator eco-epidemiological model with distributed delay and impulsive perturbations is proposed and studied. The existence and uniqueness of the global positive solution are studied. The pth moment boundedness and the asymptotic pathwise estimation are discussed. And then, the sufficient conditions for the extinction, stability in the mean and the global attractivity of the system are given. Finally, some numerical examples are presented to validate our main theoretical findings. Our results indicate that the impulsive perturbations do not influence the survival of the population when the impulsive perturbations are bounded. However, the extinction and the stability in the mean of the population can change significantly when the impulsive perturbations are periodic. Furthermore, the distributed delay has no effect on the extinction, stability in the mean and global attractivity of the system whether the impulsive perturbation is bounded or periodic. |
Author | Dai, Xiangjun Quan, Qi Zhou, Zeli Jiao, Jianjun |
Author_xml | – sequence: 1 givenname: Xiangjun surname: Dai fullname: Dai, Xiangjun email: daiaga0921@126.com organization: School of Data science, Tongren university, Tongren 554300, PR China – sequence: 2 givenname: Jianjun surname: Jiao fullname: Jiao, Jianjun email: jiaojianjun2018@126.com organization: School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, PR China – sequence: 3 givenname: Qi surname: Quan fullname: Quan, Qi organization: School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, PR China – sequence: 4 givenname: Zeli surname: Zhou fullname: Zhou, Zeli organization: School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, PR China |
BookMark | eNp9kE1OwzAUhL0oEi1wAxa-QIKTOH8bJFR-pUpsYG29PL9QV0kc2W5RdtyBG3ISUpU1q5nFzGj0rdhisAMxdp2IOBFJcbOLewho-zgVaR6LMhYiXbClyMoqkmUuz9nK-50QYvb5kh3upwF6g57blgP3weIWfDDIR0fTz9f3LBqCdZzQRjQaTb2xnf0wCB33kw_U808TtlwbH5xp9oE019TBxGHQ3PTjvvPmQHwkF_augWDs4C_ZWQudp6s_vWDvjw9v6-do8_r0sr7bRJiUaYgIRFsm2ECR5U2dEuoC6kbUqU6xkoXM0oqKqq2FlEIW2GAO0ABRVSHOiSa7YPK0i85676hVozM9uEklQh15qZ068VJHXkqUauY1125PNZq_HQw55dHQgKSNIwxKW_P_wC8XLn9w |
Cites_doi | 10.1016/j.aml.2022.108096 10.1142/S0218127419500913 10.1016/j.physa.2016.06.125 10.1016/j.jde.2007.12.005 10.1007/s00285-021-01688-x 10.1016/j.matcom.2020.10.002 10.1016/S0025-5564(01)00049-9 10.1137/S0036144500378302 10.1142/S1793524523500079 10.1016/j.nahs.2016.03.004 10.1016/j.aml.2017.11.008 10.1016/j.cnsns.2023.107284 10.1016/j.physa.2018.05.054 10.1016/j.jfranklin.2011.06.023 10.1016/j.jobb.2024.08.002 10.1016/j.nahs.2009.06.005 10.1016/j.aml.2022.107931 10.3934/mbe.2017077 10.1080/17513758.2023.2287077 10.1016/j.cnsns.2014.06.023 10.1016/j.chaos.2020.109643 10.1016/j.aml.2022.108300 10.1016/j.nonrwa.2010.05.001 10.1051/mmnp/20094207 10.1186/s13660-016-1265-z 10.1016/j.camwa.2011.11.003 10.1186/s13662-020-02579-z 10.1007/s11071-020-05467-z 10.1016/j.matcom.2011.08.009 10.1016/S0304-4149(01)00126-0 10.3934/dcds.2009.24.523 10.1016/j.physa.2018.03.071 10.1016/j.apm.2016.01.008 10.1016/j.jfranklin.2019.06.030 10.1016/j.aml.2023.108688 10.1007/s11424-008-9105-y 10.1016/j.nonrwa.2011.03.002 10.1016/j.nahs.2017.04.003 10.1016/j.cnsns.2008.05.010 |
ContentType | Journal Article |
Copyright | 2025 International Association for Mathematics and Computers in Simulation (IMACS) |
Copyright_xml | – notice: 2025 International Association for Mathematics and Computers in Simulation (IMACS) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matcom.2025.07.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 176 |
ExternalDocumentID | 10_1016_j_matcom_2025_07_002 S0378475425002678 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AAYXX AFXIZ AGRNS BNPGV CITATION |
ID | FETCH-LOGICAL-c172t-ea0f71cba635b92ecd6a9b092d2c8464328e68f9044046cbc5aabaee88cc2c8b3 |
IEDL.DBID | .~1 |
ISSN | 0378-4754 |
IngestDate | Thu Jul 31 00:26:57 EDT 2025 Sat Aug 16 17:00:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 00A71 Global attractivity 34A37 92B05 Impulsive perturbation Stability in the mean Stochastic prey–predator system Distributed delay |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-ea0f71cba635b92ecd6a9b092d2c8464328e68f9044046cbc5aabaee88cc2c8b3 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1016_j_matcom_2025_07_002 elsevier_sciencedirect_doi_10_1016_j_matcom_2025_07_002 |
PublicationCentury | 2000 |
PublicationDate | February 2026 2026-02-00 |
PublicationDateYYYYMMDD | 2026-02-01 |
PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics and computers in simulation |
PublicationYear | 2026 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Mao (b27) 2009; 24 Liu, Wang (b24) 2012; 63 Zuo, Zhou (b37) 2022; 129 Barbalat (b41) 1959; 4 Alsakaji, El-Khatib, Rihan (b11) 2024; 6 Jiao, Quan, Dai (b4) 2022; 132 Ruan (b7) 2009; 4 Jiao, Chen, Cai (b10) 2008; 21 Yuan, Ji, Zhu (b23) 2017; 14 Karatzas, Shreve (b40) 1991 Zhang, Yan, Cui (b12) 2010; 11 Lu (b45) 2021; 181 Mao (b39) 1997 Zuo, Jiang (b42) 2016; 22 Lu, Ding (b43) 2019; 350 Liu, Jiang, Hayat (b35) 2018; 508 Rihan, Alsakaji (b38) 2020; 2020 Caraballo, El Fatini, El Khalifi (b36) 2020; 133 Higham (b44) 2001; 43 Liu, Jiang (b32) 2018; 78 Greenhalgh, Liang, Mao (b46) 2016; 462 Rihan (b9) 2021 Zhang, Meng, Feng (b22) 2017; 26 Zhang, Yang, Su (b28) 2023; 123 Dai, Quan, Jiao (b2) 2023; 17 Feng, Meng, Liu (b29) 2016; 2016 Chen, Chen (b17) 2011; 12 Liu, Guo, Tan (b21) 2016; 40 Ma, Han, Li (b31) 2021; 83 Liu, Jiang, Hayat (b34) 2019; 356 Han, Zhou, Jiang (b25) 2021; 405 Pei, Liu, Qi (b5) 2023; 144 Zhou, Shi, Song (b19) 2009; 3 Zuo, Jiang, Sun (b33) 2018; 506 Huang, Zhang, Cao (b20) 2019; 29 Faria, Oliveira (b13) 2008; 244 Wang, Huang (b1) 2018; 28 Hu, Li, Liu (b8) 2020; 99 Wu, Zou, Wang (b6) 2015; 20 Guo, Chen (b15) 2009; 14 Zou, Xiong, Shu (b16) 2011; 348 Mao, Marion, Renshaw (b26) 2002; 97 Zhang, Gao, Chen (b30) 2022; 134 Xiao, Chen (b18) 2001; 171 Dai, Jiao, Quan (b3) 2024; 17 Zhao, Wang, Yu (b14) 2012; 82 Zhang (10.1016/j.matcom.2025.07.002_b30) 2022; 134 Zuo (10.1016/j.matcom.2025.07.002_b37) 2022; 129 Ruan (10.1016/j.matcom.2025.07.002_b7) 2009; 4 Caraballo (10.1016/j.matcom.2025.07.002_b36) 2020; 133 Dai (10.1016/j.matcom.2025.07.002_b3) 2024; 17 Liu (10.1016/j.matcom.2025.07.002_b35) 2018; 508 Wang (10.1016/j.matcom.2025.07.002_b1) 2018; 28 Feng (10.1016/j.matcom.2025.07.002_b29) 2016; 2016 Guo (10.1016/j.matcom.2025.07.002_b15) 2009; 14 Wu (10.1016/j.matcom.2025.07.002_b6) 2015; 20 Hu (10.1016/j.matcom.2025.07.002_b8) 2020; 99 Liu (10.1016/j.matcom.2025.07.002_b24) 2012; 63 Zhang (10.1016/j.matcom.2025.07.002_b28) 2023; 123 Liu (10.1016/j.matcom.2025.07.002_b32) 2018; 78 Zhou (10.1016/j.matcom.2025.07.002_b19) 2009; 3 Higham (10.1016/j.matcom.2025.07.002_b44) 2001; 43 Zhang (10.1016/j.matcom.2025.07.002_b12) 2010; 11 Ma (10.1016/j.matcom.2025.07.002_b31) 2021; 83 Mao (10.1016/j.matcom.2025.07.002_b39) 1997 Huang (10.1016/j.matcom.2025.07.002_b20) 2019; 29 Han (10.1016/j.matcom.2025.07.002_b25) 2021; 405 Jiao (10.1016/j.matcom.2025.07.002_b4) 2022; 132 Mao (10.1016/j.matcom.2025.07.002_b26) 2002; 97 Zhao (10.1016/j.matcom.2025.07.002_b14) 2012; 82 Liu (10.1016/j.matcom.2025.07.002_b34) 2019; 356 Pei (10.1016/j.matcom.2025.07.002_b5) 2023; 144 Xiao (10.1016/j.matcom.2025.07.002_b18) 2001; 171 Karatzas (10.1016/j.matcom.2025.07.002_b40) 1991 Chen (10.1016/j.matcom.2025.07.002_b17) 2011; 12 Liu (10.1016/j.matcom.2025.07.002_b21) 2016; 40 Lu (10.1016/j.matcom.2025.07.002_b45) 2021; 181 Lu (10.1016/j.matcom.2025.07.002_b43) 2019; 350 Faria (10.1016/j.matcom.2025.07.002_b13) 2008; 244 Zou (10.1016/j.matcom.2025.07.002_b16) 2011; 348 Barbalat (10.1016/j.matcom.2025.07.002_b41) 1959; 4 Zuo (10.1016/j.matcom.2025.07.002_b33) 2018; 506 Zuo (10.1016/j.matcom.2025.07.002_b42) 2016; 22 Dai (10.1016/j.matcom.2025.07.002_b2) 2023; 17 Rihan (10.1016/j.matcom.2025.07.002_b38) 2020; 2020 Alsakaji (10.1016/j.matcom.2025.07.002_b11) 2024; 6 Greenhalgh (10.1016/j.matcom.2025.07.002_b46) 2016; 462 Jiao (10.1016/j.matcom.2025.07.002_b10) 2008; 21 Rihan (10.1016/j.matcom.2025.07.002_b9) 2021 Zhang (10.1016/j.matcom.2025.07.002_b22) 2017; 26 Yuan (10.1016/j.matcom.2025.07.002_b23) 2017; 14 Li (10.1016/j.matcom.2025.07.002_b27) 2009; 24 |
References_xml | – year: 2021 ident: b9 article-title: Delay Differential Equations and Applications to Biology – volume: 21 start-page: 217 year: 2008 end-page: 225 ident: b10 article-title: An SEIRS epidemic model with two delays and pulse vaccination publication-title: J. Syst. Sci. Complex. – year: 1991 ident: b40 article-title: Brownian Motion and Stochastic Calculus – volume: 17 year: 2024 ident: b3 article-title: Dynamics of a predator–prey system with sublethal effects of pesticides on pests and natural enemies publication-title: Int. J. Biomath. – volume: 508 start-page: 289 year: 2018 end-page: 304 ident: b35 article-title: Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation publication-title: Phys. A – volume: 14 start-page: 2301 year: 2009 end-page: 2309 ident: b15 article-title: The effects of impulsive harvest on a predator–prey system with distributed time delay publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 405 year: 2021 ident: b25 article-title: Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay publication-title: Appl. Math. Comput. – volume: 2020 start-page: 124 year: 2020 ident: b38 article-title: Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators publication-title: Adv. Difference Equ. – volume: 4 start-page: 267 year: 1959 end-page: 270 ident: b41 article-title: Systemes d’equations differentielles d’oscillations nonlineaires publication-title: Rev. Roumaine Math. Pures Appl. – volume: 26 start-page: 19 year: 2017 end-page: 37 ident: b22 article-title: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator–prey system with impulsive effects publication-title: Nonlinear Anal. Hybrid Syst. – volume: 24 start-page: 523 year: 2009 end-page: 593 ident: b27 article-title: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation publication-title: Discret. Contin. Dyn. Systems- Ser. A – volume: 4 start-page: 140 year: 2009 end-page: 188 ident: b7 article-title: On nonlinear dynamics of predator–prey models with discrete delay publication-title: Math. Model. Nat. Phenom. – volume: 14 start-page: 1477 year: 2017 end-page: 1498 ident: b23 article-title: Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations publication-title: Math. Biosci. Eng. – volume: 506 start-page: 542 year: 2018 end-page: 559 ident: b33 article-title: Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay publication-title: Phys. A – volume: 132 year: 2022 ident: b4 article-title: Dynamics of a new impulsive predator–prey model with predator population seasonally large-scale migration publication-title: Appl. Math. Lett. – volume: 78 start-page: 79 year: 2018 end-page: 87 ident: b32 article-title: Stationary distribution and extinction of a stochastic predator–prey model with distributed delay publication-title: Appl. Math. Lett. – year: 1997 ident: b39 article-title: Stochastic Differential Equations and Applications – volume: 244 start-page: 1049 year: 2008 end-page: 1079 ident: b13 article-title: Local and global stability for Lotka–Volterra systems with distributed delays and instantaneous negative feedbacks publication-title: J. Differential Equations – volume: 133 year: 2020 ident: b36 article-title: Analysis of a stochastic distributed delay epidemic model with relapse and gamma distribution kernel publication-title: Chaos Solitons Fractals – volume: 97 start-page: 95 year: 2002 end-page: 110 ident: b26 article-title: Environmental brownian noise suppresses explosions in population dynamics publication-title: Stochastic Process. Appl. – volume: 134 year: 2022 ident: b30 article-title: A stochastic predator–prey eco-epidemiological model with the fear effect publication-title: Appl. Math. Lett. – volume: 181 start-page: 316 year: 2021 end-page: 332 ident: b45 article-title: Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps publication-title: Math. Comput. Simulation – volume: 12 start-page: 2467 year: 2011 end-page: 2473 ident: b17 article-title: Dynamic behaviors of the periodic predator–prey system with distributed time delays and impulsive effect publication-title: Nonlinear Anal. Real World Appl. – volume: 129 year: 2022 ident: b37 article-title: Density function and stationary distribution of a stochastic SIR model with distributed delay publication-title: Appl. Math. Lett. – volume: 20 start-page: 965 year: 2015 end-page: 974 ident: b6 article-title: Asymptotic behavior of a stochastic non-autonomous predator–prey model with impulsive perturbations publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 40 start-page: 5510 year: 2016 end-page: 5531 ident: b21 article-title: Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations publication-title: Appl. Math. Model. – volume: 6 start-page: 234 year: 2024 end-page: 243 ident: b11 article-title: A stochastic epidemic model with time delays and unreported cases based on Markovian switching publication-title: J. Biosaf. Biosecurity – volume: 11 start-page: 4141 year: 2010 end-page: 4153 ident: b12 article-title: Hopf bifurcations in a predator–prey system with a discrete delay and a distributed delay publication-title: Nonlinear Anal. Real World Appl. – volume: 350 start-page: 313 year: 2019 end-page: 322 ident: b43 article-title: Periodic solutions and stationary distribution for a stochastic predator–prey system with impulsive perturbations publication-title: Appl. Math. Comput. – volume: 123 year: 2023 ident: b28 article-title: Dynamical behavior and numerical simulation of a stochastic eco-epidemiological model with Ornstein–Uhlenbeck process publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 83 start-page: 1 year: 2021 end-page: 22 ident: b31 article-title: A stochastic eco-epidemiological system with patchy structure and transport-related infection publication-title: J. Math. Biol. – volume: 462 start-page: 684 year: 2016 end-page: 704 ident: b46 article-title: Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching publication-title: Phys. A – volume: 99 start-page: 3323 year: 2020 end-page: 3350 ident: b8 article-title: Stability and Hopf bifurcation for a delayed predator–prey model with stage structure for prey and Ivlev-type functional response publication-title: Nonlinear Dynam. – volume: 171 start-page: 59 year: 2001 end-page: 82 ident: b18 article-title: Modeling and analysis of a predator–prey model with disease in the prey publication-title: Math. Biosci. – volume: 17 year: 2023 ident: b2 article-title: Modelling and analysis of periodic impulsive releases of the Nilaparvata lugens infected with wStri-Wolbachia publication-title: J. Biol. Dyn. – volume: 22 start-page: 191 year: 2016 end-page: 201 ident: b42 article-title: Periodic solutions for a stochastic non-autonomous Holling–Tanner predator–prey system with impulses publication-title: Nonlinear Anal. Hybrid Syst. – volume: 144 year: 2023 ident: b5 article-title: Study on a stochastic pest management system with insecticide residue effects and group defense behavior publication-title: Appl. Math. Lett. – volume: 3 start-page: 685 year: 2009 end-page: 699 ident: b19 article-title: The dynamics of an eco-epidemiological model with distributed delay publication-title: Nonlinear Anal. Hybrid Syst. – volume: 29 year: 2019 ident: b20 article-title: Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator publication-title: Int. J. Bifurc. Chaos – volume: 63 start-page: 871 year: 2012 end-page: 886 ident: b24 article-title: On a stochastic logistic equation with impulsive perturbations publication-title: Comput. Math. Appl. – volume: 356 start-page: 7347 year: 2019 end-page: 7370 ident: b34 article-title: Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion publication-title: J. Franklin Inst. – volume: 2016 start-page: 1 year: 2016 end-page: 29 ident: b29 article-title: Application of inequalities technique to dynamics analysis of a stochastic eco-epidemiology model publication-title: J. Inequal. Appl. – volume: 43 start-page: 525 year: 2001 end-page: 546 ident: b44 article-title: An algorithmic introduction to numerical simulation of stochastic differential equations publication-title: SIAM Rev. – volume: 28 year: 2018 ident: b1 article-title: Bifurcation of nontrivial periodic solutions for a food chain Beddington–DeAngelis interference model with impulsive effect publication-title: Int. J. Bifurc. Chaos – volume: 82 start-page: 1432 year: 2012 end-page: 1444 ident: b14 article-title: Dynamics of an ecological model with impulsive control strategy and distributed time delay publication-title: Math. Comput. Simulation – volume: 348 start-page: 2332 year: 2011 end-page: 2349 ident: b16 article-title: The dynamics of an eco-epidemic model with distributed time delay and impulsive control strategy publication-title: J. Franklin Inst. – volume: 132 year: 2022 ident: 10.1016/j.matcom.2025.07.002_b4 article-title: Dynamics of a new impulsive predator–prey model with predator population seasonally large-scale migration publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2022.108096 – volume: 29 issue: 07 year: 2019 ident: 10.1016/j.matcom.2025.07.002_b20 article-title: Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127419500913 – volume: 462 start-page: 684 year: 2016 ident: 10.1016/j.matcom.2025.07.002_b46 article-title: Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching publication-title: Phys. A doi: 10.1016/j.physa.2016.06.125 – volume: 4 start-page: 267 issue: 2 year: 1959 ident: 10.1016/j.matcom.2025.07.002_b41 article-title: Systemes d’equations differentielles d’oscillations nonlineaires publication-title: Rev. Roumaine Math. Pures Appl. – volume: 244 start-page: 1049 issue: 5 year: 2008 ident: 10.1016/j.matcom.2025.07.002_b13 article-title: Local and global stability for Lotka–Volterra systems with distributed delays and instantaneous negative feedbacks publication-title: J. Differential Equations doi: 10.1016/j.jde.2007.12.005 – volume: 350 start-page: 313 year: 2019 ident: 10.1016/j.matcom.2025.07.002_b43 article-title: Periodic solutions and stationary distribution for a stochastic predator–prey system with impulsive perturbations publication-title: Appl. Math. Comput. – volume: 83 start-page: 1 year: 2021 ident: 10.1016/j.matcom.2025.07.002_b31 article-title: A stochastic eco-epidemiological system with patchy structure and transport-related infection publication-title: J. Math. Biol. doi: 10.1007/s00285-021-01688-x – volume: 181 start-page: 316 year: 2021 ident: 10.1016/j.matcom.2025.07.002_b45 article-title: Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2020.10.002 – volume: 171 start-page: 59 issue: 1 year: 2001 ident: 10.1016/j.matcom.2025.07.002_b18 article-title: Modeling and analysis of a predator–prey model with disease in the prey publication-title: Math. Biosci. doi: 10.1016/S0025-5564(01)00049-9 – volume: 43 start-page: 525 year: 2001 ident: 10.1016/j.matcom.2025.07.002_b44 article-title: An algorithmic introduction to numerical simulation of stochastic differential equations publication-title: SIAM Rev. doi: 10.1137/S0036144500378302 – volume: 17 issue: 01 year: 2024 ident: 10.1016/j.matcom.2025.07.002_b3 article-title: Dynamics of a predator–prey system with sublethal effects of pesticides on pests and natural enemies publication-title: Int. J. Biomath. doi: 10.1142/S1793524523500079 – volume: 22 start-page: 191 year: 2016 ident: 10.1016/j.matcom.2025.07.002_b42 article-title: Periodic solutions for a stochastic non-autonomous Holling–Tanner predator–prey system with impulses publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2016.03.004 – volume: 78 start-page: 79 year: 2018 ident: 10.1016/j.matcom.2025.07.002_b32 article-title: Stationary distribution and extinction of a stochastic predator–prey model with distributed delay publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2017.11.008 – volume: 123 year: 2023 ident: 10.1016/j.matcom.2025.07.002_b28 article-title: Dynamical behavior and numerical simulation of a stochastic eco-epidemiological model with Ornstein–Uhlenbeck process publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2023.107284 – volume: 508 start-page: 289 year: 2018 ident: 10.1016/j.matcom.2025.07.002_b35 article-title: Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation publication-title: Phys. A doi: 10.1016/j.physa.2018.05.054 – volume: 348 start-page: 2332 year: 2011 ident: 10.1016/j.matcom.2025.07.002_b16 article-title: The dynamics of an eco-epidemic model with distributed time delay and impulsive control strategy publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2011.06.023 – volume: 6 start-page: 234 issue: 4 year: 2024 ident: 10.1016/j.matcom.2025.07.002_b11 article-title: A stochastic epidemic model with time delays and unreported cases based on Markovian switching publication-title: J. Biosaf. Biosecurity doi: 10.1016/j.jobb.2024.08.002 – volume: 3 start-page: 685 issue: 4 year: 2009 ident: 10.1016/j.matcom.2025.07.002_b19 article-title: The dynamics of an eco-epidemiological model with distributed delay publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2009.06.005 – year: 1991 ident: 10.1016/j.matcom.2025.07.002_b40 – volume: 129 year: 2022 ident: 10.1016/j.matcom.2025.07.002_b37 article-title: Density function and stationary distribution of a stochastic SIR model with distributed delay publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2022.107931 – volume: 14 start-page: 1477 issue: 5–6 year: 2017 ident: 10.1016/j.matcom.2025.07.002_b23 article-title: Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2017077 – volume: 17 issue: 1 year: 2023 ident: 10.1016/j.matcom.2025.07.002_b2 article-title: Modelling and analysis of periodic impulsive releases of the Nilaparvata lugens infected with wStri-Wolbachia publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2023.2287077 – volume: 20 start-page: 965 year: 2015 ident: 10.1016/j.matcom.2025.07.002_b6 article-title: Asymptotic behavior of a stochastic non-autonomous predator–prey model with impulsive perturbations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.06.023 – volume: 405 year: 2021 ident: 10.1016/j.matcom.2025.07.002_b25 article-title: Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay publication-title: Appl. Math. Comput. – volume: 133 year: 2020 ident: 10.1016/j.matcom.2025.07.002_b36 article-title: Analysis of a stochastic distributed delay epidemic model with relapse and gamma distribution kernel publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109643 – volume: 134 year: 2022 ident: 10.1016/j.matcom.2025.07.002_b30 article-title: A stochastic predator–prey eco-epidemiological model with the fear effect publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2022.108300 – year: 2021 ident: 10.1016/j.matcom.2025.07.002_b9 – volume: 11 start-page: 4141 issue: 5 year: 2010 ident: 10.1016/j.matcom.2025.07.002_b12 article-title: Hopf bifurcations in a predator–prey system with a discrete delay and a distributed delay publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2010.05.001 – volume: 4 start-page: 140 issue: 2 year: 2009 ident: 10.1016/j.matcom.2025.07.002_b7 article-title: On nonlinear dynamics of predator–prey models with discrete delay publication-title: Math. Model. Nat. Phenom. doi: 10.1051/mmnp/20094207 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.matcom.2025.07.002_b29 article-title: Application of inequalities technique to dynamics analysis of a stochastic eco-epidemiology model publication-title: J. Inequal. Appl. doi: 10.1186/s13660-016-1265-z – volume: 63 start-page: 871 issue: 5 year: 2012 ident: 10.1016/j.matcom.2025.07.002_b24 article-title: On a stochastic logistic equation with impulsive perturbations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.11.003 – volume: 2020 start-page: 124 year: 2020 ident: 10.1016/j.matcom.2025.07.002_b38 article-title: Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators publication-title: Adv. Difference Equ. doi: 10.1186/s13662-020-02579-z – volume: 99 start-page: 3323 year: 2020 ident: 10.1016/j.matcom.2025.07.002_b8 article-title: Stability and Hopf bifurcation for a delayed predator–prey model with stage structure for prey and Ivlev-type functional response publication-title: Nonlinear Dynam. doi: 10.1007/s11071-020-05467-z – volume: 28 issue: 11 year: 2018 ident: 10.1016/j.matcom.2025.07.002_b1 article-title: Bifurcation of nontrivial periodic solutions for a food chain Beddington–DeAngelis interference model with impulsive effect publication-title: Int. J. Bifurc. Chaos – volume: 82 start-page: 1432 issue: 8 year: 2012 ident: 10.1016/j.matcom.2025.07.002_b14 article-title: Dynamics of an ecological model with impulsive control strategy and distributed time delay publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2011.08.009 – volume: 97 start-page: 95 issue: 1 year: 2002 ident: 10.1016/j.matcom.2025.07.002_b26 article-title: Environmental brownian noise suppresses explosions in population dynamics publication-title: Stochastic Process. Appl. doi: 10.1016/S0304-4149(01)00126-0 – volume: 24 start-page: 523 issue: 2 year: 2009 ident: 10.1016/j.matcom.2025.07.002_b27 article-title: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation publication-title: Discret. Contin. Dyn. Systems- Ser. A doi: 10.3934/dcds.2009.24.523 – volume: 506 start-page: 542 year: 2018 ident: 10.1016/j.matcom.2025.07.002_b33 article-title: Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay publication-title: Phys. A doi: 10.1016/j.physa.2018.03.071 – volume: 40 start-page: 5510 issue: 9–10 year: 2016 ident: 10.1016/j.matcom.2025.07.002_b21 article-title: Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.01.008 – volume: 356 start-page: 7347 issue: 13 year: 2019 ident: 10.1016/j.matcom.2025.07.002_b34 article-title: Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2019.06.030 – volume: 144 year: 2023 ident: 10.1016/j.matcom.2025.07.002_b5 article-title: Study on a stochastic pest management system with insecticide residue effects and group defense behavior publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2023.108688 – volume: 21 start-page: 217 issue: 2 year: 2008 ident: 10.1016/j.matcom.2025.07.002_b10 article-title: An SEIRS epidemic model with two delays and pulse vaccination publication-title: J. Syst. Sci. Complex. doi: 10.1007/s11424-008-9105-y – volume: 12 start-page: 2467 issue: 4 year: 2011 ident: 10.1016/j.matcom.2025.07.002_b17 article-title: Dynamic behaviors of the periodic predator–prey system with distributed time delays and impulsive effect publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2011.03.002 – volume: 26 start-page: 19 year: 2017 ident: 10.1016/j.matcom.2025.07.002_b22 article-title: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator–prey system with impulsive effects publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2017.04.003 – volume: 14 start-page: 2301 issue: 5 year: 2009 ident: 10.1016/j.matcom.2025.07.002_b15 article-title: The effects of impulsive harvest on a predator–prey system with distributed time delay publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2008.05.010 – year: 1997 ident: 10.1016/j.matcom.2025.07.002_b39 |
SSID | ssj0007545 |
Score | 2.424189 |
Snippet | A stochastic prey–predator eco-epidemiological model with distributed delay and impulsive perturbations is proposed and studied. The existence and uniqueness... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 153 |
SubjectTerms | Distributed delay Global attractivity Impulsive perturbation Stability in the mean Stochastic prey–predator system |
Title | Dynamics of a stochastic prey–predator eco-epidemiological system with distributed delay and impulsive perturbations |
URI | https://dx.doi.org/10.1016/j.matcom.2025.07.002 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXtel2s5scS7VUxV600FvYV7AiaahV8CL-B_-hv8SZPKgiePAUEmZJmNmd-WYz-w0hp05BzDCCs1QqxYRLYUmJMGIGMp8IAIiTBUnSzViOJuJqGk4bZFCfhcGyysr3lz698NbVk06lzU4-m3Vug54C1xrCpMNEQuGBXyEU8uefva3KPECgKGMEYYbS9fG5osYLQCHWjHAI_AWFZ7W58is8fQs5wy2yUWFF2i8_Z5s0fLZDNus-DLRalrvk5bxsK_9E5ynVFOCcvdfIv0xzMNTn-wdcHCbXFHJN5lc9YdFAtORyprghSx3S6GIHLO8o0ke-Up05OoMXPmKZO839AkKUKXf59shkeHE3GLGqnwKzAFOWzOsgVV1rNIAME3NvndSxCWLuuAUYIsA6XkZpjF2ohbTGhlob7X0UWQsSprdPmtk88weEAsgwKXfSKe-FUd3YIk9bxLs-TGXoTYuwWo1JXtJmJHU92UNSqj1BtScB_v_mLaJqXSc_zJ-AZ_9z5OG_Rx6RdbirSrCPSXO5ePYngDCWpl1MoTZZ619ej8ZfyIPVDg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymaZrYyYgKVYG2C63EZvkVUYTSqBQkFsR_4B_yS7jLQwUhMTBFSs5KdGfffed8viPk1AqIGTrwWcKFYIFNYEkFYcQ0ZD4RABDL8yJJgyHvjYPru_CuRjrVWRikVZa-v_Dpubcu7zRLbTazyaR567UFuNYQJh0mEiJaIstB2BY4tc_eFjwPkMh5jCDNULw6P5eTvAAVImnEh8if1_Asd1d-xadvMae7QdZKsEjPi-_ZJDWXbpH1qhEDLdflNnm5KPrKP9FpQhUFPGfuFRZgphlY6vP9Ay4Ws2sKySZzi6awaCFaFHOmuCNLLdbRxRZYzlKsH_lKVWrpBF74iDx3mrkZxChdbPPtkHH3ctTpsbKhAjOAU-bMKS8RLaMVoAwd-85YrmLtxb71DeCQAMzjeJTE2IY64EabUCmtnIsiY0BCt3dJPZ2mbo9QQBk68S23wrlAi1ZssFBb5LdcmPDQ6QZhlRplVtTNkBWh7EEWapeodunhD3C_QUSla_nD_hJc-58j9_898oSs9EaDvuxfDW8OyCo8KfnYh6Q-nz27I4Abc32cT6cv3R7WpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+a+stochastic+prey%E2%80%93predator+eco-epidemiological+system+with+distributed+delay+and+impulsive+perturbations&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Dai%2C+Xiangjun&rft.au=Jiao%2C+Jianjun&rft.au=Quan%2C+Qi&rft.au=Zhou%2C+Zeli&rft.date=2026-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.volume=240&rft.spage=153&rft.epage=176&rft_id=info:doi/10.1016%2Fj.matcom.2025.07.002&rft.externalDocID=S0378475425002678 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |