Dynamics of a stochastic prey–predator eco-epidemiological system with distributed delay and impulsive perturbations

A stochastic prey–predator eco-epidemiological model with distributed delay and impulsive perturbations is proposed and studied. The existence and uniqueness of the global positive solution are studied. The pth moment boundedness and the asymptotic pathwise estimation are discussed. And then, the su...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 240; pp. 153 - 176
Main Authors Dai, Xiangjun, Jiao, Jianjun, Quan, Qi, Zhou, Zeli
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2026
Subjects
Online AccessGet full text
ISSN0378-4754
DOI10.1016/j.matcom.2025.07.002

Cover

Loading…
Abstract A stochastic prey–predator eco-epidemiological model with distributed delay and impulsive perturbations is proposed and studied. The existence and uniqueness of the global positive solution are studied. The pth moment boundedness and the asymptotic pathwise estimation are discussed. And then, the sufficient conditions for the extinction, stability in the mean and the global attractivity of the system are given. Finally, some numerical examples are presented to validate our main theoretical findings. Our results indicate that the impulsive perturbations do not influence the survival of the population when the impulsive perturbations are bounded. However, the extinction and the stability in the mean of the population can change significantly when the impulsive perturbations are periodic. Furthermore, the distributed delay has no effect on the extinction, stability in the mean and global attractivity of the system whether the impulsive perturbation is bounded or periodic.
AbstractList A stochastic prey–predator eco-epidemiological model with distributed delay and impulsive perturbations is proposed and studied. The existence and uniqueness of the global positive solution are studied. The pth moment boundedness and the asymptotic pathwise estimation are discussed. And then, the sufficient conditions for the extinction, stability in the mean and the global attractivity of the system are given. Finally, some numerical examples are presented to validate our main theoretical findings. Our results indicate that the impulsive perturbations do not influence the survival of the population when the impulsive perturbations are bounded. However, the extinction and the stability in the mean of the population can change significantly when the impulsive perturbations are periodic. Furthermore, the distributed delay has no effect on the extinction, stability in the mean and global attractivity of the system whether the impulsive perturbation is bounded or periodic.
Author Dai, Xiangjun
Quan, Qi
Zhou, Zeli
Jiao, Jianjun
Author_xml – sequence: 1
  givenname: Xiangjun
  surname: Dai
  fullname: Dai, Xiangjun
  email: daiaga0921@126.com
  organization: School of Data science, Tongren university, Tongren 554300, PR China
– sequence: 2
  givenname: Jianjun
  surname: Jiao
  fullname: Jiao, Jianjun
  email: jiaojianjun2018@126.com
  organization: School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, PR China
– sequence: 3
  givenname: Qi
  surname: Quan
  fullname: Quan, Qi
  organization: School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, PR China
– sequence: 4
  givenname: Zeli
  surname: Zhou
  fullname: Zhou, Zeli
  organization: School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, PR China
BookMark eNp9kE1OwzAUhL0oEi1wAxa-QIKTOH8bJFR-pUpsYG29PL9QV0kc2W5RdtyBG3ISUpU1q5nFzGj0rdhisAMxdp2IOBFJcbOLewho-zgVaR6LMhYiXbClyMoqkmUuz9nK-50QYvb5kh3upwF6g57blgP3weIWfDDIR0fTz9f3LBqCdZzQRjQaTb2xnf0wCB33kw_U808TtlwbH5xp9oE019TBxGHQ3PTjvvPmQHwkF_augWDs4C_ZWQudp6s_vWDvjw9v6-do8_r0sr7bRJiUaYgIRFsm2ECR5U2dEuoC6kbUqU6xkoXM0oqKqq2FlEIW2GAO0ABRVSHOiSa7YPK0i85676hVozM9uEklQh15qZ068VJHXkqUauY1125PNZq_HQw55dHQgKSNIwxKW_P_wC8XLn9w
Cites_doi 10.1016/j.aml.2022.108096
10.1142/S0218127419500913
10.1016/j.physa.2016.06.125
10.1016/j.jde.2007.12.005
10.1007/s00285-021-01688-x
10.1016/j.matcom.2020.10.002
10.1016/S0025-5564(01)00049-9
10.1137/S0036144500378302
10.1142/S1793524523500079
10.1016/j.nahs.2016.03.004
10.1016/j.aml.2017.11.008
10.1016/j.cnsns.2023.107284
10.1016/j.physa.2018.05.054
10.1016/j.jfranklin.2011.06.023
10.1016/j.jobb.2024.08.002
10.1016/j.nahs.2009.06.005
10.1016/j.aml.2022.107931
10.3934/mbe.2017077
10.1080/17513758.2023.2287077
10.1016/j.cnsns.2014.06.023
10.1016/j.chaos.2020.109643
10.1016/j.aml.2022.108300
10.1016/j.nonrwa.2010.05.001
10.1051/mmnp/20094207
10.1186/s13660-016-1265-z
10.1016/j.camwa.2011.11.003
10.1186/s13662-020-02579-z
10.1007/s11071-020-05467-z
10.1016/j.matcom.2011.08.009
10.1016/S0304-4149(01)00126-0
10.3934/dcds.2009.24.523
10.1016/j.physa.2018.03.071
10.1016/j.apm.2016.01.008
10.1016/j.jfranklin.2019.06.030
10.1016/j.aml.2023.108688
10.1007/s11424-008-9105-y
10.1016/j.nonrwa.2011.03.002
10.1016/j.nahs.2017.04.003
10.1016/j.cnsns.2008.05.010
ContentType Journal Article
Copyright 2025 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2025 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2025.07.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 176
ExternalDocumentID 10_1016_j_matcom_2025_07_002
S0378475425002678
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
ID FETCH-LOGICAL-c172t-ea0f71cba635b92ecd6a9b092d2c8464328e68f9044046cbc5aabaee88cc2c8b3
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Thu Jul 31 00:26:57 EDT 2025
Sat Aug 16 17:00:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords 00A71
Global attractivity
34A37
92B05
Impulsive perturbation
Stability in the mean
Stochastic prey–predator system
Distributed delay
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-ea0f71cba635b92ecd6a9b092d2c8464328e68f9044046cbc5aabaee88cc2c8b3
PageCount 24
ParticipantIDs crossref_primary_10_1016_j_matcom_2025_07_002
elsevier_sciencedirect_doi_10_1016_j_matcom_2025_07_002
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Mao (b27) 2009; 24
Liu, Wang (b24) 2012; 63
Zuo, Zhou (b37) 2022; 129
Barbalat (b41) 1959; 4
Alsakaji, El-Khatib, Rihan (b11) 2024; 6
Jiao, Quan, Dai (b4) 2022; 132
Ruan (b7) 2009; 4
Jiao, Chen, Cai (b10) 2008; 21
Yuan, Ji, Zhu (b23) 2017; 14
Karatzas, Shreve (b40) 1991
Zhang, Yan, Cui (b12) 2010; 11
Lu (b45) 2021; 181
Mao (b39) 1997
Zuo, Jiang (b42) 2016; 22
Lu, Ding (b43) 2019; 350
Liu, Jiang, Hayat (b35) 2018; 508
Rihan, Alsakaji (b38) 2020; 2020
Caraballo, El Fatini, El Khalifi (b36) 2020; 133
Higham (b44) 2001; 43
Liu, Jiang (b32) 2018; 78
Greenhalgh, Liang, Mao (b46) 2016; 462
Rihan (b9) 2021
Zhang, Meng, Feng (b22) 2017; 26
Zhang, Yang, Su (b28) 2023; 123
Dai, Quan, Jiao (b2) 2023; 17
Feng, Meng, Liu (b29) 2016; 2016
Chen, Chen (b17) 2011; 12
Liu, Guo, Tan (b21) 2016; 40
Ma, Han, Li (b31) 2021; 83
Liu, Jiang, Hayat (b34) 2019; 356
Han, Zhou, Jiang (b25) 2021; 405
Pei, Liu, Qi (b5) 2023; 144
Zhou, Shi, Song (b19) 2009; 3
Zuo, Jiang, Sun (b33) 2018; 506
Huang, Zhang, Cao (b20) 2019; 29
Faria, Oliveira (b13) 2008; 244
Wang, Huang (b1) 2018; 28
Hu, Li, Liu (b8) 2020; 99
Wu, Zou, Wang (b6) 2015; 20
Guo, Chen (b15) 2009; 14
Zou, Xiong, Shu (b16) 2011; 348
Mao, Marion, Renshaw (b26) 2002; 97
Zhang, Gao, Chen (b30) 2022; 134
Xiao, Chen (b18) 2001; 171
Dai, Jiao, Quan (b3) 2024; 17
Zhao, Wang, Yu (b14) 2012; 82
Zhang (10.1016/j.matcom.2025.07.002_b30) 2022; 134
Zuo (10.1016/j.matcom.2025.07.002_b37) 2022; 129
Ruan (10.1016/j.matcom.2025.07.002_b7) 2009; 4
Caraballo (10.1016/j.matcom.2025.07.002_b36) 2020; 133
Dai (10.1016/j.matcom.2025.07.002_b3) 2024; 17
Liu (10.1016/j.matcom.2025.07.002_b35) 2018; 508
Wang (10.1016/j.matcom.2025.07.002_b1) 2018; 28
Feng (10.1016/j.matcom.2025.07.002_b29) 2016; 2016
Guo (10.1016/j.matcom.2025.07.002_b15) 2009; 14
Wu (10.1016/j.matcom.2025.07.002_b6) 2015; 20
Hu (10.1016/j.matcom.2025.07.002_b8) 2020; 99
Liu (10.1016/j.matcom.2025.07.002_b24) 2012; 63
Zhang (10.1016/j.matcom.2025.07.002_b28) 2023; 123
Liu (10.1016/j.matcom.2025.07.002_b32) 2018; 78
Zhou (10.1016/j.matcom.2025.07.002_b19) 2009; 3
Higham (10.1016/j.matcom.2025.07.002_b44) 2001; 43
Zhang (10.1016/j.matcom.2025.07.002_b12) 2010; 11
Ma (10.1016/j.matcom.2025.07.002_b31) 2021; 83
Mao (10.1016/j.matcom.2025.07.002_b39) 1997
Huang (10.1016/j.matcom.2025.07.002_b20) 2019; 29
Han (10.1016/j.matcom.2025.07.002_b25) 2021; 405
Jiao (10.1016/j.matcom.2025.07.002_b4) 2022; 132
Mao (10.1016/j.matcom.2025.07.002_b26) 2002; 97
Zhao (10.1016/j.matcom.2025.07.002_b14) 2012; 82
Liu (10.1016/j.matcom.2025.07.002_b34) 2019; 356
Pei (10.1016/j.matcom.2025.07.002_b5) 2023; 144
Xiao (10.1016/j.matcom.2025.07.002_b18) 2001; 171
Karatzas (10.1016/j.matcom.2025.07.002_b40) 1991
Chen (10.1016/j.matcom.2025.07.002_b17) 2011; 12
Liu (10.1016/j.matcom.2025.07.002_b21) 2016; 40
Lu (10.1016/j.matcom.2025.07.002_b45) 2021; 181
Lu (10.1016/j.matcom.2025.07.002_b43) 2019; 350
Faria (10.1016/j.matcom.2025.07.002_b13) 2008; 244
Zou (10.1016/j.matcom.2025.07.002_b16) 2011; 348
Barbalat (10.1016/j.matcom.2025.07.002_b41) 1959; 4
Zuo (10.1016/j.matcom.2025.07.002_b33) 2018; 506
Zuo (10.1016/j.matcom.2025.07.002_b42) 2016; 22
Dai (10.1016/j.matcom.2025.07.002_b2) 2023; 17
Rihan (10.1016/j.matcom.2025.07.002_b38) 2020; 2020
Alsakaji (10.1016/j.matcom.2025.07.002_b11) 2024; 6
Greenhalgh (10.1016/j.matcom.2025.07.002_b46) 2016; 462
Jiao (10.1016/j.matcom.2025.07.002_b10) 2008; 21
Rihan (10.1016/j.matcom.2025.07.002_b9) 2021
Zhang (10.1016/j.matcom.2025.07.002_b22) 2017; 26
Yuan (10.1016/j.matcom.2025.07.002_b23) 2017; 14
Li (10.1016/j.matcom.2025.07.002_b27) 2009; 24
References_xml – year: 2021
  ident: b9
  article-title: Delay Differential Equations and Applications to Biology
– volume: 21
  start-page: 217
  year: 2008
  end-page: 225
  ident: b10
  article-title: An SEIRS epidemic model with two delays and pulse vaccination
  publication-title: J. Syst. Sci. Complex.
– year: 1991
  ident: b40
  article-title: Brownian Motion and Stochastic Calculus
– volume: 17
  year: 2024
  ident: b3
  article-title: Dynamics of a predator–prey system with sublethal effects of pesticides on pests and natural enemies
  publication-title: Int. J. Biomath.
– volume: 508
  start-page: 289
  year: 2018
  end-page: 304
  ident: b35
  article-title: Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation
  publication-title: Phys. A
– volume: 14
  start-page: 2301
  year: 2009
  end-page: 2309
  ident: b15
  article-title: The effects of impulsive harvest on a predator–prey system with distributed time delay
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 405
  year: 2021
  ident: b25
  article-title: Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay
  publication-title: Appl. Math. Comput.
– volume: 2020
  start-page: 124
  year: 2020
  ident: b38
  article-title: Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators
  publication-title: Adv. Difference Equ.
– volume: 4
  start-page: 267
  year: 1959
  end-page: 270
  ident: b41
  article-title: Systemes d’equations differentielles d’oscillations nonlineaires
  publication-title: Rev. Roumaine Math. Pures Appl.
– volume: 26
  start-page: 19
  year: 2017
  end-page: 37
  ident: b22
  article-title: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator–prey system with impulsive effects
  publication-title: Nonlinear Anal. Hybrid Syst.
– volume: 24
  start-page: 523
  year: 2009
  end-page: 593
  ident: b27
  article-title: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation
  publication-title: Discret. Contin. Dyn. Systems- Ser. A
– volume: 4
  start-page: 140
  year: 2009
  end-page: 188
  ident: b7
  article-title: On nonlinear dynamics of predator–prey models with discrete delay
  publication-title: Math. Model. Nat. Phenom.
– volume: 14
  start-page: 1477
  year: 2017
  end-page: 1498
  ident: b23
  article-title: Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations
  publication-title: Math. Biosci. Eng.
– volume: 506
  start-page: 542
  year: 2018
  end-page: 559
  ident: b33
  article-title: Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay
  publication-title: Phys. A
– volume: 132
  year: 2022
  ident: b4
  article-title: Dynamics of a new impulsive predator–prey model with predator population seasonally large-scale migration
  publication-title: Appl. Math. Lett.
– volume: 78
  start-page: 79
  year: 2018
  end-page: 87
  ident: b32
  article-title: Stationary distribution and extinction of a stochastic predator–prey model with distributed delay
  publication-title: Appl. Math. Lett.
– year: 1997
  ident: b39
  article-title: Stochastic Differential Equations and Applications
– volume: 244
  start-page: 1049
  year: 2008
  end-page: 1079
  ident: b13
  article-title: Local and global stability for Lotka–Volterra systems with distributed delays and instantaneous negative feedbacks
  publication-title: J. Differential Equations
– volume: 133
  year: 2020
  ident: b36
  article-title: Analysis of a stochastic distributed delay epidemic model with relapse and gamma distribution kernel
  publication-title: Chaos Solitons Fractals
– volume: 97
  start-page: 95
  year: 2002
  end-page: 110
  ident: b26
  article-title: Environmental brownian noise suppresses explosions in population dynamics
  publication-title: Stochastic Process. Appl.
– volume: 134
  year: 2022
  ident: b30
  article-title: A stochastic predator–prey eco-epidemiological model with the fear effect
  publication-title: Appl. Math. Lett.
– volume: 181
  start-page: 316
  year: 2021
  end-page: 332
  ident: b45
  article-title: Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps
  publication-title: Math. Comput. Simulation
– volume: 12
  start-page: 2467
  year: 2011
  end-page: 2473
  ident: b17
  article-title: Dynamic behaviors of the periodic predator–prey system with distributed time delays and impulsive effect
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 129
  year: 2022
  ident: b37
  article-title: Density function and stationary distribution of a stochastic SIR model with distributed delay
  publication-title: Appl. Math. Lett.
– volume: 20
  start-page: 965
  year: 2015
  end-page: 974
  ident: b6
  article-title: Asymptotic behavior of a stochastic non-autonomous predator–prey model with impulsive perturbations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 40
  start-page: 5510
  year: 2016
  end-page: 5531
  ident: b21
  article-title: Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations
  publication-title: Appl. Math. Model.
– volume: 6
  start-page: 234
  year: 2024
  end-page: 243
  ident: b11
  article-title: A stochastic epidemic model with time delays and unreported cases based on Markovian switching
  publication-title: J. Biosaf. Biosecurity
– volume: 11
  start-page: 4141
  year: 2010
  end-page: 4153
  ident: b12
  article-title: Hopf bifurcations in a predator–prey system with a discrete delay and a distributed delay
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 350
  start-page: 313
  year: 2019
  end-page: 322
  ident: b43
  article-title: Periodic solutions and stationary distribution for a stochastic predator–prey system with impulsive perturbations
  publication-title: Appl. Math. Comput.
– volume: 123
  year: 2023
  ident: b28
  article-title: Dynamical behavior and numerical simulation of a stochastic eco-epidemiological model with Ornstein–Uhlenbeck process
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 83
  start-page: 1
  year: 2021
  end-page: 22
  ident: b31
  article-title: A stochastic eco-epidemiological system with patchy structure and transport-related infection
  publication-title: J. Math. Biol.
– volume: 462
  start-page: 684
  year: 2016
  end-page: 704
  ident: b46
  article-title: Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching
  publication-title: Phys. A
– volume: 99
  start-page: 3323
  year: 2020
  end-page: 3350
  ident: b8
  article-title: Stability and Hopf bifurcation for a delayed predator–prey model with stage structure for prey and Ivlev-type functional response
  publication-title: Nonlinear Dynam.
– volume: 171
  start-page: 59
  year: 2001
  end-page: 82
  ident: b18
  article-title: Modeling and analysis of a predator–prey model with disease in the prey
  publication-title: Math. Biosci.
– volume: 17
  year: 2023
  ident: b2
  article-title: Modelling and analysis of periodic impulsive releases of the Nilaparvata lugens infected with wStri-Wolbachia
  publication-title: J. Biol. Dyn.
– volume: 22
  start-page: 191
  year: 2016
  end-page: 201
  ident: b42
  article-title: Periodic solutions for a stochastic non-autonomous Holling–Tanner predator–prey system with impulses
  publication-title: Nonlinear Anal. Hybrid Syst.
– volume: 144
  year: 2023
  ident: b5
  article-title: Study on a stochastic pest management system with insecticide residue effects and group defense behavior
  publication-title: Appl. Math. Lett.
– volume: 3
  start-page: 685
  year: 2009
  end-page: 699
  ident: b19
  article-title: The dynamics of an eco-epidemiological model with distributed delay
  publication-title: Nonlinear Anal. Hybrid Syst.
– volume: 29
  year: 2019
  ident: b20
  article-title: Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator
  publication-title: Int. J. Bifurc. Chaos
– volume: 63
  start-page: 871
  year: 2012
  end-page: 886
  ident: b24
  article-title: On a stochastic logistic equation with impulsive perturbations
  publication-title: Comput. Math. Appl.
– volume: 356
  start-page: 7347
  year: 2019
  end-page: 7370
  ident: b34
  article-title: Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion
  publication-title: J. Franklin Inst.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 29
  ident: b29
  article-title: Application of inequalities technique to dynamics analysis of a stochastic eco-epidemiology model
  publication-title: J. Inequal. Appl.
– volume: 43
  start-page: 525
  year: 2001
  end-page: 546
  ident: b44
  article-title: An algorithmic introduction to numerical simulation of stochastic differential equations
  publication-title: SIAM Rev.
– volume: 28
  year: 2018
  ident: b1
  article-title: Bifurcation of nontrivial periodic solutions for a food chain Beddington–DeAngelis interference model with impulsive effect
  publication-title: Int. J. Bifurc. Chaos
– volume: 82
  start-page: 1432
  year: 2012
  end-page: 1444
  ident: b14
  article-title: Dynamics of an ecological model with impulsive control strategy and distributed time delay
  publication-title: Math. Comput. Simulation
– volume: 348
  start-page: 2332
  year: 2011
  end-page: 2349
  ident: b16
  article-title: The dynamics of an eco-epidemic model with distributed time delay and impulsive control strategy
  publication-title: J. Franklin Inst.
– volume: 132
  year: 2022
  ident: 10.1016/j.matcom.2025.07.002_b4
  article-title: Dynamics of a new impulsive predator–prey model with predator population seasonally large-scale migration
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2022.108096
– volume: 29
  issue: 07
  year: 2019
  ident: 10.1016/j.matcom.2025.07.002_b20
  article-title: Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127419500913
– volume: 462
  start-page: 684
  year: 2016
  ident: 10.1016/j.matcom.2025.07.002_b46
  article-title: Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching
  publication-title: Phys. A
  doi: 10.1016/j.physa.2016.06.125
– volume: 4
  start-page: 267
  issue: 2
  year: 1959
  ident: 10.1016/j.matcom.2025.07.002_b41
  article-title: Systemes d’equations differentielles d’oscillations nonlineaires
  publication-title: Rev. Roumaine Math. Pures Appl.
– volume: 244
  start-page: 1049
  issue: 5
  year: 2008
  ident: 10.1016/j.matcom.2025.07.002_b13
  article-title: Local and global stability for Lotka–Volterra systems with distributed delays and instantaneous negative feedbacks
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2007.12.005
– volume: 350
  start-page: 313
  year: 2019
  ident: 10.1016/j.matcom.2025.07.002_b43
  article-title: Periodic solutions and stationary distribution for a stochastic predator–prey system with impulsive perturbations
  publication-title: Appl. Math. Comput.
– volume: 83
  start-page: 1
  year: 2021
  ident: 10.1016/j.matcom.2025.07.002_b31
  article-title: A stochastic eco-epidemiological system with patchy structure and transport-related infection
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-021-01688-x
– volume: 181
  start-page: 316
  year: 2021
  ident: 10.1016/j.matcom.2025.07.002_b45
  article-title: Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2020.10.002
– volume: 171
  start-page: 59
  issue: 1
  year: 2001
  ident: 10.1016/j.matcom.2025.07.002_b18
  article-title: Modeling and analysis of a predator–prey model with disease in the prey
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(01)00049-9
– volume: 43
  start-page: 525
  year: 2001
  ident: 10.1016/j.matcom.2025.07.002_b44
  article-title: An algorithmic introduction to numerical simulation of stochastic differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500378302
– volume: 17
  issue: 01
  year: 2024
  ident: 10.1016/j.matcom.2025.07.002_b3
  article-title: Dynamics of a predator–prey system with sublethal effects of pesticides on pests and natural enemies
  publication-title: Int. J. Biomath.
  doi: 10.1142/S1793524523500079
– volume: 22
  start-page: 191
  year: 2016
  ident: 10.1016/j.matcom.2025.07.002_b42
  article-title: Periodic solutions for a stochastic non-autonomous Holling–Tanner predator–prey system with impulses
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2016.03.004
– volume: 78
  start-page: 79
  year: 2018
  ident: 10.1016/j.matcom.2025.07.002_b32
  article-title: Stationary distribution and extinction of a stochastic predator–prey model with distributed delay
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2017.11.008
– volume: 123
  year: 2023
  ident: 10.1016/j.matcom.2025.07.002_b28
  article-title: Dynamical behavior and numerical simulation of a stochastic eco-epidemiological model with Ornstein–Uhlenbeck process
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2023.107284
– volume: 508
  start-page: 289
  year: 2018
  ident: 10.1016/j.matcom.2025.07.002_b35
  article-title: Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation
  publication-title: Phys. A
  doi: 10.1016/j.physa.2018.05.054
– volume: 348
  start-page: 2332
  year: 2011
  ident: 10.1016/j.matcom.2025.07.002_b16
  article-title: The dynamics of an eco-epidemic model with distributed time delay and impulsive control strategy
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2011.06.023
– volume: 6
  start-page: 234
  issue: 4
  year: 2024
  ident: 10.1016/j.matcom.2025.07.002_b11
  article-title: A stochastic epidemic model with time delays and unreported cases based on Markovian switching
  publication-title: J. Biosaf. Biosecurity
  doi: 10.1016/j.jobb.2024.08.002
– volume: 3
  start-page: 685
  issue: 4
  year: 2009
  ident: 10.1016/j.matcom.2025.07.002_b19
  article-title: The dynamics of an eco-epidemiological model with distributed delay
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2009.06.005
– year: 1991
  ident: 10.1016/j.matcom.2025.07.002_b40
– volume: 129
  year: 2022
  ident: 10.1016/j.matcom.2025.07.002_b37
  article-title: Density function and stationary distribution of a stochastic SIR model with distributed delay
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2022.107931
– volume: 14
  start-page: 1477
  issue: 5–6
  year: 2017
  ident: 10.1016/j.matcom.2025.07.002_b23
  article-title: Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2017077
– volume: 17
  issue: 1
  year: 2023
  ident: 10.1016/j.matcom.2025.07.002_b2
  article-title: Modelling and analysis of periodic impulsive releases of the Nilaparvata lugens infected with wStri-Wolbachia
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2023.2287077
– volume: 20
  start-page: 965
  year: 2015
  ident: 10.1016/j.matcom.2025.07.002_b6
  article-title: Asymptotic behavior of a stochastic non-autonomous predator–prey model with impulsive perturbations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.06.023
– volume: 405
  year: 2021
  ident: 10.1016/j.matcom.2025.07.002_b25
  article-title: Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay
  publication-title: Appl. Math. Comput.
– volume: 133
  year: 2020
  ident: 10.1016/j.matcom.2025.07.002_b36
  article-title: Analysis of a stochastic distributed delay epidemic model with relapse and gamma distribution kernel
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109643
– volume: 134
  year: 2022
  ident: 10.1016/j.matcom.2025.07.002_b30
  article-title: A stochastic predator–prey eco-epidemiological model with the fear effect
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2022.108300
– year: 2021
  ident: 10.1016/j.matcom.2025.07.002_b9
– volume: 11
  start-page: 4141
  issue: 5
  year: 2010
  ident: 10.1016/j.matcom.2025.07.002_b12
  article-title: Hopf bifurcations in a predator–prey system with a discrete delay and a distributed delay
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2010.05.001
– volume: 4
  start-page: 140
  issue: 2
  year: 2009
  ident: 10.1016/j.matcom.2025.07.002_b7
  article-title: On nonlinear dynamics of predator–prey models with discrete delay
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/20094207
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.matcom.2025.07.002_b29
  article-title: Application of inequalities technique to dynamics analysis of a stochastic eco-epidemiology model
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1265-z
– volume: 63
  start-page: 871
  issue: 5
  year: 2012
  ident: 10.1016/j.matcom.2025.07.002_b24
  article-title: On a stochastic logistic equation with impulsive perturbations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.11.003
– volume: 2020
  start-page: 124
  year: 2020
  ident: 10.1016/j.matcom.2025.07.002_b38
  article-title: Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators
  publication-title: Adv. Difference Equ.
  doi: 10.1186/s13662-020-02579-z
– volume: 99
  start-page: 3323
  year: 2020
  ident: 10.1016/j.matcom.2025.07.002_b8
  article-title: Stability and Hopf bifurcation for a delayed predator–prey model with stage structure for prey and Ivlev-type functional response
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-020-05467-z
– volume: 28
  issue: 11
  year: 2018
  ident: 10.1016/j.matcom.2025.07.002_b1
  article-title: Bifurcation of nontrivial periodic solutions for a food chain Beddington–DeAngelis interference model with impulsive effect
  publication-title: Int. J. Bifurc. Chaos
– volume: 82
  start-page: 1432
  issue: 8
  year: 2012
  ident: 10.1016/j.matcom.2025.07.002_b14
  article-title: Dynamics of an ecological model with impulsive control strategy and distributed time delay
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2011.08.009
– volume: 97
  start-page: 95
  issue: 1
  year: 2002
  ident: 10.1016/j.matcom.2025.07.002_b26
  article-title: Environmental brownian noise suppresses explosions in population dynamics
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/S0304-4149(01)00126-0
– volume: 24
  start-page: 523
  issue: 2
  year: 2009
  ident: 10.1016/j.matcom.2025.07.002_b27
  article-title: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation
  publication-title: Discret. Contin. Dyn. Systems- Ser. A
  doi: 10.3934/dcds.2009.24.523
– volume: 506
  start-page: 542
  year: 2018
  ident: 10.1016/j.matcom.2025.07.002_b33
  article-title: Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay
  publication-title: Phys. A
  doi: 10.1016/j.physa.2018.03.071
– volume: 40
  start-page: 5510
  issue: 9–10
  year: 2016
  ident: 10.1016/j.matcom.2025.07.002_b21
  article-title: Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.01.008
– volume: 356
  start-page: 7347
  issue: 13
  year: 2019
  ident: 10.1016/j.matcom.2025.07.002_b34
  article-title: Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.06.030
– volume: 144
  year: 2023
  ident: 10.1016/j.matcom.2025.07.002_b5
  article-title: Study on a stochastic pest management system with insecticide residue effects and group defense behavior
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2023.108688
– volume: 21
  start-page: 217
  issue: 2
  year: 2008
  ident: 10.1016/j.matcom.2025.07.002_b10
  article-title: An SEIRS epidemic model with two delays and pulse vaccination
  publication-title: J. Syst. Sci. Complex.
  doi: 10.1007/s11424-008-9105-y
– volume: 12
  start-page: 2467
  issue: 4
  year: 2011
  ident: 10.1016/j.matcom.2025.07.002_b17
  article-title: Dynamic behaviors of the periodic predator–prey system with distributed time delays and impulsive effect
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2011.03.002
– volume: 26
  start-page: 19
  year: 2017
  ident: 10.1016/j.matcom.2025.07.002_b22
  article-title: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator–prey system with impulsive effects
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2017.04.003
– volume: 14
  start-page: 2301
  issue: 5
  year: 2009
  ident: 10.1016/j.matcom.2025.07.002_b15
  article-title: The effects of impulsive harvest on a predator–prey system with distributed time delay
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2008.05.010
– year: 1997
  ident: 10.1016/j.matcom.2025.07.002_b39
SSID ssj0007545
Score 2.424189
Snippet A stochastic prey–predator eco-epidemiological model with distributed delay and impulsive perturbations is proposed and studied. The existence and uniqueness...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 153
SubjectTerms Distributed delay
Global attractivity
Impulsive perturbation
Stability in the mean
Stochastic prey–predator system
Title Dynamics of a stochastic prey–predator eco-epidemiological system with distributed delay and impulsive perturbations
URI https://dx.doi.org/10.1016/j.matcom.2025.07.002
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXtel2s5scS7VUxV600FvYV7AiaahV8CL-B_-hv8SZPKgiePAUEmZJmNmd-WYz-w0hp05BzDCCs1QqxYRLYUmJMGIGMp8IAIiTBUnSzViOJuJqGk4bZFCfhcGyysr3lz698NbVk06lzU4-m3Vug54C1xrCpMNEQuGBXyEU8uefva3KPECgKGMEYYbS9fG5osYLQCHWjHAI_AWFZ7W58is8fQs5wy2yUWFF2i8_Z5s0fLZDNus-DLRalrvk5bxsK_9E5ynVFOCcvdfIv0xzMNTn-wdcHCbXFHJN5lc9YdFAtORyprghSx3S6GIHLO8o0ke-Up05OoMXPmKZO839AkKUKXf59shkeHE3GLGqnwKzAFOWzOsgVV1rNIAME3NvndSxCWLuuAUYIsA6XkZpjF2ohbTGhlob7X0UWQsSprdPmtk88weEAsgwKXfSKe-FUd3YIk9bxLs-TGXoTYuwWo1JXtJmJHU92UNSqj1BtScB_v_mLaJqXSc_zJ-AZ_9z5OG_Rx6RdbirSrCPSXO5ePYngDCWpl1MoTZZ619ej8ZfyIPVDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymaZrYyYgKVYG2C63EZvkVUYTSqBQkFsR_4B_yS7jLQwUhMTBFSs5KdGfffed8viPk1AqIGTrwWcKFYIFNYEkFYcQ0ZD4RABDL8yJJgyHvjYPru_CuRjrVWRikVZa-v_Dpubcu7zRLbTazyaR567UFuNYQJh0mEiJaIstB2BY4tc_eFjwPkMh5jCDNULw6P5eTvAAVImnEh8if1_Asd1d-xadvMae7QdZKsEjPi-_ZJDWXbpH1qhEDLdflNnm5KPrKP9FpQhUFPGfuFRZgphlY6vP9Ay4Ws2sKySZzi6awaCFaFHOmuCNLLdbRxRZYzlKsH_lKVWrpBF74iDx3mrkZxChdbPPtkHH3ctTpsbKhAjOAU-bMKS8RLaMVoAwd-85YrmLtxb71DeCQAMzjeJTE2IY64EabUCmtnIsiY0BCt3dJPZ2mbo9QQBk68S23wrlAi1ZssFBb5LdcmPDQ6QZhlRplVtTNkBWh7EEWapeodunhD3C_QUSla_nD_hJc-58j9_898oSs9EaDvuxfDW8OyCo8KfnYh6Q-nz27I4Abc32cT6cv3R7WpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+a+stochastic+prey%E2%80%93predator+eco-epidemiological+system+with+distributed+delay+and+impulsive+perturbations&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Dai%2C+Xiangjun&rft.au=Jiao%2C+Jianjun&rft.au=Quan%2C+Qi&rft.au=Zhou%2C+Zeli&rft.date=2026-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.volume=240&rft.spage=153&rft.epage=176&rft_id=info:doi/10.1016%2Fj.matcom.2025.07.002&rft.externalDocID=S0378475425002678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon