Neural network prediction of thermal field spatiotemporal evolution during additive manufacturing: an overview
This paper provides an overview of the application of machine learning (ML) techniques for predicting the spatiotemporal evolution of thermal fields during additive manufacturing (AM) processes. AM, also known as three-dimensional printing, has gained significant attention in various industries due...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 134; no. 5-6; pp. 2107 - 2128 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper provides an overview of the application of machine learning (ML) techniques for predicting the spatiotemporal evolution of thermal fields during additive manufacturing (AM) processes. AM, also known as three-dimensional printing, has gained significant attention in various industries due to its potential for rapid prototyping and customized production. However, accurately predicting and controlling the thermal behavior during the AM process is crucial for ensuring the quality and reliability of the printed components. Traditional physics-based models (PBM) often face challenges in capturing AM’s complex dynamics and inherent uncertainties. In recent years, ML algorithms, particularly neural networks (NNs), have shown promising results in predicting the thermal field evolution. This paper reviews the existing literature and highlights the critical methodologies and recent advancements in NN-based predictions. It explores novel perspectives by discussing the hybrid modeling approaches, including the combination of PBMs with NNs. This overview highlights the evolving landscape of predictive techniques in the context of AM and underscores the potential for enhancing accuracy and efficiency in thermal field prediction. The paper also discusses the challenges and outlines future directions for enhancing the accuracy and efficiency of thermal field prediction in AM. By synthesizing current research, this overview will guide researchers and practitioners toward leveraging NNs effectively for optimizing thermal management in AM processes. The insights presented underscore the transformative potential of NN predictions in advancing AM capabilities. |
---|---|
AbstractList | This paper provides an overview of the application of machine learning (ML) techniques for predicting the spatiotemporal evolution of thermal fields during additive manufacturing (AM) processes. AM, also known as three-dimensional printing, has gained significant attention in various industries due to its potential for rapid prototyping and customized production. However, accurately predicting and controlling the thermal behavior during the AM process is crucial for ensuring the quality and reliability of the printed components. Traditional physics-based models (PBM) often face challenges in capturing AM’s complex dynamics and inherent uncertainties. In recent years, ML algorithms, particularly neural networks (NNs), have shown promising results in predicting the thermal field evolution. This paper reviews the existing literature and highlights the critical methodologies and recent advancements in NN-based predictions. It explores novel perspectives by discussing the hybrid modeling approaches, including the combination of PBMs with NNs. This overview highlights the evolving landscape of predictive techniques in the context of AM and underscores the potential for enhancing accuracy and efficiency in thermal field prediction. The paper also discusses the challenges and outlines future directions for enhancing the accuracy and efficiency of thermal field prediction in AM. By synthesizing current research, this overview will guide researchers and practitioners toward leveraging NNs effectively for optimizing thermal management in AM processes. The insights presented underscore the transformative potential of NN predictions in advancing AM capabilities. |
Author | Faiz Wan Ali, Wan Fahmin Chike, Onuchukwu Godwin Ahmad, Norhayati |
Author_xml | – sequence: 1 givenname: Onuchukwu Godwin orcidid: 0000-0002-9041-7496 surname: Chike fullname: Chike, Onuchukwu Godwin email: onuchukwuchike@graduate.utm.my organization: Faculty of Mechanical Engineering, UTM, Faculty of Engineering, Nigerian Army University Biu, NAUB – sequence: 2 givenname: Norhayati surname: Ahmad fullname: Ahmad, Norhayati organization: Faculty of Mechanical Engineering, UTM – sequence: 3 givenname: Wan Fahmin surname: Faiz Wan Ali fullname: Faiz Wan Ali, Wan Fahmin email: wan_fahmin@utm.my organization: Faculty of Mechanical Engineering, UTM |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyDxg8dmI37FDFS6pgA-vIjSfgktiRnaTi70lb1qxGmvvQ1VmQmQ8eCbkGfgOc69vEOWjOuMgYZCJXTJ2ROWRSMskhn5E5F2rFpFarC7JIaTfZFajVnPhXHKJpqMd-H-I37SJaV_UueBpq2n9hbCe1dthYmjozCT22XThEcAzNcHTaITr_SY21rncj0tb4oTZVf3zfUTN1jRhHh_tLcl6bJuHV312Sj8eH9_Uz27w9vazvN6wCLXpW8VyiBWUrgaglF5hZvlVVZaSShdE1xxylFLLICg1gsi3YWgBIKLaSa5BLIk69VQwpRazLLrrWxJ8SeHkgVp6IlROx8kisVFNInkKpOwzHWO7CEP2087_UL7Qzcwc |
Cites_doi | 10.1088/2515-7639/abca7b 10.1109/tnnls.2022.3152527 10.1016/j.jmapro.2021.02.033 10.1016/j.enbuild.2022.112408 10.1007/11691730_11 10.1016/j.apenergy.2009.12.013 10.1016/j.addma.2020.101538 10.1016/j.matdes.2021.109471 10.1016/j.bioactmat.2021.12.027 10.7717/peerj-cs.623 10.1016/j.jrmge.2020.05.011 10.1080/00207721.2022.2076171 10.1007/978-3-030-56127-7 10.1109/mci.2018.2840738 10.1007/s00466-022-02260-0 10.1016/j.ifset.2021.102738 10.1016/j.neunet.2022.07.023 10.2351/1.4815992 10.1007/s00466-020-01952-9 10.1016/j.promfg.2019.06.089 10.1109/bigcomp.2017.7881693 10.1016/j.inffus.2021.11.005 10.1126/science.abg1487 10.1109/access.2019.2902640 10.1115/1.4048957 10.1007/s40964-021-00180-8 10.1016/j.egyai.2021.100114 10.1016/j.engappai.2023.105908 10.1063/1.2209807 10.1002/bbb.2140 10.1016/j.buildenv.2018.01.023 10.1007/s00170-021-08596-w 10.1080/09506608.2020.1868889 10.1115/1.4044400 10.3390/app10186616 10.1080/09506608.2023.2169501 10.1016/j.matpr.2020.02.635 10.1016/j.jmsy.2021.11.003 10.1016/j.mfglet.2018.10.002 10.1016/j.jmatprotec.2021.117472 10.1098/rsif.2017.0213 10.3390/w11020374 10.1109/iccubea.2017.8463779 10.1016/j.mattod.2021.03.020 10.1016/j.matdes.2022.110831 10.1109/dsaa.2018.00018 10.1016/j.promfg.2020.05.093 10.3934/mbe.2023376 10.1016/j.enbuild.2017.11.045 10.1007/s00521-022-07347-6 10.1109/access.2021.3097177 10.1038/s41524-017-0056-5 10.25518/esaform21.2812 10.1016/j.jmst.2018.09.002 10.1016/b978-0-12-820601-0.00005-7 10.1073/pnas.1900654116 10.3390/ma13184171 10.1016/j.rineng.2022.100478 10.1007/s00170-019-03552-1 10.1016/j.pecs.2021.100967 10.1002/adem.201801359 10.1109/dsaa.2019.00069 10.25518/esaform21.2599 10.1016/j.chemolab.2021.104396 10.5194/gmd-15-5481-2022 10.1016/j.optlastec.2016.07.001 10.1007/s12541-022-00688-1 10.6026/97320630013054 10.3390/app9214500 10.1016/j.apmate.2023.100137 10.1109/access.2020.2975067 10.1109/comitcon.2019.8862451 10.1007/s00170-021-08542-w 10.1007/s12525-021-00475-2 10.3934/mmc.2023016 10.1016/j.cma.2019.112734 10.1016/j.matdes.2018.11.060 10.1038/s42254-021-00314-5 10.1016/j.jmapro.2021.11.037 10.1007/s10462-020-09876-9 10.1016/j.addma.2015.07.001 10.1109/mgrs.2021.3064051 10.1007/s10462-019-09784-7 10.1002/acs.3529 10.1051/matecconf/202032103004 10.1007/s00170-021-08155-3 10.1007/978-3-319-46976-8_20 10.1109/access.2021.3105362 10.1007/bf02670257 10.1038/s41598-021-03622-z 10.1007/s00466-022-02257-9 10.1109/access.2022.3205618 10.1007/978-3-031-41337-7_3 10.1080/24725854.2017.1417656 10.1038/nature17439 10.1016/j.rcim.2022.102445 10.1080/17452759.2021.1944229 10.1016/j.ijheatmasstransfer.2016.08.049 10.17760/d20467268 10.1016/j.addma.2020.101491 10.1007/978-1-4939-2113-3 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00170-024-14256-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 2128 |
ExternalDocumentID | 10_1007_s00170_024_14256_6 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAEOY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMVV ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c172t-c053ed16dc2ee7302e4d0b6cca3639a7f0e5e3323949711a4b1df211319b30713 |
IEDL.DBID | U2A |
ISSN | 0268-3768 |
IngestDate | Thu Sep 12 20:25:27 EDT 2024 Wed Sep 04 01:21:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Keywords | Thermal field Deep neural network Additive manufacturing Spatiotemporal evolution Physics-based modeling Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-c053ed16dc2ee7302e4d0b6cca3639a7f0e5e3323949711a4b1df211319b30713 |
ORCID | 0000-0002-9041-7496 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1007_s00170_024_14256_6 springer_journals_10_1007_s00170_024_14256_6 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2024 |
Publisher | Springer London |
Publisher_xml | – name: Springer London |
References | Cerulli G (2023) Model selection and regularization. Springer International Publishing, pp 59–146. [Online]. Available: https://doi.org/10.1007/978-3-031-41337-7_3 Nalajam PK, Varadarajan R (2021) A hybrid deep learning model for layer-wise melt pool temperature forecasting in wire-arc additive manufacturing process. IEEE Access 9:100652–100664. [Online]. Available: https://doi.org/10.1109/access.2021.3097177 Liao S, Xue T, Jeong J, Webster S, Ehmann K, Cao J (2023) Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification. Comput Mech 72(3):499–512. [Online]. Available: https://doi.org/10.1007/s00466-022-02257-9 Kim T, Shin J-Y, Kim H, Kim S, Heo J-H (2019) The use of large-scale climate indices in monthly reservoir inflow forecasting and its application on time series and artificial intelligence models. Water 11(2):374. [Online]. Available: https://doi.org/10.3390/w11020374 Khanzadeh M, Chowdhury S, Tschopp MA, Doude HR, Marufuzzaman M, Bian L (2018) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transac 51(5):437–455. [Online]. Available: https://doi.org/10.1080/24725854.2017.1417656 Binu D, Rajakumar B (2021) Introduction. Elsevier, pp 1–19. [Online]. Available: https://doi.org/10.1016/b978-0-12-820601-0.00005-7 Liu F, Wei L, Shi S, Wei H (2020) On the varieties of build features during multi-layer laser directed energy deposition. Additive Manuf 36:101491. [Online]. Available: https://doi.org/10.1016/j.addma.2020.101491 Qi H, Mazumder J, Ki H (2006) Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J Appl Phys 100(2). [Online]. Available: https://doi.org/10.1063/1.2209807 Takemura S, Koike R, Kakinuma Y, Sato Y, Oda Y (2019) Design of powder nozzle for high resource efficiency in directed energy deposition based on computational fluid dynamics simulation. Int J Adv Manuf Technol 105(10):4107–4121. [Online]. Available: https://doi.org/10.1007/s00170-019-03552-1 Moradi R, Berangi R, Minaei B (2019) A survey of regularization strategies for deep models. Artif Intell Rev 53(6):3947–3986. [Online]. Available: https://doi.org/10.1007/s10462-019-09784-7 Perani M, Baraldo S, Decker M, Vandone A, Valente A, Paoli B (2023) Track geometry prediction for laser metal deposition based on on-line artificial vision and deep neural networks. Robot Comp Integr Manuf 79:102445. [Online]. Available: https://doi.org/10.1016/j.rcim.2022.102445 Bre F, Gimenez JM, Fachinotti VD (2018) Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy Building 158:1429–1441. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.11.045 Kim J, Schiavon S, Brager G (2018) Personal comfort models - a new paradigm in thermal comfort for occupant-centric environmental control. Build Env 132:114–124. [Online]. Available: https://doi.org/10.1016/j.buildenv.2018.01.023 Shim D-S, Baek G-Y, Seo J-S, Shin G-Y, Kim K-P, Lee K-Y (2016) Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Optic Laser Technol 86:69–78. [Online]. Available: https://doi.org/10.1016/j.optlastec.2016.07.001 Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L (2018) Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE. [Online]. Available: https://doi.org/10.1109/dsaa.2018.00018 Wang C, Tan X, Tor S, Lim C (2020) Machine learning in additive manufacturing: state-of-the-art and perspectives. Additive Manuf 36:101538. [Online]. Available: https://doi.org/10.1016/j.addma.2020.101538 Ighalo JO, Adeniyi AG, Marques G (2020) Application of linear regression algorithm and stochastic gradient descent in a machine-learning environment for predicting biomass higher heating value. Biofuel Bioprod Bioref 14(6):1286–1295. [Online]. Available: https://doi.org/10.1002/bbb.2140 Jin X, Xu A, Bie R, Guo P (2006) Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. Springer, Berlin Heidelberg, pp 106–115. [Online]. Available: https://doi.org/10.1007/11691730_11 Phung and Rhee (2019) A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets. Appl Sci 9(21):4500. [Online]. Available: https://doi.org/10.3390/app9214500 Cheng P, Wang H, Stojanovic V, Liu F, He S, Shi K (2022) Dissipativity-based finite-time asynchronous output feedback control for wind turbine system via a hidden Markov model. Int J Sys Sci 53(15):3177–3189. [Online]. Available: https://doi.org/10.1080/00207721.2022.2076171 Ren P (2022) Embedding physics into deep learning for modeling spatiotemporal systems. Ph.D. dissertation, Northeastern University Library. [Online]. Available: https://doi.org/10.17760/d20467268 Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing [review article]. IEEE Comput Intell Mag 13(3):55–75. [Online]. Available: https://doi.org/10.1109/mci.2018.2840738 Tian Y, Zhang Y (2022) A comprehensive survey on regularization strategies in machine learning. Inform Fusion 80:146–166. [Online]. Available: https://doi.org/10.1016/j.inffus.2021.11.005 Zhao J, Li X, Shum C, McPhee J (2021) A review of physics-based and data-driven models for real-time control of polymer electrolyte membrane fuel cells. Energy AI 6:100114. [Online]. Available: https://doi.org/10.1016/j.egyai.2021.100114 Xie J, Chai Z, Xu L, Ren X, Liu S, Chen X (2022) 3D temperature field prediction in direct energy deposition of metals using physics informed neural network. Int J Adv Manuf Technol 119(5–6):3449–3468. [Online]. Available: https://doi.org/10.1007/s00170-021-08542-w Shahrubudin N, Lee T, Ramlan R (2019) An overview on 3d printing technology: technological, materials, and applications. Procedia Manuf 35:1286–1296. [Online]. Available: https://doi.org/10.1016/j.promfg.2019.06.089 Ho S, Zhang W, Young W, Buchholz M, Jufout SA, Dajani K, Bian L, Mozumdar M (2021) DLAM: deep learning based real-time porosity prediction for additive manufacturing using thermal images of the melt pool. IEEE Access 9:115100–115114. [Online]. Available: https://doi.org/10.1109/access.2021.3105362 Svetlizky D, Das M, Zheng B, Vyatskikh AL, Bose S, Bandyopadhyay A, Schoenung JM, Lavernia EJ, Eliaz N (2021) Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today 49:271–295. [Online]. Available: https://doi.org/10.1016/j.mattod.2021.03.020 Ren K, Chew Y, Zhang Y, Fuh J, Bi G (2020) Thermal field prediction for laser scanning paths in laser aided additive manufacturing by physics-based machine learning. Com Method Appl Mech Eng 362:112734. [Online]. Available: https://doi.org/10.1016/j.cma.2019.112734 Djordjevic V, Tao H, Song X, He S, Gao W, Stojanovic V (2023) Data-driven control of hydraulic servo actuator: an event-triggered adaptive dynamic programming approach. Mathe Biosci Eng 20(5):8561–8582. [Online]. Available: https://doi.org/10.3934/mbe.2023376 Ray S (2019) A quick review of machine learning algorithms. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). IEEE. [Online]. Available: https://doi.org/10.1109/comitcon.2019.8862451 Ko B, Kim H-G, Oh K-J, Choi H-J (2017) Controlled dropout: a different approach to using dropout on deep neural network. In: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE. [Online]. Available: https://doi.org/10.1109/bigcomp.2017.7881693 Lim J-S, Oh W-J, Lee C-M, Kim D-H (2021) Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods. Sci Rep 11(1). [Online]. Available: https://doi.org/10.1038/s41598-021-03622-z Hodson TO (2022) Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geosci Model Dev 15(14):5481–5487. [Online]. Available: https://doi.org/10.5194/gmd-15-5481-2022 Ness KL, Paul A, Sun L, Zhang Z (2022) Towards a generic physics-based machine learning model for geometry invariant thermal history prediction in additive manufacturing. J Mater Process Technol 302:117472. [Online]. Available: https://doi.org/10.1016/j.jmatprotec.2021.117472 Kardani N, Zhou A, Nazem M, Shen S-L (2021) Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J Rock Mech Geotech Eng 13(1):188–201. [Online]. Available: https://doi.org/10.1016/j.jrmge.2020.05.011 Adnan M, Lu Y, Jones A, Cheng F-T, Yeung H (2020) A new architectural approach to monitoring and controlling am processes. Appl Sci 10(18):6616. [Online]. Available: https://doi.org/10.3390/app10186616 Li G, Shi J (2010) On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87(7):2313–2320. [Online]. Available: https://doi.org/10.1016/j.apenergy.2009.12.013 Kang L, Yang C (2019) A review on high-strength titanium alloys: microstructure, strengthening, and properties. Adv Eng Mater 21(8). [Online]. Available: https://doi.org/10.1002/adem.201801359 Gan Z, Yu G, He X, Li S (2017) Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel. Int J Heat Mass Transf 104:28–38. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.049 Zhou Z, Shen H, Liu B, Du W, Jin J (2021) Thermal field prediction for welding paths in multi-layer gas metal arc welding-based additive manufacturing: a machine learning approach. J Manuf Process 64:960–971. [Online]. Available: https://doi.org/10.1016/j.jmapro.2021.02.033 Aliramezani M, Koch CR, Shahbakhti M (2022) Mod 14256_CR73 14256_CR74 14256_CR71 14256_CR72 14256_CR77 14256_CR78 14256_CR75 14256_CR76 14256_CR70 14256_CR68 14256_CR69 14256_CR84 14256_CR85 14256_CR82 14256_CR83 14256_CR88 14256_CR89 14256_CR86 14256_CR87 14256_CR80 14256_CR81 14256_CR79 14256_CR95 14256_CR96 14256_CR93 14256_CR94 14256_CR100 14256_CR11 14256_CR99 14256_CR101 14256_CR12 14256_CR102 14256_CR97 14256_CR10 14256_CR98 14256_CR91 14256_CR92 14256_CR90 14256_CR1 14256_CR5 14256_CR4 14256_CR3 14256_CR2 14256_CR9 14256_CR8 14256_CR7 14256_CR6 14256_CR22 14256_CR23 14256_CR20 14256_CR21 14256_CR15 14256_CR16 14256_CR13 14256_CR14 14256_CR19 14256_CR17 14256_CR18 14256_CR30 14256_CR33 14256_CR34 14256_CR31 14256_CR32 14256_CR26 14256_CR27 14256_CR24 14256_CR25 14256_CR28 14256_CR29 14256_CR40 14256_CR41 14256_CR44 14256_CR45 14256_CR42 14256_CR43 14256_CR37 14256_CR38 14256_CR35 14256_CR36 14256_CR39 14256_CR51 14256_CR52 14256_CR50 14256_CR55 14256_CR56 14256_CR53 14256_CR54 14256_CR48 14256_CR49 14256_CR46 14256_CR47 14256_CR62 14256_CR63 14256_CR60 14256_CR61 14256_CR66 14256_CR67 14256_CR64 14256_CR65 14256_CR59 14256_CR57 14256_CR58 |
References_xml | – ident: 14256_CR5 doi: 10.1088/2515-7639/abca7b – ident: 14256_CR68 doi: 10.1109/tnnls.2022.3152527 – ident: 14256_CR48 doi: 10.1016/j.jmapro.2021.02.033 – ident: 14256_CR56 doi: 10.1016/j.enbuild.2022.112408 – ident: 14256_CR59 doi: 10.1007/11691730_11 – ident: 14256_CR70 doi: 10.1016/j.apenergy.2009.12.013 – ident: 14256_CR88 doi: 10.1016/j.addma.2020.101538 – ident: 14256_CR9 doi: 10.1016/j.matdes.2021.109471 – ident: 14256_CR22 doi: 10.1016/j.bioactmat.2021.12.027 – ident: 14256_CR73 doi: 10.7717/peerj-cs.623 – ident: 14256_CR50 doi: 10.1016/j.jrmge.2020.05.011 – ident: 14256_CR66 doi: 10.1080/00207721.2022.2076171 – ident: 14256_CR18 doi: 10.1007/978-3-030-56127-7 – ident: 14256_CR43 doi: 10.1109/mci.2018.2840738 – ident: 14256_CR98 doi: 10.1007/s00466-022-02260-0 – ident: 14256_CR83 doi: 10.1016/j.ifset.2021.102738 – ident: 14256_CR96 doi: 10.1016/j.neunet.2022.07.023 – ident: 14256_CR29 doi: 10.2351/1.4815992 – ident: 14256_CR19 doi: 10.1007/s00466-020-01952-9 – ident: 14256_CR1 doi: 10.1016/j.promfg.2019.06.089 – ident: 14256_CR67 doi: 10.1109/bigcomp.2017.7881693 – ident: 14256_CR62 doi: 10.1016/j.inffus.2021.11.005 – ident: 14256_CR13 doi: 10.1126/science.abg1487 – ident: 14256_CR64 doi: 10.1109/access.2019.2902640 – ident: 14256_CR7 doi: 10.1115/1.4048957 – ident: 14256_CR14 doi: 10.1007/s40964-021-00180-8 – ident: 14256_CR8 doi: 10.1016/j.egyai.2021.100114 – ident: 14256_CR101 doi: 10.1016/j.engappai.2023.105908 – ident: 14256_CR30 doi: 10.1063/1.2209807 – ident: 14256_CR69 doi: 10.1002/bbb.2140 – ident: 14256_CR6 doi: 10.1016/j.buildenv.2018.01.023 – ident: 14256_CR16 doi: 10.1007/s00170-021-08596-w – ident: 14256_CR82 doi: 10.1080/09506608.2020.1868889 – ident: 14256_CR99 doi: 10.1115/1.4044400 – ident: 14256_CR49 doi: 10.3390/app10186616 – ident: 14256_CR3 doi: 10.1080/09506608.2023.2169501 – ident: 14256_CR15 doi: 10.1016/j.matpr.2020.02.635 – ident: 14256_CR91 doi: 10.1016/j.jmsy.2021.11.003 – ident: 14256_CR89 doi: 10.1016/j.mfglet.2018.10.002 – ident: 14256_CR32 doi: 10.1016/j.jmatprotec.2021.117472 – ident: 14256_CR74 doi: 10.1098/rsif.2017.0213 – ident: 14256_CR40 doi: 10.3390/w11020374 – ident: 14256_CR72 doi: 10.1109/iccubea.2017.8463779 – ident: 14256_CR17 doi: 10.1016/j.mattod.2021.03.020 – ident: 14256_CR4 doi: 10.1016/j.matdes.2022.110831 – ident: 14256_CR92 doi: 10.1109/dsaa.2018.00018 – ident: 14256_CR79 doi: 10.1016/j.promfg.2020.05.093 – ident: 14256_CR37 doi: 10.3934/mbe.2023376 – ident: 14256_CR47 doi: 10.1016/j.enbuild.2017.11.045 – ident: 14256_CR53 doi: 10.1007/s00521-022-07347-6 – ident: 14256_CR75 doi: 10.1109/access.2021.3097177 – ident: 14256_CR86 doi: 10.1038/s41524-017-0056-5 – ident: 14256_CR80 doi: 10.25518/esaform21.2812 – ident: 14256_CR2 doi: 10.1016/j.jmst.2018.09.002 – ident: 14256_CR44 doi: 10.1016/b978-0-12-820601-0.00005-7 – ident: 14256_CR93 doi: 10.1073/pnas.1900654116 – ident: 14256_CR33 doi: 10.3390/ma13184171 – ident: 14256_CR12 doi: 10.1016/j.rineng.2022.100478 – ident: 14256_CR25 doi: 10.1007/s00170-019-03552-1 – ident: 14256_CR38 doi: 10.1016/j.pecs.2021.100967 – ident: 14256_CR23 doi: 10.1002/adem.201801359 – ident: 14256_CR54 doi: 10.1109/dsaa.2019.00069 – ident: 14256_CR81 doi: 10.25518/esaform21.2599 – ident: 14256_CR57 doi: 10.1016/j.chemolab.2021.104396 – ident: 14256_CR71 doi: 10.5194/gmd-15-5481-2022 – ident: 14256_CR34 doi: 10.1016/j.optlastec.2016.07.001 – ident: 14256_CR26 doi: 10.1007/s12541-022-00688-1 – ident: 14256_CR36 doi: 10.6026/97320630013054 – ident: 14256_CR42 doi: 10.3390/app9214500 – ident: 14256_CR24 doi: 10.1016/j.apmate.2023.100137 – ident: 14256_CR41 doi: 10.1109/access.2020.2975067 – ident: 14256_CR85 doi: 10.1109/comitcon.2019.8862451 – ident: 14256_CR100 doi: 10.1007/s00170-021-08542-w – ident: 14256_CR39 doi: 10.1007/s12525-021-00475-2 – ident: 14256_CR94 doi: 10.3934/mmc.2023016 – ident: 14256_CR90 doi: 10.1016/j.cma.2019.112734 – ident: 14256_CR45 doi: 10.1016/j.matdes.2018.11.060 – ident: 14256_CR51 doi: 10.1016/j.cma.2019.112734 – ident: 14256_CR95 doi: 10.1038/s42254-021-00314-5 – ident: 14256_CR46 doi: 10.1016/j.jmapro.2021.11.037 – ident: 14256_CR60 doi: 10.1007/s10462-020-09876-9 – ident: 14256_CR28 doi: 10.1016/j.addma.2015.07.001 – ident: 14256_CR11 doi: 10.1109/mgrs.2021.3064051 – ident: 14256_CR63 doi: 10.1007/s10462-019-09784-7 – ident: 14256_CR61 doi: 10.1002/acs.3529 – ident: 14256_CR78 doi: 10.1051/matecconf/202032103004 – ident: 14256_CR87 doi: 10.1007/s00170-021-08155-3 – ident: 14256_CR55 doi: 10.1007/978-3-319-46976-8_20 – ident: 14256_CR76 doi: 10.1109/access.2021.3105362 – ident: 14256_CR84 doi: 10.1007/bf02670257 – ident: 14256_CR21 doi: 10.1038/s41598-021-03622-z – ident: 14256_CR102 doi: 10.1007/s00466-022-02257-9 – ident: 14256_CR58 doi: 10.1109/access.2022.3205618 – ident: 14256_CR65 doi: 10.1007/978-3-031-41337-7_3 – ident: 14256_CR35 doi: 10.1080/24725854.2017.1417656 – ident: 14256_CR52 doi: 10.1038/nature17439 – ident: 14256_CR77 doi: 10.1016/j.rcim.2022.102445 – ident: 14256_CR10 doi: 10.1080/17452759.2021.1944229 – ident: 14256_CR31 doi: 10.1016/j.ijheatmasstransfer.2016.08.049 – ident: 14256_CR97 doi: 10.17760/d20467268 – ident: 14256_CR20 doi: 10.1016/j.addma.2020.101491 – ident: 14256_CR27 doi: 10.1007/978-1-4939-2113-3 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.4535239 |
SecondaryResourceType | review_article |
Snippet | This paper provides an overview of the application of machine learning (ML) techniques for predicting the spatiotemporal evolution of thermal fields during... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 2107 |
SubjectTerms | CAE) and Design Computer-Aided Engineering (CAD Critical Review Engineering Industrial and Production Engineering Mechanical Engineering Media Management |
Title | Neural network prediction of thermal field spatiotemporal evolution during additive manufacturing: an overview |
URI | https://link.springer.com/article/10.1007/s00170-024-14256-6 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RTjMeXADSKtzaMdtw1tTCB2YtI4VU2anFg37cXfx07bjUkIiVPVxkolPxJbtj8TcpcKCY5E7JhxWjKhY8O05pLFTgojdJZqg4Hi21ANRuJlLMfbPm5f7F5lJP1Bvel180gvDK4UFoCeKab2SV0iHBoo8SjsVEoUtCMchLlRsrCN0-e3SsyF5EVqq0w1qMD3y0EsEqO1xWVnze__3L29dlOn_kbqH5Oj0pWknUL2J2TP5qfk8AfA4BnJEXsDaPKi2JvO5piXQVnQqaPo-01g1Vex0YWvrS6hqj6pXZdKSYtORoqVR3g20kmar7Afwn9-pCnstcYTx36dk1G_9_40YOWEBWbAcVkyAyZos0BlJrQWbD20ImtpBVLl4LmkkWtZaTnH8elt4GEqdJA5CBnBbjXH-PaC1PJpbi-x91tbpwLnIJ4RsG_ssjiFF6CPeGSjBrmvOJfMCiCNZAOZ7PmcAJ8Tz-dENchDxdykNKrFH-RX_yO_JgchCtWXit2Q2nK-srfgWyx1k9Q7_W53iM_nj9de0-vWN7-gxhY |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHYCBN6I8PbCBK5I4TspWoZZCH1MrlSmKHXuBplWbFolfz9lxCkUIqWOSkyPffT7f6V4I3cTUB0MiVEQo7hPKQ0E493wSKp8KypOYC-0odnusNaAvQ39oi8JmRbZ7EZI0mnpZ7GZavRC4U4gDQGOEbaIydR3mllC5_vTabhQ4cmqBnoW5xJlb0wPov3HsUd_Lo1s22sAcUzIH7kioD1xoi2v-_uvqBbYaPTWXUnMPDYrt5Lkob9V5xqvi81enx3X3u492rZWK6zmsDtCGTA_Rzo_ehUco1W09gCbN88jxZKpDPlrMeKywNitH8NUkyOGZSdu2XbDesVxYvOO8SBLrpCatdvEoTue61MK8fsAxrLXQykx-HKNBs9F_bBE7vIEIsIkyIuB0y8RhiXClBDXiSprccwaA8cAoigN1L33peXoyew1kE1PuJAq8UVAJ3NOu8wkqpeNUnuqyci4Vc5QCV4nCuqFKwhgegD7wAhlU0G0hkWiS9-iIlt2YDRcj4GJkuBixCror-B3Z8zr7h_xsPfJrtNXqdztR57nXPkfbrhafyUi7QKVsOpeXYMJk_Moi9gs0zeNP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJEYPvo343IM3XaB0uy3eiIooSjxIgqem2-5elEKgYOKvd2bbIhhjYjy2nWyz89idycx8Q8hZwB1wJDzNQi0dxqUXMilth3na4SGXUSBDDBQfO6LV5fc9pzfXxW-q3fOUZNrTgChNcVIZRroya3wzsC8M7hdmgdIJJpZJkSMyUoEUG7cv7Ztcp6y6i3MxZzpXq-Mw-i-dtrljp5muLPMgLNM-B6GJh8bnZY02P_918TJbzKSaC6q5QYJ8a2ldymt5kshy-PEN9fE_e98k65n3Shupum2RJRVvk7U5TMMdEiPcB9DEaX05HY4wFYTipwNN0d3sw1dTOEfHppw7Q8d6o2qa2QFNmycpFjvhcUz7QTzBFgzz-pIGsNYUDzn1vku6zZvnqxbLhjqwEHylhIVg9SqyRBTWlILjpaZ4VJUCFMkGZylwdVU5yrZxYnsd5BRwaUUaolQ4KqSNIfUeKcSDWO1ju7lUWlhaQwjFYV1PR14AD0Dv2q5yS-Q8l44_TLE7_BlKs-GiD1z0DRd9USIXOe_9zI7Hv5Af_I38lKw8XTf9h7tO-5Cs1lB6plDtiBSS0UQdg2eTyJNMeT8Bx9TsMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+prediction+of+thermal+field+spatiotemporal+evolution+during+additive+manufacturing%3A+an+overview&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Chike%2C+Onuchukwu+Godwin&rft.au=Ahmad%2C+Norhayati&rft.au=Faiz+Wan+Ali%2C+Wan+Fahmin&rft.date=2024-09-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=134&rft.issue=5-6&rft.spage=2107&rft.epage=2128&rft_id=info:doi/10.1007%2Fs00170-024-14256-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_024_14256_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |