LLM supporting knowledge tracing leveraging global subject and student specific knowledge graphs

In this paper, we propose a novel LLM-based KT model, called the Teacher Thinking Knowledge Tracing model (2T-KT), to solve the issue that traditional knowledge tracing methods relying on numerous student exercise records cannot make good predictions when predicting new knowledge concepts by leverag...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 126; p. 103577
Main Authors Li, Linqing, Wang, Zhifeng, Jose, Joemon M., Ge, Xuri
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2026
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel LLM-based KT model, called the Teacher Thinking Knowledge Tracing model (2T-KT), to solve the issue that traditional knowledge tracing methods relying on numerous student exercise records cannot make good predictions when predicting new knowledge concepts by leveraging the excellent abilities of reasoning and generation from large language model (LLM). The 2T-KT model leverages large language models (LLMs) to enrich the knowledge graph with new knowledge concepts and predict student performance on the next exercise by four key components, i.e. observation, guideline, interpretation, and cognition. In particular, there are two stages, the preprocessing stage, and the 2T-KT stage, to predict the student’s performance on the next exercise. In the preprocessing stage, two novel local and global knowledge graphs are first designed to improve the capability of evaluating new concepts. In the 2T-KT stage, a novel teacher’s thinking mode is designed to include four key components, i.e. observation, guideline, interpretation, and cognition to assist the LLM in predicting the student’s performance on the next exercise. This exercise contains new knowledge concepts. Finally, even with new concepts, the LLM ‘teacher’ can accurately predict students’ abilities through interpretable augmentation prompts. Extensive evaluations on three public educational benchmarks—the FrcSub dataset, comprising 10K student records and 8 exercises, and the Xes3g5m dataset, comprising around 522K student records and 6,641 exercises. In addition, the MOOCRadar dataset contains around 897K student records and 2510 exercise records to test our model’s performance. It demonstrates that our 2T-KT model is a strong contender in knowledge tracing, delivering both high performance and interpretability. •Completion and verification methods are designed to add and verify concepts.•We design LLMs with new KGs to model Teacher Thinking Mode via four components.•We evaluate 2T-KT on three benchmarks. It outperforms state-of-the-art methods.
AbstractList In this paper, we propose a novel LLM-based KT model, called the Teacher Thinking Knowledge Tracing model (2T-KT), to solve the issue that traditional knowledge tracing methods relying on numerous student exercise records cannot make good predictions when predicting new knowledge concepts by leveraging the excellent abilities of reasoning and generation from large language model (LLM). The 2T-KT model leverages large language models (LLMs) to enrich the knowledge graph with new knowledge concepts and predict student performance on the next exercise by four key components, i.e. observation, guideline, interpretation, and cognition. In particular, there are two stages, the preprocessing stage, and the 2T-KT stage, to predict the student’s performance on the next exercise. In the preprocessing stage, two novel local and global knowledge graphs are first designed to improve the capability of evaluating new concepts. In the 2T-KT stage, a novel teacher’s thinking mode is designed to include four key components, i.e. observation, guideline, interpretation, and cognition to assist the LLM in predicting the student’s performance on the next exercise. This exercise contains new knowledge concepts. Finally, even with new concepts, the LLM ‘teacher’ can accurately predict students’ abilities through interpretable augmentation prompts. Extensive evaluations on three public educational benchmarks—the FrcSub dataset, comprising 10K student records and 8 exercises, and the Xes3g5m dataset, comprising around 522K student records and 6,641 exercises. In addition, the MOOCRadar dataset contains around 897K student records and 2510 exercise records to test our model’s performance. It demonstrates that our 2T-KT model is a strong contender in knowledge tracing, delivering both high performance and interpretability. •Completion and verification methods are designed to add and verify concepts.•We design LLMs with new KGs to model Teacher Thinking Mode via four components.•We evaluate 2T-KT on three benchmarks. It outperforms state-of-the-art methods.
ArticleNumber 103577
Author Ge, Xuri
Wang, Zhifeng
Li, Linqing
Jose, Joemon M.
Author_xml – sequence: 1
  givenname: Linqing
  surname: Li
  fullname: Li, Linqing
  email: a847820455@gmail.com
  organization: Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, 430079, China
– sequence: 2
  givenname: Zhifeng
  surname: Wang
  fullname: Wang, Zhifeng
  email: zfwang@ccnu.edu.cn
  organization: Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, 430079, China
– sequence: 3
  givenname: Joemon M.
  surname: Jose
  fullname: Jose, Joemon M.
  email: joemon.jose@glasgow.ac.uk
  organization: School of Computing Science, University of Glasgow, Glasgow, United Kingdom
– sequence: 4
  givenname: Xuri
  orcidid: 0000-0002-3925-4951
  surname: Ge
  fullname: Ge, Xuri
  email: xuri.ge@sdu.edu.cn
  organization: School of Artificial Intelligence, Shandong University, Jinan, China
BookMark eNp9kM1OwzAQhH0oEm3hDTjkBVL8U9vNBQlV_FQK4gJn49jr4BCcyE6LeHsShQMnTrsa7Yx2vhVahC4AQlcEbwgm4rrZ-ODcMW0opnyUGJdygZaEC5FTzvg5WqXUYEwkZmSJ3sryKUvHvu_i4EOdfYTuqwVbQzZEbSalhRNEXU9r3XaVbsfzqgEzZDrYLA1HC2HIUg_GO2_-BNRR9-_pAp053Sa4_J1r9Hp_97J_zMvnh8P-tswNkXTIDXbEGAtOOLHFVSEIJdWOmUJyYoW2FJgEzsDtXEWNtWQndVFoZwtuuAPJ1mg755rYpRTBqT76Tx2_FcFqIqMaNZNRExk1kxltN7MNxt9OHqJKxkMwYH0cOyrb-f8DfgB6knWc
Cites_doi 10.1007/978-3-030-39903-0_986
10.1016/j.imavis.2018.04.004
10.1145/3589334.3645373
10.1145/3568953
10.1145/3459637.3482010
10.1109/TKDE.2019.2924374
10.1016/j.knosys.2024.112346
10.1145/3664647.3681481
10.3115/v1/D14-1044
10.1145/3604915.3608829
10.1007/978-3-642-02463-4_3
10.1111/j.1756-8765.2008.01005.x
10.1007/BF01099821
10.1145/3350546.3352513
10.1016/j.ipm.2023.103620
10.1145/3604915.3610647
10.1145/3231644.3231647
10.1109/TLT.2024.3383325
10.1007/s10994-013-5363-6
10.1207/s15430421tip4104_2
10.1609/aaai.v36i11.21560
10.1109/WACV56688.2023.00108
10.1016/j.ipm.2022.103114
10.1145/3437963.3441802
10.1145/3616855.3635845
10.1145/3038912.3052580
10.1145/3589334.3645467
10.1109/TBDATA.2023.3248626
10.1016/j.future.2020.11.021
10.4135/9780857021052.n21
10.18653/v1/2020.eval4nlp-1.9
10.1145/3627673.3679664
10.1145/3539618.3591898
10.1145/3379507
10.1007/s10639-023-12249-8
10.1145/3640457.3688104
10.1016/j.eswa.2023.122107
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2025.103577
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_inffus_2025_103577
S1566253525006499
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c172t-c0f1ccdef6f640b96121b83c9751d6ad2e37e53ef8fb2cdd187a99afd95c5fe73
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Thu Aug 14 00:19:09 EDT 2025
Sat Aug 30 17:13:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Large language model
Knowledge tracing
And knowledge graph
Education AI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-c0f1ccdef6f640b96121b83c9751d6ad2e37e53ef8fb2cdd187a99afd95c5fe73
ORCID 0000-0002-3925-4951
ParticipantIDs crossref_primary_10_1016_j_inffus_2025_103577
elsevier_sciencedirect_doi_10_1016_j_inffus_2025_103577
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, Wei, Zhang, Zhang (b1) 2024; 61
Y. Xi, W. Liu, J. Lin, X. Cai, H. Zhu, J. Zhu, B. Chen, R. Tang, W. Zhang, Y. Yu, Towards open-world recommendation with knowledge augmentation from large language models, in: Proceedings of the 18th ACM Conference on Recommender Systems, 2024, pp. 12–22.
Bhattacharjee, Wayllace (b48) 2025
Peng, Xu, Xu, Zhang, Chen (b37) 2023
S. Minn, J.-J. Vie, K. Takeuchi, H. Kashima, F. Zhu, Interpretable knowledge tracing: Simple and efficient student modeling with causal relations, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 12810–12818.
Krathwohl (b62) 2002
Zheng, Qiu, Hu, Wu, Zhu, Xiong (b35) 2023
Kipf, Welling (b52) 2016
Corbett, Anderson (b4) 1994; 4
J. Lin, R. Shan, C. Zhu, K. Du, B. Chen, S. Quan, R. Tang, Y. Yu, W. Zhang, Rella: Retrieval-enhanced large language models for lifelong sequential behavior comprehension in recommendation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp. 3497–3508.
Li, Ji, Guo, Liang, Wang, Li (b43) 2023
Huang, Liu, Chen, Wu, Xiao, Chen, Ma, Hu (b57) 2020; 38
Y. Guo, S. Shen, Q. Liu, Z. Huang, L. Zhu, Y. Su, E. Chen, Mitigating Cold-Start Problems in Knowledge Tracing with Large Language Models: An Attribute-aware Approach, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 727–736.
Huang, Chang (b15) 2022
Stehman, Foody (b64) 2009
T. Wang, F. Ma, J. Gao, Deep hierarchical knowledge tracing, in: Proceedings of the 12th International Conference on Educational Data Mining, 2019, pp. 777–783.
Liu, Meng, Macdonald, Ounis (b7) 2023; 41
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b51) 2017
Pavlik, Cen, Koedinger (b5) 2009
Wei, Tay, Bommasani, Raffel, Zoph, Borgeaud, Yogatama, Bosma, Zhou, Metzler (b28) 2022
J. Zhang, X. Shi, I. King, D.-Y. Yeung, Dynamic key-value memory networks for knowledge tracing, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 765–774.
GLM, Zeng, Xu, Wang, Zhang, Yin, Zhang, Rojas, Feng, Zhao (b13) 2024
Wang, Zhang, Wang, Yang, Zhang (b25) 2024
Lee, Jung, Jeon, Sohn, Hwang, Moon, Kim (b16) 2024; 29
Li, Kang, De Bie (b36) 2023
A. Acharya, B. Singh, N. Onoe, Llm based generation of item-description for recommendation system, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 1204–1207.
S. Mysore, A. McCallum, H. Zamani, Large language model augmented narrative driven recommendations, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 777–783.
Qian, Yuan, Chen, Chen, Lian, Zhao (b22) 2023; 9
Lin, Zhu, Lu, Shi, Niu (b49) 2021; 117
Rodríguez, Bautista, Gonzalez, Escalera (b53) 2018; 75
Lin, Dai, Xi, Liu, Chen, Zhang, Liu, Wu, Li, Zhu (b29) 2023
Liu, Liu, Guo, Chen, Huang, Zhao, Tang, Luo, Weng (b59) 2024; 36
Achiam, Adler, Agarwal, Ahmad, Akkaya, Aleman, Almeida, Altenschmidt, Altman, Anadkat (b12) 2023
Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Rozière, Goyal, Hambro, Azhar (b27) 2023
X. Ge, F. Chen, S. Xu, F. Tao, J.M. Jose, Cross-modal semantic enhanced interaction for image-sentence retrieval, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 1022–1031.
Piech, Bassen, Huang, Ganguli, Sahami, Guibas, Sohl-Dickstein (b18) 2015; 28
Baker, Corbett, Aleven (b58) 2008
Jung, Yoo, Yoon, Jang (b14) 2024
Turner (b65) 2020
Y. Feng, Z. Tian, Y. Zhu, Z. Han, H. Luo, G. Zhang, M. Song, CP-Prompt: Composition-based cross-modal prompting for domain-incremental continual learning, in: Proceedings of the 32nd ACM International Conference on Multimedia, 2024, pp. 2729–2738.
R. Yacouby, D. Axman, Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models, in: Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 2020, pp. 79–91.
Cai, Zhang, Dai (b46) 2019
Pandey, Karypis (b23) 2019
Q. Liu, N. Chen, T. Sakai, X.-M. Wu, Once: Boosting content-based recommendation with both open-and closed-source large language models, in: Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2024, pp. 452–461.
Tan, Jiang (b30) 2023
M. Gardner, P. Talukdar, J. Krishnamurthy, T. Mitchell, Incorporating vector space similarity in random walk inference over knowledge bases, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 397–406.
H. Nakagawa, Y. Iwasawa, Y. Matsuo, Graph-based knowledge tracing: modeling student proficiency using graph neural network, in: IEEE/WIC/ACM International Conference on Web Intelligence, 2019, pp. 156–163.
Liu, Huang, Yin, Chen, Xiong, Su, Hu (b8) 2019; 33
Runfeng, Xiangyang, Zhou, Xin, Zhanwei, Kai (b38) 2023
C. Wang, W. Ma, M. Zhang, C. Lv, F. Wan, H. Lin, T. Tang, Y. Liu, S. Ma, Temporal cross-effects in knowledge tracing, in: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 2021, pp. 517–525.
Lundberg, Lee (b56) 2017; 30
Huang, Hu, Yang, Geng, Li, Xu, Ou (b24) 2024; 238
Giunchiglia, Dutta, Maltese (b47) 2009
J. Yu, Y. Wang, Q. Zhong, G. Luo, Y. Mao, K. Sun, W. Feng, W. Xu, S. Cao, K. Zeng, et al., MOOCCubeX: a large knowledge-centered repository for adaptive learning in MOOCs, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 4643–4652.
Council (b17) 2001
Zu, Cai, Tang, Wang, Li, Shen (b21) 2024
J. Yu, M. Lu, Q. Zhong, Z. Yao, S. Tu, Z. Liao, X. Li, M. Li, L. Hou, H.-T. Zheng, et al., Moocradar: A fine-grained and multi-aspect knowledge repository for improving cognitive student modeling in moocs, in: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 2924–2934.
Li, Yu, Ouyang, Liu, Rong, Li, Xiong (b11) 2024
Bordes, Glorot, Weston, Bengio (b41) 2014; 94
Chi (b54) 2009; 1
C.-K. Yeung, D.-Y. Yeung, Addressing two problems in deep knowledge tracing via prediction-consistent regularization, in: Proceedings of the Fifth Annual ACM Conference on Learning at Scale, 2018, pp. 1–10.
Zhao, Xia, Jiang, He (b2) 2023; 60
Park, Lee, Park (b26) 2024; 302
Zhong, Xu, Tang, Xu, Duan, Zhou, Wang, Yin (b50) 2019
Shen, Liu, Huang, Zheng, Yin, Wang, Chen (b3) 2024
Embretson, Reise (b55) 2013
J. Sun, F. Yu, Q. Wan, Q. Li, S. Liu, X. Shen, Interpretable Knowledge Tracing with Multiscale State Representation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp. 3265–3276.
10.1016/j.inffus.2025.103577_b39
Shen (10.1016/j.inffus.2025.103577_b3) 2024
Jung (10.1016/j.inffus.2025.103577_b14) 2024
Qian (10.1016/j.inffus.2025.103577_b22) 2023; 9
10.1016/j.inffus.2025.103577_b33
10.1016/j.inffus.2025.103577_b34
10.1016/j.inffus.2025.103577_b31
10.1016/j.inffus.2025.103577_b32
Runfeng (10.1016/j.inffus.2025.103577_b38) 2023
Corbett (10.1016/j.inffus.2025.103577_b4) 1994; 4
Pavlik (10.1016/j.inffus.2025.103577_b5) 2009
Lundberg (10.1016/j.inffus.2025.103577_b56) 2017; 30
Baker (10.1016/j.inffus.2025.103577_b58) 2008
Bhattacharjee (10.1016/j.inffus.2025.103577_b48) 2025
Council (10.1016/j.inffus.2025.103577_b17) 2001
Jiang (10.1016/j.inffus.2025.103577_b1) 2024; 61
Li (10.1016/j.inffus.2025.103577_b11) 2024
10.1016/j.inffus.2025.103577_b66
Liu (10.1016/j.inffus.2025.103577_b59) 2024; 36
10.1016/j.inffus.2025.103577_b67
10.1016/j.inffus.2025.103577_b20
Huang (10.1016/j.inffus.2025.103577_b24) 2024; 238
10.1016/j.inffus.2025.103577_b63
10.1016/j.inffus.2025.103577_b60
Liu (10.1016/j.inffus.2025.103577_b8) 2019; 33
10.1016/j.inffus.2025.103577_b61
Krathwohl (10.1016/j.inffus.2025.103577_b62) 2002
Wei (10.1016/j.inffus.2025.103577_b28) 2022
Li (10.1016/j.inffus.2025.103577_b43) 2023
Embretson (10.1016/j.inffus.2025.103577_b55) 2013
Liu (10.1016/j.inffus.2025.103577_b7) 2023; 41
10.1016/j.inffus.2025.103577_b19
Lin (10.1016/j.inffus.2025.103577_b49) 2021; 117
Pandey (10.1016/j.inffus.2025.103577_b23) 2019
Lin (10.1016/j.inffus.2025.103577_b29) 2023
Zhong (10.1016/j.inffus.2025.103577_b50) 2019
Peng (10.1016/j.inffus.2025.103577_b37) 2023
Tan (10.1016/j.inffus.2025.103577_b30) 2023
Stehman (10.1016/j.inffus.2025.103577_b64) 2009
Turner (10.1016/j.inffus.2025.103577_b65) 2020
Giunchiglia (10.1016/j.inffus.2025.103577_b47) 2009
10.1016/j.inffus.2025.103577_b10
Huang (10.1016/j.inffus.2025.103577_b15) 2022
Piech (10.1016/j.inffus.2025.103577_b18) 2015; 28
Zu (10.1016/j.inffus.2025.103577_b21) 2024
Zhao (10.1016/j.inffus.2025.103577_b2) 2023; 60
Rodríguez (10.1016/j.inffus.2025.103577_b53) 2018; 75
10.1016/j.inffus.2025.103577_b6
10.1016/j.inffus.2025.103577_b9
Achiam (10.1016/j.inffus.2025.103577_b12) 2023
Bordes (10.1016/j.inffus.2025.103577_b41) 2014; 94
Wang (10.1016/j.inffus.2025.103577_b25) 2024
Park (10.1016/j.inffus.2025.103577_b26) 2024; 302
Lee (10.1016/j.inffus.2025.103577_b16) 2024; 29
Veličković (10.1016/j.inffus.2025.103577_b51) 2017
Zheng (10.1016/j.inffus.2025.103577_b35) 2023
Huang (10.1016/j.inffus.2025.103577_b57) 2020; 38
10.1016/j.inffus.2025.103577_b44
10.1016/j.inffus.2025.103577_b45
10.1016/j.inffus.2025.103577_b42
Chi (10.1016/j.inffus.2025.103577_b54) 2009; 1
10.1016/j.inffus.2025.103577_b40
Li (10.1016/j.inffus.2025.103577_b36) 2023
Cai (10.1016/j.inffus.2025.103577_b46) 2019
GLM (10.1016/j.inffus.2025.103577_b13) 2024
Touvron (10.1016/j.inffus.2025.103577_b27) 2023
Kipf (10.1016/j.inffus.2025.103577_b52) 2016
References_xml – start-page: 297
  year: 2009
  end-page: 309
  ident: b64
  article-title: Accuracy assessment
  publication-title: SAGE Handb. Remote. Sens.
– volume: 75
  start-page: 21
  year: 2018
  end-page: 31
  ident: b53
  article-title: Beyond one-hot encoding: Lower dimensional target embedding
  publication-title: Image Vis. Comput.
– start-page: 146
  year: 2020
  ident: b65
  article-title: Area under the curve (AUC)
  publication-title: Encycl. Behav. Med.
– reference: T. Wang, F. Ma, J. Gao, Deep hierarchical knowledge tracing, in: Proceedings of the 12th International Conference on Educational Data Mining, 2019, pp. 777–783.
– year: 2002
  ident: b62
  article-title: A revision Bloom’s taxonomy: An overview
  publication-title: Theory Into Pr.
– reference: J. Zhang, X. Shi, I. King, D.-Y. Yeung, Dynamic key-value memory networks for knowledge tracing, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 765–774.
– volume: 61
  year: 2024
  ident: b1
  article-title: Improving the performance and explainability of knowledge tracing via Markov blanket
  publication-title: Inf. Process. Manage.
– volume: 4
  start-page: 253
  year: 1994
  end-page: 278
  ident: b4
  article-title: Knowledge tracing: Modeling the acquisition of procedural knowledge
  publication-title: User Model. User-Adapt. Interact.
– volume: 94
  start-page: 233
  year: 2014
  end-page: 259
  ident: b41
  article-title: A semantic matching energy function for learning with multi-relational data: Application to word-sense disambiguation
  publication-title: Mach. Learn.
– year: 2024
  ident: b25
  article-title: Learning states enhanced knowledge tracing: Simulating the diversity in real-world learning process
– start-page: 151
  year: 2023
  end-page: 162
  ident: b37
  article-title: Are gpt embeddings useful for ads and recommendation?
  publication-title: International Conference on Knowledge Science, Engineering and Management
– volume: 1
  start-page: 73
  year: 2009
  end-page: 105
  ident: b54
  article-title: Active-constructive-interactive: A conceptual framework for differentiating learning activities
  publication-title: Top. Cogn. Sci.
– reference: Q. Liu, N. Chen, T. Sakai, X.-M. Wu, Once: Boosting content-based recommendation with both open-and closed-source large language models, in: Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2024, pp. 452–461.
– year: 2023
  ident: b38
  article-title: Lkpnr: Llm and kg for personalized news recommendation framework
– volume: 28
  year: 2015
  ident: b18
  article-title: Deep knowledge tracing
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: b35
  article-title: Generative job recommendations with large language model
– year: 2019
  ident: b23
  article-title: A self-attentive model for knowledge tracing
– start-page: 1881
  year: 2019
  end-page: 1885
  ident: b46
  article-title: Learning path recommendation based on knowledge tracing model and reinforcement learning
  publication-title: 2019 IEEE 5th International Conference on Computer and Communications
– start-page: 36
  year: 2009
  end-page: 51
  ident: b47
  article-title: Faceted lightweight ontologies
  publication-title: Concept. Model.: Found. Appl.: Essays Honor. John Mylopoulos
– volume: 36
  year: 2024
  ident: b59
  article-title: Xes3g5m: A knowledge tracing benchmark dataset with auxiliary information
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 1276
  year: 2023
  end-page: 1287
  ident: b22
  article-title: Enhancing the transferability of adversarial examples based on Nesterov momentum for recommendation systems
  publication-title: IEEE Trans. Big Data
– year: 2016
  ident: b52
  article-title: Semi-supervised classification with graph convolutional networks
– reference: J. Yu, Y. Wang, Q. Zhong, G. Luo, Y. Mao, K. Sun, W. Feng, W. Xu, S. Cao, K. Zeng, et al., MOOCCubeX: a large knowledge-centered repository for adaptive learning in MOOCs, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 4643–4652.
– reference: Y. Guo, S. Shen, Q. Liu, Z. Huang, L. Zhu, Y. Su, E. Chen, Mitigating Cold-Start Problems in Knowledge Tracing with Large Language Models: An Attribute-aware Approach, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 727–736.
– year: 2023
  ident: b29
  article-title: How can recommender systems benefit from large language models: A survey
– year: 2017
  ident: b51
  article-title: Graph attention networks
– reference: Y. Feng, Z. Tian, Y. Zhu, Z. Han, H. Luo, G. Zhang, M. Song, CP-Prompt: Composition-based cross-modal prompting for domain-incremental continual learning, in: Proceedings of the 32nd ACM International Conference on Multimedia, 2024, pp. 2729–2738.
– year: 2023
  ident: b36
  article-title: LLM4Jobs: Unsupervised occupation extraction and standardization leveraging Large Language Models
– year: 2024
  ident: b13
  article-title: Chatglm: A family of large language models from glm-130b to glm-4 all tools
– year: 2025
  ident: b48
  article-title: Cold start problem: An experimental study of knowledge tracing models with new students
– volume: 33
  start-page: 100
  year: 2019
  end-page: 115
  ident: b8
  article-title: Ekt: Exercise-aware knowledge tracing for student performance prediction
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: S. Minn, J.-J. Vie, K. Takeuchi, H. Kashima, F. Zhu, Interpretable knowledge tracing: Simple and efficient student modeling with causal relations, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 12810–12818.
– year: 2022
  ident: b15
  article-title: Towards reasoning in large language models: A survey
– volume: 238
  year: 2024
  ident: b24
  article-title: Response speed enhanced fine-grained knowledge tracing: A multi-task learning perspective
  publication-title: Expert Syst. Appl.
– reference: Y. Xi, W. Liu, J. Lin, X. Cai, H. Zhu, J. Zhu, B. Chen, R. Tang, W. Zhang, Y. Yu, Towards open-world recommendation with knowledge augmentation from large language models, in: Proceedings of the 18th ACM Conference on Recommender Systems, 2024, pp. 12–22.
– volume: 30
  year: 2017
  ident: b56
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: b3
  article-title: A survey of knowledge tracing: Models, variants, and applications
  publication-title: IEEE Trans. Learn. Technol.
– reference: S. Mysore, A. McCallum, H. Zamani, Large language model augmented narrative driven recommendations, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 777–783.
– volume: 38
  start-page: 1
  year: 2020
  end-page: 33
  ident: b57
  article-title: Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students
  publication-title: ACM Trans. Inf. Syst. (TOIS)
– year: 2019
  ident: b50
  article-title: Reasoning over semantic-level graph for fact checking
– reference: J. Lin, R. Shan, C. Zhu, K. Du, B. Chen, S. Quan, R. Tang, Y. Yu, W. Zhang, Rella: Retrieval-enhanced large language models for lifelong sequential behavior comprehension in recommendation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp. 3497–3508.
– year: 2023
  ident: b43
  article-title: Multi-modal knowledge graph transformer framework for multi-modal entity alignment
– start-page: 12811
  year: 2024
  end-page: 12815
  ident: b21
  article-title: GuessKT: Improving knowledge tracing via considering guess behaviors
  publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
– year: 2001
  ident: b17
  article-title: Knowing What Students Know: The Science and Design of Educational Assessment
– year: 2009
  ident: b5
  article-title: Performance factors analysis–a new alternative to knowledge tracing
  publication-title: Online Submiss.
– year: 2024
  ident: b11
  article-title: Explainable few-shot knowledge tracing
– year: 2023
  ident: b12
  article-title: Gpt-4 technical report
– start-page: 406
  year: 2008
  end-page: 415
  ident: b58
  article-title: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing
  publication-title: Intelligent Tutoring Systems: 9th International Conference, ITS 2008, Montreal, Canada, June 23-27, 2008 Proceedings 9
– reference: X. Ge, F. Chen, S. Xu, F. Tao, J.M. Jose, Cross-modal semantic enhanced interaction for image-sentence retrieval, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 1022–1031.
– volume: 41
  start-page: 1
  year: 2023
  end-page: 28
  ident: b7
  article-title: Graph neural pre-training for recommendation with side information
  publication-title: ACM Trans. Inf. Syst.
– year: 2013
  ident: b55
  article-title: Item Response Theory
– reference: H. Nakagawa, Y. Iwasawa, Y. Matsuo, Graph-based knowledge tracing: modeling student proficiency using graph neural network, in: IEEE/WIC/ACM International Conference on Web Intelligence, 2019, pp. 156–163.
– reference: M. Gardner, P. Talukdar, J. Krishnamurthy, T. Mitchell, Incorporating vector space similarity in random walk inference over knowledge bases, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 397–406.
– reference: J. Sun, F. Yu, Q. Wan, Q. Li, S. Liu, X. Shen, Interpretable Knowledge Tracing with Multiscale State Representation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp. 3265–3276.
– year: 2022
  ident: b28
  article-title: Emergent abilities of large language models
– year: 2023
  ident: b27
  article-title: Llama: Open and efficient foundation language models
– volume: 29
  start-page: 11483
  year: 2024
  end-page: 11515
  ident: b16
  article-title: Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education
  publication-title: Educ. Inf. Technol.
– reference: A. Acharya, B. Singh, N. Onoe, Llm based generation of item-description for recommendation system, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 1204–1207.
– volume: 117
  start-page: 181
  year: 2021
  end-page: 192
  ident: b49
  article-title: Improving university faculty evaluations via multi-view knowledge graph
  publication-title: Future Gener. Comput. Syst.
– year: 2023
  ident: b30
  article-title: User modeling in the era of large language models: Current research and future directions
– reference: J. Yu, M. Lu, Q. Zhong, Z. Yao, S. Tu, Z. Liao, X. Li, M. Li, L. Hou, H.-T. Zheng, et al., Moocradar: A fine-grained and multi-aspect knowledge repository for improving cognitive student modeling in moocs, in: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 2924–2934.
– reference: R. Yacouby, D. Axman, Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models, in: Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 2020, pp. 79–91.
– volume: 60
  year: 2023
  ident: b2
  article-title: A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms
  publication-title: Inf. Process. Manage.
– year: 2024
  ident: b14
  article-title: CLST: Cold-start mitigation in knowledge tracing by aligning a generative language model as a students’ knowledge tracer
– reference: C. Wang, W. Ma, M. Zhang, C. Lv, F. Wan, H. Lin, T. Tang, Y. Liu, S. Ma, Temporal cross-effects in knowledge tracing, in: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 2021, pp. 517–525.
– reference: C.-K. Yeung, D.-Y. Yeung, Addressing two problems in deep knowledge tracing via prediction-consistent regularization, in: Proceedings of the Fifth Annual ACM Conference on Learning at Scale, 2018, pp. 1–10.
– volume: 302
  year: 2024
  ident: b26
  article-title: Enhancing knowledge tracing with concept map and response disentanglement
  publication-title: Knowl.-Based Syst.
– start-page: 146
  year: 2020
  ident: 10.1016/j.inffus.2025.103577_b65
  article-title: Area under the curve (AUC)
  publication-title: Encycl. Behav. Med.
  doi: 10.1007/978-3-030-39903-0_986
– volume: 75
  start-page: 21
  year: 2018
  ident: 10.1016/j.inffus.2025.103577_b53
  article-title: Beyond one-hot encoding: Lower dimensional target embedding
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2018.04.004
– ident: 10.1016/j.inffus.2025.103577_b67
  doi: 10.1145/3589334.3645373
– year: 2013
  ident: 10.1016/j.inffus.2025.103577_b55
– volume: 30
  year: 2017
  ident: 10.1016/j.inffus.2025.103577_b56
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 41
  start-page: 1
  issue: 3
  year: 2023
  ident: 10.1016/j.inffus.2025.103577_b7
  article-title: Graph neural pre-training for recommendation with side information
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/3568953
– ident: 10.1016/j.inffus.2025.103577_b61
  doi: 10.1145/3459637.3482010
– volume: 33
  start-page: 100
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2025.103577_b8
  article-title: Ekt: Exercise-aware knowledge tracing for student performance prediction
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2924374
– volume: 302
  year: 2024
  ident: 10.1016/j.inffus.2025.103577_b26
  article-title: Enhancing knowledge tracing with concept map and response disentanglement
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.112346
– ident: 10.1016/j.inffus.2025.103577_b31
  doi: 10.1145/3664647.3681481
– ident: 10.1016/j.inffus.2025.103577_b42
  doi: 10.3115/v1/D14-1044
– ident: 10.1016/j.inffus.2025.103577_b40
  doi: 10.1145/3604915.3608829
– year: 2016
  ident: 10.1016/j.inffus.2025.103577_b52
– start-page: 36
  year: 2009
  ident: 10.1016/j.inffus.2025.103577_b47
  article-title: Faceted lightweight ontologies
  publication-title: Concept. Model.: Found. Appl.: Essays Honor. John Mylopoulos
  doi: 10.1007/978-3-642-02463-4_3
– volume: 1
  start-page: 73
  issue: 1
  year: 2009
  ident: 10.1016/j.inffus.2025.103577_b54
  article-title: Active-constructive-interactive: A conceptual framework for differentiating learning activities
  publication-title: Top. Cogn. Sci.
  doi: 10.1111/j.1756-8765.2008.01005.x
– volume: 36
  year: 2024
  ident: 10.1016/j.inffus.2025.103577_b59
  article-title: Xes3g5m: A knowledge tracing benchmark dataset with auxiliary information
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 253
  year: 1994
  ident: 10.1016/j.inffus.2025.103577_b4
  article-title: Knowledge tracing: Modeling the acquisition of procedural knowledge
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1007/BF01099821
– ident: 10.1016/j.inffus.2025.103577_b9
  doi: 10.1145/3350546.3352513
– volume: 61
  issue: 3
  year: 2024
  ident: 10.1016/j.inffus.2025.103577_b1
  article-title: Improving the performance and explainability of knowledge tracing via Markov blanket
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2023.103620
– ident: 10.1016/j.inffus.2025.103577_b39
  doi: 10.1145/3604915.3610647
– start-page: 406
  year: 2008
  ident: 10.1016/j.inffus.2025.103577_b58
  article-title: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing
– volume: 28
  year: 2015
  ident: 10.1016/j.inffus.2025.103577_b18
  article-title: Deep knowledge tracing
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.inffus.2025.103577_b66
  doi: 10.1145/3231644.3231647
– year: 2023
  ident: 10.1016/j.inffus.2025.103577_b38
– year: 2024
  ident: 10.1016/j.inffus.2025.103577_b3
  article-title: A survey of knowledge tracing: Models, variants, and applications
  publication-title: IEEE Trans. Learn. Technol.
  doi: 10.1109/TLT.2024.3383325
– volume: 94
  start-page: 233
  year: 2014
  ident: 10.1016/j.inffus.2025.103577_b41
  article-title: A semantic matching energy function for learning with multi-relational data: Application to word-sense disambiguation
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5363-6
– year: 2023
  ident: 10.1016/j.inffus.2025.103577_b29
– year: 2025
  ident: 10.1016/j.inffus.2025.103577_b48
– year: 2024
  ident: 10.1016/j.inffus.2025.103577_b25
– year: 2023
  ident: 10.1016/j.inffus.2025.103577_b27
– year: 2022
  ident: 10.1016/j.inffus.2025.103577_b28
– year: 2023
  ident: 10.1016/j.inffus.2025.103577_b35
– start-page: 12811
  year: 2024
  ident: 10.1016/j.inffus.2025.103577_b21
  article-title: GuessKT: Improving knowledge tracing via considering guess behaviors
– year: 2023
  ident: 10.1016/j.inffus.2025.103577_b30
– ident: 10.1016/j.inffus.2025.103577_b45
– year: 2002
  ident: 10.1016/j.inffus.2025.103577_b62
  article-title: A revision Bloom’s taxonomy: An overview
  publication-title: Theory Into Pr.
  doi: 10.1207/s15430421tip4104_2
– ident: 10.1016/j.inffus.2025.103577_b6
  doi: 10.1609/aaai.v36i11.21560
– ident: 10.1016/j.inffus.2025.103577_b44
  doi: 10.1109/WACV56688.2023.00108
– start-page: 1881
  year: 2019
  ident: 10.1016/j.inffus.2025.103577_b46
  article-title: Learning path recommendation based on knowledge tracing model and reinforcement learning
– volume: 60
  issue: 1
  year: 2023
  ident: 10.1016/j.inffus.2025.103577_b2
  article-title: A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2022.103114
– ident: 10.1016/j.inffus.2025.103577_b20
  doi: 10.1145/3437963.3441802
– ident: 10.1016/j.inffus.2025.103577_b33
  doi: 10.1145/3616855.3635845
– start-page: 151
  year: 2023
  ident: 10.1016/j.inffus.2025.103577_b37
  article-title: Are gpt embeddings useful for ads and recommendation?
– year: 2019
  ident: 10.1016/j.inffus.2025.103577_b50
– ident: 10.1016/j.inffus.2025.103577_b19
  doi: 10.1145/3038912.3052580
– ident: 10.1016/j.inffus.2025.103577_b32
  doi: 10.1145/3589334.3645467
– volume: 9
  start-page: 1276
  issue: 5
  year: 2023
  ident: 10.1016/j.inffus.2025.103577_b22
  article-title: Enhancing the transferability of adversarial examples based on Nesterov momentum for recommendation systems
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2023.3248626
– volume: 117
  start-page: 181
  year: 2021
  ident: 10.1016/j.inffus.2025.103577_b49
  article-title: Improving university faculty evaluations via multi-view knowledge graph
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.11.021
– year: 2009
  ident: 10.1016/j.inffus.2025.103577_b5
  article-title: Performance factors analysis–a new alternative to knowledge tracing
  publication-title: Online Submiss.
– start-page: 297
  year: 2009
  ident: 10.1016/j.inffus.2025.103577_b64
  article-title: Accuracy assessment
  publication-title: SAGE Handb. Remote. Sens.
  doi: 10.4135/9780857021052.n21
– year: 2023
  ident: 10.1016/j.inffus.2025.103577_b12
– ident: 10.1016/j.inffus.2025.103577_b63
  doi: 10.18653/v1/2020.eval4nlp-1.9
– year: 2017
  ident: 10.1016/j.inffus.2025.103577_b51
– year: 2001
  ident: 10.1016/j.inffus.2025.103577_b17
– year: 2023
  ident: 10.1016/j.inffus.2025.103577_b36
– ident: 10.1016/j.inffus.2025.103577_b10
  doi: 10.1145/3627673.3679664
– year: 2024
  ident: 10.1016/j.inffus.2025.103577_b14
– year: 2023
  ident: 10.1016/j.inffus.2025.103577_b43
– ident: 10.1016/j.inffus.2025.103577_b60
  doi: 10.1145/3539618.3591898
– year: 2024
  ident: 10.1016/j.inffus.2025.103577_b11
– volume: 38
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.inffus.2025.103577_b57
  article-title: Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students
  publication-title: ACM Trans. Inf. Syst. (TOIS)
  doi: 10.1145/3379507
– year: 2019
  ident: 10.1016/j.inffus.2025.103577_b23
– volume: 29
  start-page: 11483
  issue: 9
  year: 2024
  ident: 10.1016/j.inffus.2025.103577_b16
  article-title: Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education
  publication-title: Educ. Inf. Technol.
  doi: 10.1007/s10639-023-12249-8
– ident: 10.1016/j.inffus.2025.103577_b34
  doi: 10.1145/3640457.3688104
– year: 2024
  ident: 10.1016/j.inffus.2025.103577_b13
– volume: 238
  year: 2024
  ident: 10.1016/j.inffus.2025.103577_b24
  article-title: Response speed enhanced fine-grained knowledge tracing: A multi-task learning perspective
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122107
– year: 2022
  ident: 10.1016/j.inffus.2025.103577_b15
SSID ssj0017031
Score 2.4352524
Snippet In this paper, we propose a novel LLM-based KT model, called the Teacher Thinking Knowledge Tracing model (2T-KT), to solve the issue that traditional...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103577
SubjectTerms And knowledge graph
Education AI
Knowledge tracing
Large language model
Title LLM supporting knowledge tracing leveraging global subject and student specific knowledge graphs
URI https://dx.doi.org/10.1016/j.inffus.2025.103577
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lbnQhPrG-yMJt7DySyWRZiqVqW0QtdDfmCRWppTPd-u3mzqNUEBeuhgnJMJyEe2_COScI3bA0dVSKiFAaaEIVTYlKgpg4y42SykWRAL3zeJIMp_RhxmYt1G-0MECrrGN_FdPLaF23dGs0u8v5vPsCO48I3EkY5FUBIj5KOazy268NzSMEf_bSMzVJCPRu5HMlx8tPoluDaXfEQH3OOP89PW2lnMEB2q9rRdyrfucQteziCO2NN0ar-TF6G43GOF8voYr2SQhvjshwsZIaWj6sX6zlVUS4Mv_w3RUcvmC5MDivrC0xCC6BNLT1gdLKOj9B08Hda39I6ksTiPa1SEF04EKtjXWJS2igBDiEqTTWgrPQJNJENuaWxdalTkXamDDlUgjpjGBAPOPxKWovPhf2DGFng5QKX_MJ6qjf5kio_iImQ2OEZanpINJglS0rb4ysIY29ZxW2GWCbVdh2EG8AzX7McebD958jz_898gLt-reaZ32J2sVqba98GVGo63KdXKOdXv959ATP-8fh5BuTYMuH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw9craaJncTHqgKlNO2FVuot2LEtFaFSdfl_PFmqIiEOXJ3Yip6tmWfnzTPAE49jy6TwKWNeTpliMVWhF1BrIq2ksr4vsN55NA6TKXud8VkD-nUtDMoqq9hfxvQiWlctnQrNznI-77zhzsNHdxKOeVWIA2ihOxVvQqs3GCbj3c8EtGgvbFPDkGKHuoKukHm5ebRb9O32ORag8yj6PUPtZZ2XUzip6CLplV90Bg2zOIfj0c5rdX0B72k6IuvtEom0y0Nkd0pGNiuZY8unceu1uI2IlP4f7nWF5y9ELjRZl-6WBGsuUTe0N0DhZr2-hOnL86Sf0OreBJo7OrKhuWe7ea6NDW3IPCXQJEzFQS4i3tWh1L4JIsMDY2Or_FzrbhxJIaTVgqP2LAquoLn4WphrINZ4MROO9glmmdvpSCSAPpddrYXhsW4DrbHKlqU9Rlbrxj6yEtsMsc1KbNsQ1YBmP6Y5cxH8z543_-75CIfJZJRm6WA8vIUj96SSXd9Bc7PamnvHKjbqoVo13zfAzKM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LLM+supporting+knowledge+tracing+leveraging+global+subject+and+student+specific+knowledge+graphs&rft.jtitle=Information+fusion&rft.au=Li%2C+Linqing&rft.au=Wang%2C+Zhifeng&rft.au=Jose%2C+Joemon+M.&rft.au=Ge%2C+Xuri&rft.date=2026-02-01&rft.issn=1566-2535&rft.volume=126&rft.spage=103577&rft_id=info:doi/10.1016%2Fj.inffus.2025.103577&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2025_103577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon