LLM supporting knowledge tracing leveraging global subject and student specific knowledge graphs
In this paper, we propose a novel LLM-based KT model, called the Teacher Thinking Knowledge Tracing model (2T-KT), to solve the issue that traditional knowledge tracing methods relying on numerous student exercise records cannot make good predictions when predicting new knowledge concepts by leverag...
Saved in:
Published in | Information fusion Vol. 126; p. 103577 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2026
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a novel LLM-based KT model, called the Teacher Thinking Knowledge Tracing model (2T-KT), to solve the issue that traditional knowledge tracing methods relying on numerous student exercise records cannot make good predictions when predicting new knowledge concepts by leveraging the excellent abilities of reasoning and generation from large language model (LLM). The 2T-KT model leverages large language models (LLMs) to enrich the knowledge graph with new knowledge concepts and predict student performance on the next exercise by four key components, i.e. observation, guideline, interpretation, and cognition. In particular, there are two stages, the preprocessing stage, and the 2T-KT stage, to predict the student’s performance on the next exercise. In the preprocessing stage, two novel local and global knowledge graphs are first designed to improve the capability of evaluating new concepts. In the 2T-KT stage, a novel teacher’s thinking mode is designed to include four key components, i.e. observation, guideline, interpretation, and cognition to assist the LLM in predicting the student’s performance on the next exercise. This exercise contains new knowledge concepts. Finally, even with new concepts, the LLM ‘teacher’ can accurately predict students’ abilities through interpretable augmentation prompts. Extensive evaluations on three public educational benchmarks—the FrcSub dataset, comprising 10K student records and 8 exercises, and the Xes3g5m dataset, comprising around 522K student records and 6,641 exercises. In addition, the MOOCRadar dataset contains around 897K student records and 2510 exercise records to test our model’s performance. It demonstrates that our 2T-KT model is a strong contender in knowledge tracing, delivering both high performance and interpretability.
•Completion and verification methods are designed to add and verify concepts.•We design LLMs with new KGs to model Teacher Thinking Mode via four components.•We evaluate 2T-KT on three benchmarks. It outperforms state-of-the-art methods. |
---|---|
AbstractList | In this paper, we propose a novel LLM-based KT model, called the Teacher Thinking Knowledge Tracing model (2T-KT), to solve the issue that traditional knowledge tracing methods relying on numerous student exercise records cannot make good predictions when predicting new knowledge concepts by leveraging the excellent abilities of reasoning and generation from large language model (LLM). The 2T-KT model leverages large language models (LLMs) to enrich the knowledge graph with new knowledge concepts and predict student performance on the next exercise by four key components, i.e. observation, guideline, interpretation, and cognition. In particular, there are two stages, the preprocessing stage, and the 2T-KT stage, to predict the student’s performance on the next exercise. In the preprocessing stage, two novel local and global knowledge graphs are first designed to improve the capability of evaluating new concepts. In the 2T-KT stage, a novel teacher’s thinking mode is designed to include four key components, i.e. observation, guideline, interpretation, and cognition to assist the LLM in predicting the student’s performance on the next exercise. This exercise contains new knowledge concepts. Finally, even with new concepts, the LLM ‘teacher’ can accurately predict students’ abilities through interpretable augmentation prompts. Extensive evaluations on three public educational benchmarks—the FrcSub dataset, comprising 10K student records and 8 exercises, and the Xes3g5m dataset, comprising around 522K student records and 6,641 exercises. In addition, the MOOCRadar dataset contains around 897K student records and 2510 exercise records to test our model’s performance. It demonstrates that our 2T-KT model is a strong contender in knowledge tracing, delivering both high performance and interpretability.
•Completion and verification methods are designed to add and verify concepts.•We design LLMs with new KGs to model Teacher Thinking Mode via four components.•We evaluate 2T-KT on three benchmarks. It outperforms state-of-the-art methods. |
ArticleNumber | 103577 |
Author | Ge, Xuri Wang, Zhifeng Li, Linqing Jose, Joemon M. |
Author_xml | – sequence: 1 givenname: Linqing surname: Li fullname: Li, Linqing email: a847820455@gmail.com organization: Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, 430079, China – sequence: 2 givenname: Zhifeng surname: Wang fullname: Wang, Zhifeng email: zfwang@ccnu.edu.cn organization: Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, 430079, China – sequence: 3 givenname: Joemon M. surname: Jose fullname: Jose, Joemon M. email: joemon.jose@glasgow.ac.uk organization: School of Computing Science, University of Glasgow, Glasgow, United Kingdom – sequence: 4 givenname: Xuri orcidid: 0000-0002-3925-4951 surname: Ge fullname: Ge, Xuri email: xuri.ge@sdu.edu.cn organization: School of Artificial Intelligence, Shandong University, Jinan, China |
BookMark | eNp9kM1OwzAQhH0oEm3hDTjkBVL8U9vNBQlV_FQK4gJn49jr4BCcyE6LeHsShQMnTrsa7Yx2vhVahC4AQlcEbwgm4rrZ-ODcMW0opnyUGJdygZaEC5FTzvg5WqXUYEwkZmSJ3sryKUvHvu_i4EOdfYTuqwVbQzZEbSalhRNEXU9r3XaVbsfzqgEzZDrYLA1HC2HIUg_GO2_-BNRR9-_pAp053Sa4_J1r9Hp_97J_zMvnh8P-tswNkXTIDXbEGAtOOLHFVSEIJdWOmUJyYoW2FJgEzsDtXEWNtWQndVFoZwtuuAPJ1mg755rYpRTBqT76Tx2_FcFqIqMaNZNRExk1kxltN7MNxt9OHqJKxkMwYH0cOyrb-f8DfgB6knWc |
Cites_doi | 10.1007/978-3-030-39903-0_986 10.1016/j.imavis.2018.04.004 10.1145/3589334.3645373 10.1145/3568953 10.1145/3459637.3482010 10.1109/TKDE.2019.2924374 10.1016/j.knosys.2024.112346 10.1145/3664647.3681481 10.3115/v1/D14-1044 10.1145/3604915.3608829 10.1007/978-3-642-02463-4_3 10.1111/j.1756-8765.2008.01005.x 10.1007/BF01099821 10.1145/3350546.3352513 10.1016/j.ipm.2023.103620 10.1145/3604915.3610647 10.1145/3231644.3231647 10.1109/TLT.2024.3383325 10.1007/s10994-013-5363-6 10.1207/s15430421tip4104_2 10.1609/aaai.v36i11.21560 10.1109/WACV56688.2023.00108 10.1016/j.ipm.2022.103114 10.1145/3437963.3441802 10.1145/3616855.3635845 10.1145/3038912.3052580 10.1145/3589334.3645467 10.1109/TBDATA.2023.3248626 10.1016/j.future.2020.11.021 10.4135/9780857021052.n21 10.18653/v1/2020.eval4nlp-1.9 10.1145/3627673.3679664 10.1145/3539618.3591898 10.1145/3379507 10.1007/s10639-023-12249-8 10.1145/3640457.3688104 10.1016/j.eswa.2023.122107 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.inffus.2025.103577 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_inffus_2025_103577 S1566253525006499 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c172t-c0f1ccdef6f640b96121b83c9751d6ad2e37e53ef8fb2cdd187a99afd95c5fe73 |
IEDL.DBID | .~1 |
ISSN | 1566-2535 |
IngestDate | Thu Aug 14 00:19:09 EDT 2025 Sat Aug 30 17:13:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Large language model Knowledge tracing And knowledge graph Education AI |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-c0f1ccdef6f640b96121b83c9751d6ad2e37e53ef8fb2cdd187a99afd95c5fe73 |
ORCID | 0000-0002-3925-4951 |
ParticipantIDs | crossref_primary_10_1016_j_inffus_2025_103577 elsevier_sciencedirect_doi_10_1016_j_inffus_2025_103577 |
PublicationCentury | 2000 |
PublicationDate | February 2026 2026-02-00 |
PublicationDateYYYYMMDD | 2026-02-01 |
PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
PublicationDecade | 2020 |
PublicationTitle | Information fusion |
PublicationYear | 2026 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jiang, Wei, Zhang, Zhang (b1) 2024; 61 Y. Xi, W. Liu, J. Lin, X. Cai, H. Zhu, J. Zhu, B. Chen, R. Tang, W. Zhang, Y. Yu, Towards open-world recommendation with knowledge augmentation from large language models, in: Proceedings of the 18th ACM Conference on Recommender Systems, 2024, pp. 12–22. Bhattacharjee, Wayllace (b48) 2025 Peng, Xu, Xu, Zhang, Chen (b37) 2023 S. Minn, J.-J. Vie, K. Takeuchi, H. Kashima, F. Zhu, Interpretable knowledge tracing: Simple and efficient student modeling with causal relations, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 12810–12818. Krathwohl (b62) 2002 Zheng, Qiu, Hu, Wu, Zhu, Xiong (b35) 2023 Kipf, Welling (b52) 2016 Corbett, Anderson (b4) 1994; 4 J. Lin, R. Shan, C. Zhu, K. Du, B. Chen, S. Quan, R. Tang, Y. Yu, W. Zhang, Rella: Retrieval-enhanced large language models for lifelong sequential behavior comprehension in recommendation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp. 3497–3508. Li, Ji, Guo, Liang, Wang, Li (b43) 2023 Huang, Liu, Chen, Wu, Xiao, Chen, Ma, Hu (b57) 2020; 38 Y. Guo, S. Shen, Q. Liu, Z. Huang, L. Zhu, Y. Su, E. Chen, Mitigating Cold-Start Problems in Knowledge Tracing with Large Language Models: An Attribute-aware Approach, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 727–736. Huang, Chang (b15) 2022 Stehman, Foody (b64) 2009 T. Wang, F. Ma, J. Gao, Deep hierarchical knowledge tracing, in: Proceedings of the 12th International Conference on Educational Data Mining, 2019, pp. 777–783. Liu, Meng, Macdonald, Ounis (b7) 2023; 41 Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b51) 2017 Pavlik, Cen, Koedinger (b5) 2009 Wei, Tay, Bommasani, Raffel, Zoph, Borgeaud, Yogatama, Bosma, Zhou, Metzler (b28) 2022 J. Zhang, X. Shi, I. King, D.-Y. Yeung, Dynamic key-value memory networks for knowledge tracing, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 765–774. GLM, Zeng, Xu, Wang, Zhang, Yin, Zhang, Rojas, Feng, Zhao (b13) 2024 Wang, Zhang, Wang, Yang, Zhang (b25) 2024 Lee, Jung, Jeon, Sohn, Hwang, Moon, Kim (b16) 2024; 29 Li, Kang, De Bie (b36) 2023 A. Acharya, B. Singh, N. Onoe, Llm based generation of item-description for recommendation system, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 1204–1207. S. Mysore, A. McCallum, H. Zamani, Large language model augmented narrative driven recommendations, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 777–783. Qian, Yuan, Chen, Chen, Lian, Zhao (b22) 2023; 9 Lin, Zhu, Lu, Shi, Niu (b49) 2021; 117 Rodríguez, Bautista, Gonzalez, Escalera (b53) 2018; 75 Lin, Dai, Xi, Liu, Chen, Zhang, Liu, Wu, Li, Zhu (b29) 2023 Liu, Liu, Guo, Chen, Huang, Zhao, Tang, Luo, Weng (b59) 2024; 36 Achiam, Adler, Agarwal, Ahmad, Akkaya, Aleman, Almeida, Altenschmidt, Altman, Anadkat (b12) 2023 Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Rozière, Goyal, Hambro, Azhar (b27) 2023 X. Ge, F. Chen, S. Xu, F. Tao, J.M. Jose, Cross-modal semantic enhanced interaction for image-sentence retrieval, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 1022–1031. Piech, Bassen, Huang, Ganguli, Sahami, Guibas, Sohl-Dickstein (b18) 2015; 28 Baker, Corbett, Aleven (b58) 2008 Jung, Yoo, Yoon, Jang (b14) 2024 Turner (b65) 2020 Y. Feng, Z. Tian, Y. Zhu, Z. Han, H. Luo, G. Zhang, M. Song, CP-Prompt: Composition-based cross-modal prompting for domain-incremental continual learning, in: Proceedings of the 32nd ACM International Conference on Multimedia, 2024, pp. 2729–2738. R. Yacouby, D. Axman, Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models, in: Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 2020, pp. 79–91. Cai, Zhang, Dai (b46) 2019 Pandey, Karypis (b23) 2019 Q. Liu, N. Chen, T. Sakai, X.-M. Wu, Once: Boosting content-based recommendation with both open-and closed-source large language models, in: Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2024, pp. 452–461. Tan, Jiang (b30) 2023 M. Gardner, P. Talukdar, J. Krishnamurthy, T. Mitchell, Incorporating vector space similarity in random walk inference over knowledge bases, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 397–406. H. Nakagawa, Y. Iwasawa, Y. Matsuo, Graph-based knowledge tracing: modeling student proficiency using graph neural network, in: IEEE/WIC/ACM International Conference on Web Intelligence, 2019, pp. 156–163. Liu, Huang, Yin, Chen, Xiong, Su, Hu (b8) 2019; 33 Runfeng, Xiangyang, Zhou, Xin, Zhanwei, Kai (b38) 2023 C. Wang, W. Ma, M. Zhang, C. Lv, F. Wan, H. Lin, T. Tang, Y. Liu, S. Ma, Temporal cross-effects in knowledge tracing, in: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 2021, pp. 517–525. Lundberg, Lee (b56) 2017; 30 Huang, Hu, Yang, Geng, Li, Xu, Ou (b24) 2024; 238 Giunchiglia, Dutta, Maltese (b47) 2009 J. Yu, Y. Wang, Q. Zhong, G. Luo, Y. Mao, K. Sun, W. Feng, W. Xu, S. Cao, K. Zeng, et al., MOOCCubeX: a large knowledge-centered repository for adaptive learning in MOOCs, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 4643–4652. Council (b17) 2001 Zu, Cai, Tang, Wang, Li, Shen (b21) 2024 J. Yu, M. Lu, Q. Zhong, Z. Yao, S. Tu, Z. Liao, X. Li, M. Li, L. Hou, H.-T. Zheng, et al., Moocradar: A fine-grained and multi-aspect knowledge repository for improving cognitive student modeling in moocs, in: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 2924–2934. Li, Yu, Ouyang, Liu, Rong, Li, Xiong (b11) 2024 Bordes, Glorot, Weston, Bengio (b41) 2014; 94 Chi (b54) 2009; 1 C.-K. Yeung, D.-Y. Yeung, Addressing two problems in deep knowledge tracing via prediction-consistent regularization, in: Proceedings of the Fifth Annual ACM Conference on Learning at Scale, 2018, pp. 1–10. Zhao, Xia, Jiang, He (b2) 2023; 60 Park, Lee, Park (b26) 2024; 302 Zhong, Xu, Tang, Xu, Duan, Zhou, Wang, Yin (b50) 2019 Shen, Liu, Huang, Zheng, Yin, Wang, Chen (b3) 2024 Embretson, Reise (b55) 2013 J. Sun, F. Yu, Q. Wan, Q. Li, S. Liu, X. Shen, Interpretable Knowledge Tracing with Multiscale State Representation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp. 3265–3276. 10.1016/j.inffus.2025.103577_b39 Shen (10.1016/j.inffus.2025.103577_b3) 2024 Jung (10.1016/j.inffus.2025.103577_b14) 2024 Qian (10.1016/j.inffus.2025.103577_b22) 2023; 9 10.1016/j.inffus.2025.103577_b33 10.1016/j.inffus.2025.103577_b34 10.1016/j.inffus.2025.103577_b31 10.1016/j.inffus.2025.103577_b32 Runfeng (10.1016/j.inffus.2025.103577_b38) 2023 Corbett (10.1016/j.inffus.2025.103577_b4) 1994; 4 Pavlik (10.1016/j.inffus.2025.103577_b5) 2009 Lundberg (10.1016/j.inffus.2025.103577_b56) 2017; 30 Baker (10.1016/j.inffus.2025.103577_b58) 2008 Bhattacharjee (10.1016/j.inffus.2025.103577_b48) 2025 Council (10.1016/j.inffus.2025.103577_b17) 2001 Jiang (10.1016/j.inffus.2025.103577_b1) 2024; 61 Li (10.1016/j.inffus.2025.103577_b11) 2024 10.1016/j.inffus.2025.103577_b66 Liu (10.1016/j.inffus.2025.103577_b59) 2024; 36 10.1016/j.inffus.2025.103577_b67 10.1016/j.inffus.2025.103577_b20 Huang (10.1016/j.inffus.2025.103577_b24) 2024; 238 10.1016/j.inffus.2025.103577_b63 10.1016/j.inffus.2025.103577_b60 Liu (10.1016/j.inffus.2025.103577_b8) 2019; 33 10.1016/j.inffus.2025.103577_b61 Krathwohl (10.1016/j.inffus.2025.103577_b62) 2002 Wei (10.1016/j.inffus.2025.103577_b28) 2022 Li (10.1016/j.inffus.2025.103577_b43) 2023 Embretson (10.1016/j.inffus.2025.103577_b55) 2013 Liu (10.1016/j.inffus.2025.103577_b7) 2023; 41 10.1016/j.inffus.2025.103577_b19 Lin (10.1016/j.inffus.2025.103577_b49) 2021; 117 Pandey (10.1016/j.inffus.2025.103577_b23) 2019 Lin (10.1016/j.inffus.2025.103577_b29) 2023 Zhong (10.1016/j.inffus.2025.103577_b50) 2019 Peng (10.1016/j.inffus.2025.103577_b37) 2023 Tan (10.1016/j.inffus.2025.103577_b30) 2023 Stehman (10.1016/j.inffus.2025.103577_b64) 2009 Turner (10.1016/j.inffus.2025.103577_b65) 2020 Giunchiglia (10.1016/j.inffus.2025.103577_b47) 2009 10.1016/j.inffus.2025.103577_b10 Huang (10.1016/j.inffus.2025.103577_b15) 2022 Piech (10.1016/j.inffus.2025.103577_b18) 2015; 28 Zu (10.1016/j.inffus.2025.103577_b21) 2024 Zhao (10.1016/j.inffus.2025.103577_b2) 2023; 60 Rodríguez (10.1016/j.inffus.2025.103577_b53) 2018; 75 10.1016/j.inffus.2025.103577_b6 10.1016/j.inffus.2025.103577_b9 Achiam (10.1016/j.inffus.2025.103577_b12) 2023 Bordes (10.1016/j.inffus.2025.103577_b41) 2014; 94 Wang (10.1016/j.inffus.2025.103577_b25) 2024 Park (10.1016/j.inffus.2025.103577_b26) 2024; 302 Lee (10.1016/j.inffus.2025.103577_b16) 2024; 29 Veličković (10.1016/j.inffus.2025.103577_b51) 2017 Zheng (10.1016/j.inffus.2025.103577_b35) 2023 Huang (10.1016/j.inffus.2025.103577_b57) 2020; 38 10.1016/j.inffus.2025.103577_b44 10.1016/j.inffus.2025.103577_b45 10.1016/j.inffus.2025.103577_b42 Chi (10.1016/j.inffus.2025.103577_b54) 2009; 1 10.1016/j.inffus.2025.103577_b40 Li (10.1016/j.inffus.2025.103577_b36) 2023 Cai (10.1016/j.inffus.2025.103577_b46) 2019 GLM (10.1016/j.inffus.2025.103577_b13) 2024 Touvron (10.1016/j.inffus.2025.103577_b27) 2023 Kipf (10.1016/j.inffus.2025.103577_b52) 2016 |
References_xml | – start-page: 297 year: 2009 end-page: 309 ident: b64 article-title: Accuracy assessment publication-title: SAGE Handb. Remote. Sens. – volume: 75 start-page: 21 year: 2018 end-page: 31 ident: b53 article-title: Beyond one-hot encoding: Lower dimensional target embedding publication-title: Image Vis. Comput. – start-page: 146 year: 2020 ident: b65 article-title: Area under the curve (AUC) publication-title: Encycl. Behav. Med. – reference: T. Wang, F. Ma, J. Gao, Deep hierarchical knowledge tracing, in: Proceedings of the 12th International Conference on Educational Data Mining, 2019, pp. 777–783. – year: 2002 ident: b62 article-title: A revision Bloom’s taxonomy: An overview publication-title: Theory Into Pr. – reference: J. Zhang, X. Shi, I. King, D.-Y. Yeung, Dynamic key-value memory networks for knowledge tracing, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 765–774. – volume: 61 year: 2024 ident: b1 article-title: Improving the performance and explainability of knowledge tracing via Markov blanket publication-title: Inf. Process. Manage. – volume: 4 start-page: 253 year: 1994 end-page: 278 ident: b4 article-title: Knowledge tracing: Modeling the acquisition of procedural knowledge publication-title: User Model. User-Adapt. Interact. – volume: 94 start-page: 233 year: 2014 end-page: 259 ident: b41 article-title: A semantic matching energy function for learning with multi-relational data: Application to word-sense disambiguation publication-title: Mach. Learn. – year: 2024 ident: b25 article-title: Learning states enhanced knowledge tracing: Simulating the diversity in real-world learning process – start-page: 151 year: 2023 end-page: 162 ident: b37 article-title: Are gpt embeddings useful for ads and recommendation? publication-title: International Conference on Knowledge Science, Engineering and Management – volume: 1 start-page: 73 year: 2009 end-page: 105 ident: b54 article-title: Active-constructive-interactive: A conceptual framework for differentiating learning activities publication-title: Top. Cogn. Sci. – reference: Q. Liu, N. Chen, T. Sakai, X.-M. Wu, Once: Boosting content-based recommendation with both open-and closed-source large language models, in: Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2024, pp. 452–461. – year: 2023 ident: b38 article-title: Lkpnr: Llm and kg for personalized news recommendation framework – volume: 28 year: 2015 ident: b18 article-title: Deep knowledge tracing publication-title: Adv. Neural Inf. Process. Syst. – year: 2023 ident: b35 article-title: Generative job recommendations with large language model – year: 2019 ident: b23 article-title: A self-attentive model for knowledge tracing – start-page: 1881 year: 2019 end-page: 1885 ident: b46 article-title: Learning path recommendation based on knowledge tracing model and reinforcement learning publication-title: 2019 IEEE 5th International Conference on Computer and Communications – start-page: 36 year: 2009 end-page: 51 ident: b47 article-title: Faceted lightweight ontologies publication-title: Concept. Model.: Found. Appl.: Essays Honor. John Mylopoulos – volume: 36 year: 2024 ident: b59 article-title: Xes3g5m: A knowledge tracing benchmark dataset with auxiliary information publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 1276 year: 2023 end-page: 1287 ident: b22 article-title: Enhancing the transferability of adversarial examples based on Nesterov momentum for recommendation systems publication-title: IEEE Trans. Big Data – year: 2016 ident: b52 article-title: Semi-supervised classification with graph convolutional networks – reference: J. Yu, Y. Wang, Q. Zhong, G. Luo, Y. Mao, K. Sun, W. Feng, W. Xu, S. Cao, K. Zeng, et al., MOOCCubeX: a large knowledge-centered repository for adaptive learning in MOOCs, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 4643–4652. – reference: Y. Guo, S. Shen, Q. Liu, Z. Huang, L. Zhu, Y. Su, E. Chen, Mitigating Cold-Start Problems in Knowledge Tracing with Large Language Models: An Attribute-aware Approach, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 727–736. – year: 2023 ident: b29 article-title: How can recommender systems benefit from large language models: A survey – year: 2017 ident: b51 article-title: Graph attention networks – reference: Y. Feng, Z. Tian, Y. Zhu, Z. Han, H. Luo, G. Zhang, M. Song, CP-Prompt: Composition-based cross-modal prompting for domain-incremental continual learning, in: Proceedings of the 32nd ACM International Conference on Multimedia, 2024, pp. 2729–2738. – year: 2023 ident: b36 article-title: LLM4Jobs: Unsupervised occupation extraction and standardization leveraging Large Language Models – year: 2024 ident: b13 article-title: Chatglm: A family of large language models from glm-130b to glm-4 all tools – year: 2025 ident: b48 article-title: Cold start problem: An experimental study of knowledge tracing models with new students – volume: 33 start-page: 100 year: 2019 end-page: 115 ident: b8 article-title: Ekt: Exercise-aware knowledge tracing for student performance prediction publication-title: IEEE Trans. Knowl. Data Eng. – reference: S. Minn, J.-J. Vie, K. Takeuchi, H. Kashima, F. Zhu, Interpretable knowledge tracing: Simple and efficient student modeling with causal relations, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 12810–12818. – year: 2022 ident: b15 article-title: Towards reasoning in large language models: A survey – volume: 238 year: 2024 ident: b24 article-title: Response speed enhanced fine-grained knowledge tracing: A multi-task learning perspective publication-title: Expert Syst. Appl. – reference: Y. Xi, W. Liu, J. Lin, X. Cai, H. Zhu, J. Zhu, B. Chen, R. Tang, W. Zhang, Y. Yu, Towards open-world recommendation with knowledge augmentation from large language models, in: Proceedings of the 18th ACM Conference on Recommender Systems, 2024, pp. 12–22. – volume: 30 year: 2017 ident: b56 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – year: 2024 ident: b3 article-title: A survey of knowledge tracing: Models, variants, and applications publication-title: IEEE Trans. Learn. Technol. – reference: S. Mysore, A. McCallum, H. Zamani, Large language model augmented narrative driven recommendations, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 777–783. – volume: 38 start-page: 1 year: 2020 end-page: 33 ident: b57 article-title: Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students publication-title: ACM Trans. Inf. Syst. (TOIS) – year: 2019 ident: b50 article-title: Reasoning over semantic-level graph for fact checking – reference: J. Lin, R. Shan, C. Zhu, K. Du, B. Chen, S. Quan, R. Tang, Y. Yu, W. Zhang, Rella: Retrieval-enhanced large language models for lifelong sequential behavior comprehension in recommendation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp. 3497–3508. – year: 2023 ident: b43 article-title: Multi-modal knowledge graph transformer framework for multi-modal entity alignment – start-page: 12811 year: 2024 end-page: 12815 ident: b21 article-title: GuessKT: Improving knowledge tracing via considering guess behaviors publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2001 ident: b17 article-title: Knowing What Students Know: The Science and Design of Educational Assessment – year: 2009 ident: b5 article-title: Performance factors analysis–a new alternative to knowledge tracing publication-title: Online Submiss. – year: 2024 ident: b11 article-title: Explainable few-shot knowledge tracing – year: 2023 ident: b12 article-title: Gpt-4 technical report – start-page: 406 year: 2008 end-page: 415 ident: b58 article-title: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing publication-title: Intelligent Tutoring Systems: 9th International Conference, ITS 2008, Montreal, Canada, June 23-27, 2008 Proceedings 9 – reference: X. Ge, F. Chen, S. Xu, F. Tao, J.M. Jose, Cross-modal semantic enhanced interaction for image-sentence retrieval, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 1022–1031. – volume: 41 start-page: 1 year: 2023 end-page: 28 ident: b7 article-title: Graph neural pre-training for recommendation with side information publication-title: ACM Trans. Inf. Syst. – year: 2013 ident: b55 article-title: Item Response Theory – reference: H. Nakagawa, Y. Iwasawa, Y. Matsuo, Graph-based knowledge tracing: modeling student proficiency using graph neural network, in: IEEE/WIC/ACM International Conference on Web Intelligence, 2019, pp. 156–163. – reference: M. Gardner, P. Talukdar, J. Krishnamurthy, T. Mitchell, Incorporating vector space similarity in random walk inference over knowledge bases, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 397–406. – reference: J. Sun, F. Yu, Q. Wan, Q. Li, S. Liu, X. Shen, Interpretable Knowledge Tracing with Multiscale State Representation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp. 3265–3276. – year: 2022 ident: b28 article-title: Emergent abilities of large language models – year: 2023 ident: b27 article-title: Llama: Open and efficient foundation language models – volume: 29 start-page: 11483 year: 2024 end-page: 11515 ident: b16 article-title: Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education publication-title: Educ. Inf. Technol. – reference: A. Acharya, B. Singh, N. Onoe, Llm based generation of item-description for recommendation system, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 1204–1207. – volume: 117 start-page: 181 year: 2021 end-page: 192 ident: b49 article-title: Improving university faculty evaluations via multi-view knowledge graph publication-title: Future Gener. Comput. Syst. – year: 2023 ident: b30 article-title: User modeling in the era of large language models: Current research and future directions – reference: J. Yu, M. Lu, Q. Zhong, Z. Yao, S. Tu, Z. Liao, X. Li, M. Li, L. Hou, H.-T. Zheng, et al., Moocradar: A fine-grained and multi-aspect knowledge repository for improving cognitive student modeling in moocs, in: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 2924–2934. – reference: R. Yacouby, D. Axman, Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models, in: Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 2020, pp. 79–91. – volume: 60 year: 2023 ident: b2 article-title: A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms publication-title: Inf. Process. Manage. – year: 2024 ident: b14 article-title: CLST: Cold-start mitigation in knowledge tracing by aligning a generative language model as a students’ knowledge tracer – reference: C. Wang, W. Ma, M. Zhang, C. Lv, F. Wan, H. Lin, T. Tang, Y. Liu, S. Ma, Temporal cross-effects in knowledge tracing, in: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 2021, pp. 517–525. – reference: C.-K. Yeung, D.-Y. Yeung, Addressing two problems in deep knowledge tracing via prediction-consistent regularization, in: Proceedings of the Fifth Annual ACM Conference on Learning at Scale, 2018, pp. 1–10. – volume: 302 year: 2024 ident: b26 article-title: Enhancing knowledge tracing with concept map and response disentanglement publication-title: Knowl.-Based Syst. – start-page: 146 year: 2020 ident: 10.1016/j.inffus.2025.103577_b65 article-title: Area under the curve (AUC) publication-title: Encycl. Behav. Med. doi: 10.1007/978-3-030-39903-0_986 – volume: 75 start-page: 21 year: 2018 ident: 10.1016/j.inffus.2025.103577_b53 article-title: Beyond one-hot encoding: Lower dimensional target embedding publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2018.04.004 – ident: 10.1016/j.inffus.2025.103577_b67 doi: 10.1145/3589334.3645373 – year: 2013 ident: 10.1016/j.inffus.2025.103577_b55 – volume: 30 year: 2017 ident: 10.1016/j.inffus.2025.103577_b56 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 41 start-page: 1 issue: 3 year: 2023 ident: 10.1016/j.inffus.2025.103577_b7 article-title: Graph neural pre-training for recommendation with side information publication-title: ACM Trans. Inf. Syst. doi: 10.1145/3568953 – ident: 10.1016/j.inffus.2025.103577_b61 doi: 10.1145/3459637.3482010 – volume: 33 start-page: 100 issue: 1 year: 2019 ident: 10.1016/j.inffus.2025.103577_b8 article-title: Ekt: Exercise-aware knowledge tracing for student performance prediction publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2924374 – volume: 302 year: 2024 ident: 10.1016/j.inffus.2025.103577_b26 article-title: Enhancing knowledge tracing with concept map and response disentanglement publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.112346 – ident: 10.1016/j.inffus.2025.103577_b31 doi: 10.1145/3664647.3681481 – ident: 10.1016/j.inffus.2025.103577_b42 doi: 10.3115/v1/D14-1044 – ident: 10.1016/j.inffus.2025.103577_b40 doi: 10.1145/3604915.3608829 – year: 2016 ident: 10.1016/j.inffus.2025.103577_b52 – start-page: 36 year: 2009 ident: 10.1016/j.inffus.2025.103577_b47 article-title: Faceted lightweight ontologies publication-title: Concept. Model.: Found. Appl.: Essays Honor. John Mylopoulos doi: 10.1007/978-3-642-02463-4_3 – volume: 1 start-page: 73 issue: 1 year: 2009 ident: 10.1016/j.inffus.2025.103577_b54 article-title: Active-constructive-interactive: A conceptual framework for differentiating learning activities publication-title: Top. Cogn. Sci. doi: 10.1111/j.1756-8765.2008.01005.x – volume: 36 year: 2024 ident: 10.1016/j.inffus.2025.103577_b59 article-title: Xes3g5m: A knowledge tracing benchmark dataset with auxiliary information publication-title: Adv. Neural Inf. Process. Syst. – volume: 4 start-page: 253 year: 1994 ident: 10.1016/j.inffus.2025.103577_b4 article-title: Knowledge tracing: Modeling the acquisition of procedural knowledge publication-title: User Model. User-Adapt. Interact. doi: 10.1007/BF01099821 – ident: 10.1016/j.inffus.2025.103577_b9 doi: 10.1145/3350546.3352513 – volume: 61 issue: 3 year: 2024 ident: 10.1016/j.inffus.2025.103577_b1 article-title: Improving the performance and explainability of knowledge tracing via Markov blanket publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2023.103620 – ident: 10.1016/j.inffus.2025.103577_b39 doi: 10.1145/3604915.3610647 – start-page: 406 year: 2008 ident: 10.1016/j.inffus.2025.103577_b58 article-title: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing – volume: 28 year: 2015 ident: 10.1016/j.inffus.2025.103577_b18 article-title: Deep knowledge tracing publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.inffus.2025.103577_b66 doi: 10.1145/3231644.3231647 – year: 2023 ident: 10.1016/j.inffus.2025.103577_b38 – year: 2024 ident: 10.1016/j.inffus.2025.103577_b3 article-title: A survey of knowledge tracing: Models, variants, and applications publication-title: IEEE Trans. Learn. Technol. doi: 10.1109/TLT.2024.3383325 – volume: 94 start-page: 233 year: 2014 ident: 10.1016/j.inffus.2025.103577_b41 article-title: A semantic matching energy function for learning with multi-relational data: Application to word-sense disambiguation publication-title: Mach. Learn. doi: 10.1007/s10994-013-5363-6 – year: 2023 ident: 10.1016/j.inffus.2025.103577_b29 – year: 2025 ident: 10.1016/j.inffus.2025.103577_b48 – year: 2024 ident: 10.1016/j.inffus.2025.103577_b25 – year: 2023 ident: 10.1016/j.inffus.2025.103577_b27 – year: 2022 ident: 10.1016/j.inffus.2025.103577_b28 – year: 2023 ident: 10.1016/j.inffus.2025.103577_b35 – start-page: 12811 year: 2024 ident: 10.1016/j.inffus.2025.103577_b21 article-title: GuessKT: Improving knowledge tracing via considering guess behaviors – year: 2023 ident: 10.1016/j.inffus.2025.103577_b30 – ident: 10.1016/j.inffus.2025.103577_b45 – year: 2002 ident: 10.1016/j.inffus.2025.103577_b62 article-title: A revision Bloom’s taxonomy: An overview publication-title: Theory Into Pr. doi: 10.1207/s15430421tip4104_2 – ident: 10.1016/j.inffus.2025.103577_b6 doi: 10.1609/aaai.v36i11.21560 – ident: 10.1016/j.inffus.2025.103577_b44 doi: 10.1109/WACV56688.2023.00108 – start-page: 1881 year: 2019 ident: 10.1016/j.inffus.2025.103577_b46 article-title: Learning path recommendation based on knowledge tracing model and reinforcement learning – volume: 60 issue: 1 year: 2023 ident: 10.1016/j.inffus.2025.103577_b2 article-title: A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2022.103114 – ident: 10.1016/j.inffus.2025.103577_b20 doi: 10.1145/3437963.3441802 – ident: 10.1016/j.inffus.2025.103577_b33 doi: 10.1145/3616855.3635845 – start-page: 151 year: 2023 ident: 10.1016/j.inffus.2025.103577_b37 article-title: Are gpt embeddings useful for ads and recommendation? – year: 2019 ident: 10.1016/j.inffus.2025.103577_b50 – ident: 10.1016/j.inffus.2025.103577_b19 doi: 10.1145/3038912.3052580 – ident: 10.1016/j.inffus.2025.103577_b32 doi: 10.1145/3589334.3645467 – volume: 9 start-page: 1276 issue: 5 year: 2023 ident: 10.1016/j.inffus.2025.103577_b22 article-title: Enhancing the transferability of adversarial examples based on Nesterov momentum for recommendation systems publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2023.3248626 – volume: 117 start-page: 181 year: 2021 ident: 10.1016/j.inffus.2025.103577_b49 article-title: Improving university faculty evaluations via multi-view knowledge graph publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.11.021 – year: 2009 ident: 10.1016/j.inffus.2025.103577_b5 article-title: Performance factors analysis–a new alternative to knowledge tracing publication-title: Online Submiss. – start-page: 297 year: 2009 ident: 10.1016/j.inffus.2025.103577_b64 article-title: Accuracy assessment publication-title: SAGE Handb. Remote. Sens. doi: 10.4135/9780857021052.n21 – year: 2023 ident: 10.1016/j.inffus.2025.103577_b12 – ident: 10.1016/j.inffus.2025.103577_b63 doi: 10.18653/v1/2020.eval4nlp-1.9 – year: 2017 ident: 10.1016/j.inffus.2025.103577_b51 – year: 2001 ident: 10.1016/j.inffus.2025.103577_b17 – year: 2023 ident: 10.1016/j.inffus.2025.103577_b36 – ident: 10.1016/j.inffus.2025.103577_b10 doi: 10.1145/3627673.3679664 – year: 2024 ident: 10.1016/j.inffus.2025.103577_b14 – year: 2023 ident: 10.1016/j.inffus.2025.103577_b43 – ident: 10.1016/j.inffus.2025.103577_b60 doi: 10.1145/3539618.3591898 – year: 2024 ident: 10.1016/j.inffus.2025.103577_b11 – volume: 38 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.inffus.2025.103577_b57 article-title: Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students publication-title: ACM Trans. Inf. Syst. (TOIS) doi: 10.1145/3379507 – year: 2019 ident: 10.1016/j.inffus.2025.103577_b23 – volume: 29 start-page: 11483 issue: 9 year: 2024 ident: 10.1016/j.inffus.2025.103577_b16 article-title: Few-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education publication-title: Educ. Inf. Technol. doi: 10.1007/s10639-023-12249-8 – ident: 10.1016/j.inffus.2025.103577_b34 doi: 10.1145/3640457.3688104 – year: 2024 ident: 10.1016/j.inffus.2025.103577_b13 – volume: 238 year: 2024 ident: 10.1016/j.inffus.2025.103577_b24 article-title: Response speed enhanced fine-grained knowledge tracing: A multi-task learning perspective publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122107 – year: 2022 ident: 10.1016/j.inffus.2025.103577_b15 |
SSID | ssj0017031 |
Score | 2.4352524 |
Snippet | In this paper, we propose a novel LLM-based KT model, called the Teacher Thinking Knowledge Tracing model (2T-KT), to solve the issue that traditional... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103577 |
SubjectTerms | And knowledge graph Education AI Knowledge tracing Large language model |
Title | LLM supporting knowledge tracing leveraging global subject and student specific knowledge graphs |
URI | https://dx.doi.org/10.1016/j.inffus.2025.103577 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lbnQhPrG-yMJt7DySyWRZiqVqW0QtdDfmCRWppTPd-u3mzqNUEBeuhgnJMJyEe2_COScI3bA0dVSKiFAaaEIVTYlKgpg4y42SykWRAL3zeJIMp_RhxmYt1G-0MECrrGN_FdPLaF23dGs0u8v5vPsCO48I3EkY5FUBIj5KOazy268NzSMEf_bSMzVJCPRu5HMlx8tPoluDaXfEQH3OOP89PW2lnMEB2q9rRdyrfucQteziCO2NN0ar-TF6G43GOF8voYr2SQhvjshwsZIaWj6sX6zlVUS4Mv_w3RUcvmC5MDivrC0xCC6BNLT1gdLKOj9B08Hda39I6ksTiPa1SEF04EKtjXWJS2igBDiEqTTWgrPQJNJENuaWxdalTkXamDDlUgjpjGBAPOPxKWovPhf2DGFng5QKX_MJ6qjf5kio_iImQ2OEZanpINJglS0rb4ysIY29ZxW2GWCbVdh2EG8AzX7McebD958jz_898gLt-reaZ32J2sVqba98GVGo63KdXKOdXv959ATP-8fh5BuTYMuH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw9craaJncTHqgKlNO2FVuot2LEtFaFSdfl_PFmqIiEOXJ3Yip6tmWfnzTPAE49jy6TwKWNeTpliMVWhF1BrIq2ksr4vsN55NA6TKXud8VkD-nUtDMoqq9hfxvQiWlctnQrNznI-77zhzsNHdxKOeVWIA2ihOxVvQqs3GCbj3c8EtGgvbFPDkGKHuoKukHm5ebRb9O32ORag8yj6PUPtZZ2XUzip6CLplV90Bg2zOIfj0c5rdX0B72k6IuvtEom0y0Nkd0pGNiuZY8unceu1uI2IlP4f7nWF5y9ELjRZl-6WBGsuUTe0N0DhZr2-hOnL86Sf0OreBJo7OrKhuWe7ea6NDW3IPCXQJEzFQS4i3tWh1L4JIsMDY2Or_FzrbhxJIaTVgqP2LAquoLn4WphrINZ4MROO9glmmdvpSCSAPpddrYXhsW4DrbHKlqU9Rlbrxj6yEtsMsc1KbNsQ1YBmP6Y5cxH8z543_-75CIfJZJRm6WA8vIUj96SSXd9Bc7PamnvHKjbqoVo13zfAzKM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LLM+supporting+knowledge+tracing+leveraging+global+subject+and+student+specific+knowledge+graphs&rft.jtitle=Information+fusion&rft.au=Li%2C+Linqing&rft.au=Wang%2C+Zhifeng&rft.au=Jose%2C+Joemon+M.&rft.au=Ge%2C+Xuri&rft.date=2026-02-01&rft.issn=1566-2535&rft.volume=126&rft.spage=103577&rft_id=info:doi/10.1016%2Fj.inffus.2025.103577&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2025_103577 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |