Neural network prediction of thermal field spatiotemporal evolution during additive manufacturing: an overview

This paper provides an overview of the application of machine learning (ML) techniques for predicting the spatiotemporal evolution of thermal fields during additive manufacturing (AM) processes. AM, also known as three-dimensional printing, has gained significant attention in various industries due...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 134; no. 5-6; pp. 2107 - 2128
Main Authors Chike, Onuchukwu Godwin, Ahmad, Norhayati, Faiz Wan Ali, Wan Fahmin
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper provides an overview of the application of machine learning (ML) techniques for predicting the spatiotemporal evolution of thermal fields during additive manufacturing (AM) processes. AM, also known as three-dimensional printing, has gained significant attention in various industries due to its potential for rapid prototyping and customized production. However, accurately predicting and controlling the thermal behavior during the AM process is crucial for ensuring the quality and reliability of the printed components. Traditional physics-based models (PBM) often face challenges in capturing AM’s complex dynamics and inherent uncertainties. In recent years, ML algorithms, particularly neural networks (NNs), have shown promising results in predicting the thermal field evolution. This paper reviews the existing literature and highlights the critical methodologies and recent advancements in NN-based predictions. It explores novel perspectives by discussing the hybrid modeling approaches, including the combination of PBMs with NNs. This overview highlights the evolving landscape of predictive techniques in the context of AM and underscores the potential for enhancing accuracy and efficiency in thermal field prediction. The paper also discusses the challenges and outlines future directions for enhancing the accuracy and efficiency of thermal field prediction in AM. By synthesizing current research, this overview will guide researchers and practitioners toward leveraging NNs effectively for optimizing thermal management in AM processes. The insights presented underscore the transformative potential of NN predictions in advancing AM capabilities.
AbstractList This paper provides an overview of the application of machine learning (ML) techniques for predicting the spatiotemporal evolution of thermal fields during additive manufacturing (AM) processes. AM, also known as three-dimensional printing, has gained significant attention in various industries due to its potential for rapid prototyping and customized production. However, accurately predicting and controlling the thermal behavior during the AM process is crucial for ensuring the quality and reliability of the printed components. Traditional physics-based models (PBM) often face challenges in capturing AM’s complex dynamics and inherent uncertainties. In recent years, ML algorithms, particularly neural networks (NNs), have shown promising results in predicting the thermal field evolution. This paper reviews the existing literature and highlights the critical methodologies and recent advancements in NN-based predictions. It explores novel perspectives by discussing the hybrid modeling approaches, including the combination of PBMs with NNs. This overview highlights the evolving landscape of predictive techniques in the context of AM and underscores the potential for enhancing accuracy and efficiency in thermal field prediction. The paper also discusses the challenges and outlines future directions for enhancing the accuracy and efficiency of thermal field prediction in AM. By synthesizing current research, this overview will guide researchers and practitioners toward leveraging NNs effectively for optimizing thermal management in AM processes. The insights presented underscore the transformative potential of NN predictions in advancing AM capabilities.
Author Faiz Wan Ali, Wan Fahmin
Chike, Onuchukwu Godwin
Ahmad, Norhayati
Author_xml – sequence: 1
  givenname: Onuchukwu Godwin
  orcidid: 0000-0002-9041-7496
  surname: Chike
  fullname: Chike, Onuchukwu Godwin
  email: onuchukwuchike@graduate.utm.my
  organization: Faculty of Mechanical Engineering, UTM, Faculty of Engineering, Nigerian Army University Biu, NAUB
– sequence: 2
  givenname: Norhayati
  surname: Ahmad
  fullname: Ahmad, Norhayati
  organization: Faculty of Mechanical Engineering, UTM
– sequence: 3
  givenname: Wan Fahmin
  surname: Faiz Wan Ali
  fullname: Faiz Wan Ali, Wan Fahmin
  email: wan_fahmin@utm.my
  organization: Faculty of Mechanical Engineering, UTM
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDxg8dmI37FDFS6pgA-vIjSfgktiRnaTi70lb1qxGmvvQ1VmQmQ8eCbkGfgOc69vEOWjOuMgYZCJXTJ2ROWRSMskhn5E5F2rFpFarC7JIaTfZFajVnPhXHKJpqMd-H-I37SJaV_UueBpq2n9hbCe1dthYmjozCT22XThEcAzNcHTaITr_SY21rncj0tb4oTZVf3zfUTN1jRhHh_tLcl6bJuHV312Sj8eH9_Uz27w9vazvN6wCLXpW8VyiBWUrgaglF5hZvlVVZaSShdE1xxylFLLICg1gsi3YWgBIKLaSa5BLIk69VQwpRazLLrrWxJ8SeHkgVp6IlROx8kisVFNInkKpOwzHWO7CEP2087_UL7Qzcwc
Cites_doi 10.1088/2515-7639/abca7b
10.1109/tnnls.2022.3152527
10.1016/j.jmapro.2021.02.033
10.1016/j.enbuild.2022.112408
10.1007/11691730_11
10.1016/j.apenergy.2009.12.013
10.1016/j.addma.2020.101538
10.1016/j.matdes.2021.109471
10.1016/j.bioactmat.2021.12.027
10.7717/peerj-cs.623
10.1016/j.jrmge.2020.05.011
10.1080/00207721.2022.2076171
10.1007/978-3-030-56127-7
10.1109/mci.2018.2840738
10.1007/s00466-022-02260-0
10.1016/j.ifset.2021.102738
10.1016/j.neunet.2022.07.023
10.2351/1.4815992
10.1007/s00466-020-01952-9
10.1016/j.promfg.2019.06.089
10.1109/bigcomp.2017.7881693
10.1016/j.inffus.2021.11.005
10.1126/science.abg1487
10.1109/access.2019.2902640
10.1115/1.4048957
10.1007/s40964-021-00180-8
10.1016/j.egyai.2021.100114
10.1016/j.engappai.2023.105908
10.1063/1.2209807
10.1002/bbb.2140
10.1016/j.buildenv.2018.01.023
10.1007/s00170-021-08596-w
10.1080/09506608.2020.1868889
10.1115/1.4044400
10.3390/app10186616
10.1080/09506608.2023.2169501
10.1016/j.matpr.2020.02.635
10.1016/j.jmsy.2021.11.003
10.1016/j.mfglet.2018.10.002
10.1016/j.jmatprotec.2021.117472
10.1098/rsif.2017.0213
10.3390/w11020374
10.1109/iccubea.2017.8463779
10.1016/j.mattod.2021.03.020
10.1016/j.matdes.2022.110831
10.1109/dsaa.2018.00018
10.1016/j.promfg.2020.05.093
10.3934/mbe.2023376
10.1016/j.enbuild.2017.11.045
10.1007/s00521-022-07347-6
10.1109/access.2021.3097177
10.1038/s41524-017-0056-5
10.25518/esaform21.2812
10.1016/j.jmst.2018.09.002
10.1016/b978-0-12-820601-0.00005-7
10.1073/pnas.1900654116
10.3390/ma13184171
10.1016/j.rineng.2022.100478
10.1007/s00170-019-03552-1
10.1016/j.pecs.2021.100967
10.1002/adem.201801359
10.1109/dsaa.2019.00069
10.25518/esaform21.2599
10.1016/j.chemolab.2021.104396
10.5194/gmd-15-5481-2022
10.1016/j.optlastec.2016.07.001
10.1007/s12541-022-00688-1
10.6026/97320630013054
10.3390/app9214500
10.1016/j.apmate.2023.100137
10.1109/access.2020.2975067
10.1109/comitcon.2019.8862451
10.1007/s00170-021-08542-w
10.1007/s12525-021-00475-2
10.3934/mmc.2023016
10.1016/j.cma.2019.112734
10.1016/j.matdes.2018.11.060
10.1038/s42254-021-00314-5
10.1016/j.jmapro.2021.11.037
10.1007/s10462-020-09876-9
10.1016/j.addma.2015.07.001
10.1109/mgrs.2021.3064051
10.1007/s10462-019-09784-7
10.1002/acs.3529
10.1051/matecconf/202032103004
10.1007/s00170-021-08155-3
10.1007/978-3-319-46976-8_20
10.1109/access.2021.3105362
10.1007/bf02670257
10.1038/s41598-021-03622-z
10.1007/s00466-022-02257-9
10.1109/access.2022.3205618
10.1007/978-3-031-41337-7_3
10.1080/24725854.2017.1417656
10.1038/nature17439
10.1016/j.rcim.2022.102445
10.1080/17452759.2021.1944229
10.1016/j.ijheatmasstransfer.2016.08.049
10.17760/d20467268
10.1016/j.addma.2020.101491
10.1007/978-1-4939-2113-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00170-024-14256-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 2128
ExternalDocumentID 10_1007_s00170_024_14256_6
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAEOY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMVV
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAYXX
CITATION
ID FETCH-LOGICAL-c172t-c053ed16dc2ee7302e4d0b6cca3639a7f0e5e3323949711a4b1df211319b30713
IEDL.DBID U2A
ISSN 0268-3768
IngestDate Thu Sep 12 20:25:27 EDT 2024
Wed Sep 04 01:21:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Thermal field
Deep neural network
Additive manufacturing
Spatiotemporal evolution
Physics-based modeling
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-c053ed16dc2ee7302e4d0b6cca3639a7f0e5e3323949711a4b1df211319b30713
ORCID 0000-0002-9041-7496
PageCount 22
ParticipantIDs crossref_primary_10_1007_s00170_024_14256_6
springer_journals_10_1007_s00170_024_14256_6
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2024
Publisher Springer London
Publisher_xml – name: Springer London
References Cerulli G (2023) Model selection and regularization. Springer International Publishing, pp 59–146. [Online]. Available: https://doi.org/10.1007/978-3-031-41337-7_3
Nalajam PK, Varadarajan R (2021) A hybrid deep learning model for layer-wise melt pool temperature forecasting in wire-arc additive manufacturing process. IEEE Access 9:100652–100664. [Online]. Available: https://doi.org/10.1109/access.2021.3097177
Liao S, Xue T, Jeong J, Webster S, Ehmann K, Cao J (2023) Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification. Comput Mech 72(3):499–512. [Online]. Available: https://doi.org/10.1007/s00466-022-02257-9
Kim T, Shin J-Y, Kim H, Kim S, Heo J-H (2019) The use of large-scale climate indices in monthly reservoir inflow forecasting and its application on time series and artificial intelligence models. Water 11(2):374. [Online]. Available: https://doi.org/10.3390/w11020374
Khanzadeh M, Chowdhury S, Tschopp MA, Doude HR, Marufuzzaman M, Bian L (2018) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Transac 51(5):437–455. [Online]. Available: https://doi.org/10.1080/24725854.2017.1417656
Binu D, Rajakumar B (2021) Introduction. Elsevier, pp 1–19. [Online]. Available: https://doi.org/10.1016/b978-0-12-820601-0.00005-7
Liu F, Wei L, Shi S, Wei H (2020) On the varieties of build features during multi-layer laser directed energy deposition. Additive Manuf 36:101491. [Online]. Available: https://doi.org/10.1016/j.addma.2020.101491
Qi H, Mazumder J, Ki H (2006) Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J Appl Phys 100(2). [Online]. Available: https://doi.org/10.1063/1.2209807
Takemura S, Koike R, Kakinuma Y, Sato Y, Oda Y (2019) Design of powder nozzle for high resource efficiency in directed energy deposition based on computational fluid dynamics simulation. Int J Adv Manuf Technol 105(10):4107–4121. [Online]. Available: https://doi.org/10.1007/s00170-019-03552-1
Moradi R, Berangi R, Minaei B (2019) A survey of regularization strategies for deep models. Artif Intell Rev 53(6):3947–3986. [Online]. Available: https://doi.org/10.1007/s10462-019-09784-7
Perani M, Baraldo S, Decker M, Vandone A, Valente A, Paoli B (2023) Track geometry prediction for laser metal deposition based on on-line artificial vision and deep neural networks. Robot Comp Integr Manuf 79:102445. [Online]. Available: https://doi.org/10.1016/j.rcim.2022.102445
Bre F, Gimenez JM, Fachinotti VD (2018) Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy Building 158:1429–1441. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.11.045
Kim J, Schiavon S, Brager G (2018) Personal comfort models - a new paradigm in thermal comfort for occupant-centric environmental control. Build Env 132:114–124. [Online]. Available: https://doi.org/10.1016/j.buildenv.2018.01.023
Shim D-S, Baek G-Y, Seo J-S, Shin G-Y, Kim K-P, Lee K-Y (2016) Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Optic Laser Technol 86:69–78. [Online]. Available: https://doi.org/10.1016/j.optlastec.2016.07.001
Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L (2018) Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE. [Online]. Available: https://doi.org/10.1109/dsaa.2018.00018
Wang C, Tan X, Tor S, Lim C (2020) Machine learning in additive manufacturing: state-of-the-art and perspectives. Additive Manuf 36:101538. [Online]. Available: https://doi.org/10.1016/j.addma.2020.101538
Ighalo JO, Adeniyi AG, Marques G (2020) Application of linear regression algorithm and stochastic gradient descent in a machine-learning environment for predicting biomass higher heating value. Biofuel Bioprod Bioref 14(6):1286–1295. [Online]. Available: https://doi.org/10.1002/bbb.2140
Jin X, Xu A, Bie R, Guo P (2006) Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. Springer, Berlin Heidelberg, pp 106–115. [Online]. Available: https://doi.org/10.1007/11691730_11
Phung and Rhee (2019) A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets. Appl Sci 9(21):4500. [Online]. Available: https://doi.org/10.3390/app9214500
Cheng P, Wang H, Stojanovic V, Liu F, He S, Shi K (2022) Dissipativity-based finite-time asynchronous output feedback control for wind turbine system via a hidden Markov model. Int J Sys Sci 53(15):3177–3189. [Online]. Available: https://doi.org/10.1080/00207721.2022.2076171
Ren P (2022) Embedding physics into deep learning for modeling spatiotemporal systems. Ph.D. dissertation, Northeastern University Library. [Online]. Available: https://doi.org/10.17760/d20467268
Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing [review article]. IEEE Comput Intell Mag 13(3):55–75. [Online]. Available: https://doi.org/10.1109/mci.2018.2840738
Tian Y, Zhang Y (2022) A comprehensive survey on regularization strategies in machine learning. Inform Fusion 80:146–166. [Online]. Available: https://doi.org/10.1016/j.inffus.2021.11.005
Zhao J, Li X, Shum C, McPhee J (2021) A review of physics-based and data-driven models for real-time control of polymer electrolyte membrane fuel cells. Energy AI 6:100114. [Online]. Available: https://doi.org/10.1016/j.egyai.2021.100114
Xie J, Chai Z, Xu L, Ren X, Liu S, Chen X (2022) 3D temperature field prediction in direct energy deposition of metals using physics informed neural network. Int J Adv Manuf Technol 119(5–6):3449–3468. [Online]. Available: https://doi.org/10.1007/s00170-021-08542-w
Shahrubudin N, Lee T, Ramlan R (2019) An overview on 3d printing technology: technological, materials, and applications. Procedia Manuf 35:1286–1296. [Online]. Available: https://doi.org/10.1016/j.promfg.2019.06.089
Ho S, Zhang W, Young W, Buchholz M, Jufout SA, Dajani K, Bian L, Mozumdar M (2021) DLAM: deep learning based real-time porosity prediction for additive manufacturing using thermal images of the melt pool. IEEE Access 9:115100–115114. [Online]. Available: https://doi.org/10.1109/access.2021.3105362
Svetlizky D, Das M, Zheng B, Vyatskikh AL, Bose S, Bandyopadhyay A, Schoenung JM, Lavernia EJ, Eliaz N (2021) Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today 49:271–295. [Online]. Available: https://doi.org/10.1016/j.mattod.2021.03.020
Ren K, Chew Y, Zhang Y, Fuh J, Bi G (2020) Thermal field prediction for laser scanning paths in laser aided additive manufacturing by physics-based machine learning. Com Method Appl Mech Eng 362:112734. [Online]. Available: https://doi.org/10.1016/j.cma.2019.112734
Djordjevic V, Tao H, Song X, He S, Gao W, Stojanovic V (2023) Data-driven control of hydraulic servo actuator: an event-triggered adaptive dynamic programming approach. Mathe Biosci Eng 20(5):8561–8582. [Online]. Available: https://doi.org/10.3934/mbe.2023376
Ray S (2019) A quick review of machine learning algorithms. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). IEEE. [Online]. Available: https://doi.org/10.1109/comitcon.2019.8862451
Ko B, Kim H-G, Oh K-J, Choi H-J (2017) Controlled dropout: a different approach to using dropout on deep neural network. In: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE. [Online]. Available: https://doi.org/10.1109/bigcomp.2017.7881693
Lim J-S, Oh W-J, Lee C-M, Kim D-H (2021) Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods. Sci Rep 11(1). [Online]. Available: https://doi.org/10.1038/s41598-021-03622-z
Hodson TO (2022) Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geosci Model Dev 15(14):5481–5487. [Online]. Available: https://doi.org/10.5194/gmd-15-5481-2022
Ness KL, Paul A, Sun L, Zhang Z (2022) Towards a generic physics-based machine learning model for geometry invariant thermal history prediction in additive manufacturing. J Mater Process Technol 302:117472. [Online]. Available: https://doi.org/10.1016/j.jmatprotec.2021.117472
Kardani N, Zhou A, Nazem M, Shen S-L (2021) Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J Rock Mech Geotech Eng 13(1):188–201. [Online]. Available: https://doi.org/10.1016/j.jrmge.2020.05.011
Adnan M, Lu Y, Jones A, Cheng F-T, Yeung H (2020) A new architectural approach to monitoring and controlling am processes. Appl Sci 10(18):6616. [Online]. Available: https://doi.org/10.3390/app10186616
Li G, Shi J (2010) On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87(7):2313–2320. [Online]. Available: https://doi.org/10.1016/j.apenergy.2009.12.013
Kang L, Yang C (2019) A review on high-strength titanium alloys: microstructure, strengthening, and properties. Adv Eng Mater 21(8). [Online]. Available: https://doi.org/10.1002/adem.201801359
Gan Z, Yu G, He X, Li S (2017) Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel. Int J Heat Mass Transf 104:28–38. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.049
Zhou Z, Shen H, Liu B, Du W, Jin J (2021) Thermal field prediction for welding paths in multi-layer gas metal arc welding-based additive manufacturing: a machine learning approach. J Manuf Process 64:960–971. [Online]. Available: https://doi.org/10.1016/j.jmapro.2021.02.033
Aliramezani M, Koch CR, Shahbakhti M (2022) Mod
14256_CR73
14256_CR74
14256_CR71
14256_CR72
14256_CR77
14256_CR78
14256_CR75
14256_CR76
14256_CR70
14256_CR68
14256_CR69
14256_CR84
14256_CR85
14256_CR82
14256_CR83
14256_CR88
14256_CR89
14256_CR86
14256_CR87
14256_CR80
14256_CR81
14256_CR79
14256_CR95
14256_CR96
14256_CR93
14256_CR94
14256_CR100
14256_CR11
14256_CR99
14256_CR101
14256_CR12
14256_CR102
14256_CR97
14256_CR10
14256_CR98
14256_CR91
14256_CR92
14256_CR90
14256_CR1
14256_CR5
14256_CR4
14256_CR3
14256_CR2
14256_CR9
14256_CR8
14256_CR7
14256_CR6
14256_CR22
14256_CR23
14256_CR20
14256_CR21
14256_CR15
14256_CR16
14256_CR13
14256_CR14
14256_CR19
14256_CR17
14256_CR18
14256_CR30
14256_CR33
14256_CR34
14256_CR31
14256_CR32
14256_CR26
14256_CR27
14256_CR24
14256_CR25
14256_CR28
14256_CR29
14256_CR40
14256_CR41
14256_CR44
14256_CR45
14256_CR42
14256_CR43
14256_CR37
14256_CR38
14256_CR35
14256_CR36
14256_CR39
14256_CR51
14256_CR52
14256_CR50
14256_CR55
14256_CR56
14256_CR53
14256_CR54
14256_CR48
14256_CR49
14256_CR46
14256_CR47
14256_CR62
14256_CR63
14256_CR60
14256_CR61
14256_CR66
14256_CR67
14256_CR64
14256_CR65
14256_CR59
14256_CR57
14256_CR58
References_xml – ident: 14256_CR5
  doi: 10.1088/2515-7639/abca7b
– ident: 14256_CR68
  doi: 10.1109/tnnls.2022.3152527
– ident: 14256_CR48
  doi: 10.1016/j.jmapro.2021.02.033
– ident: 14256_CR56
  doi: 10.1016/j.enbuild.2022.112408
– ident: 14256_CR59
  doi: 10.1007/11691730_11
– ident: 14256_CR70
  doi: 10.1016/j.apenergy.2009.12.013
– ident: 14256_CR88
  doi: 10.1016/j.addma.2020.101538
– ident: 14256_CR9
  doi: 10.1016/j.matdes.2021.109471
– ident: 14256_CR22
  doi: 10.1016/j.bioactmat.2021.12.027
– ident: 14256_CR73
  doi: 10.7717/peerj-cs.623
– ident: 14256_CR50
  doi: 10.1016/j.jrmge.2020.05.011
– ident: 14256_CR66
  doi: 10.1080/00207721.2022.2076171
– ident: 14256_CR18
  doi: 10.1007/978-3-030-56127-7
– ident: 14256_CR43
  doi: 10.1109/mci.2018.2840738
– ident: 14256_CR98
  doi: 10.1007/s00466-022-02260-0
– ident: 14256_CR83
  doi: 10.1016/j.ifset.2021.102738
– ident: 14256_CR96
  doi: 10.1016/j.neunet.2022.07.023
– ident: 14256_CR29
  doi: 10.2351/1.4815992
– ident: 14256_CR19
  doi: 10.1007/s00466-020-01952-9
– ident: 14256_CR1
  doi: 10.1016/j.promfg.2019.06.089
– ident: 14256_CR67
  doi: 10.1109/bigcomp.2017.7881693
– ident: 14256_CR62
  doi: 10.1016/j.inffus.2021.11.005
– ident: 14256_CR13
  doi: 10.1126/science.abg1487
– ident: 14256_CR64
  doi: 10.1109/access.2019.2902640
– ident: 14256_CR7
  doi: 10.1115/1.4048957
– ident: 14256_CR14
  doi: 10.1007/s40964-021-00180-8
– ident: 14256_CR8
  doi: 10.1016/j.egyai.2021.100114
– ident: 14256_CR101
  doi: 10.1016/j.engappai.2023.105908
– ident: 14256_CR30
  doi: 10.1063/1.2209807
– ident: 14256_CR69
  doi: 10.1002/bbb.2140
– ident: 14256_CR6
  doi: 10.1016/j.buildenv.2018.01.023
– ident: 14256_CR16
  doi: 10.1007/s00170-021-08596-w
– ident: 14256_CR82
  doi: 10.1080/09506608.2020.1868889
– ident: 14256_CR99
  doi: 10.1115/1.4044400
– ident: 14256_CR49
  doi: 10.3390/app10186616
– ident: 14256_CR3
  doi: 10.1080/09506608.2023.2169501
– ident: 14256_CR15
  doi: 10.1016/j.matpr.2020.02.635
– ident: 14256_CR91
  doi: 10.1016/j.jmsy.2021.11.003
– ident: 14256_CR89
  doi: 10.1016/j.mfglet.2018.10.002
– ident: 14256_CR32
  doi: 10.1016/j.jmatprotec.2021.117472
– ident: 14256_CR74
  doi: 10.1098/rsif.2017.0213
– ident: 14256_CR40
  doi: 10.3390/w11020374
– ident: 14256_CR72
  doi: 10.1109/iccubea.2017.8463779
– ident: 14256_CR17
  doi: 10.1016/j.mattod.2021.03.020
– ident: 14256_CR4
  doi: 10.1016/j.matdes.2022.110831
– ident: 14256_CR92
  doi: 10.1109/dsaa.2018.00018
– ident: 14256_CR79
  doi: 10.1016/j.promfg.2020.05.093
– ident: 14256_CR37
  doi: 10.3934/mbe.2023376
– ident: 14256_CR47
  doi: 10.1016/j.enbuild.2017.11.045
– ident: 14256_CR53
  doi: 10.1007/s00521-022-07347-6
– ident: 14256_CR75
  doi: 10.1109/access.2021.3097177
– ident: 14256_CR86
  doi: 10.1038/s41524-017-0056-5
– ident: 14256_CR80
  doi: 10.25518/esaform21.2812
– ident: 14256_CR2
  doi: 10.1016/j.jmst.2018.09.002
– ident: 14256_CR44
  doi: 10.1016/b978-0-12-820601-0.00005-7
– ident: 14256_CR93
  doi: 10.1073/pnas.1900654116
– ident: 14256_CR33
  doi: 10.3390/ma13184171
– ident: 14256_CR12
  doi: 10.1016/j.rineng.2022.100478
– ident: 14256_CR25
  doi: 10.1007/s00170-019-03552-1
– ident: 14256_CR38
  doi: 10.1016/j.pecs.2021.100967
– ident: 14256_CR23
  doi: 10.1002/adem.201801359
– ident: 14256_CR54
  doi: 10.1109/dsaa.2019.00069
– ident: 14256_CR81
  doi: 10.25518/esaform21.2599
– ident: 14256_CR57
  doi: 10.1016/j.chemolab.2021.104396
– ident: 14256_CR71
  doi: 10.5194/gmd-15-5481-2022
– ident: 14256_CR34
  doi: 10.1016/j.optlastec.2016.07.001
– ident: 14256_CR26
  doi: 10.1007/s12541-022-00688-1
– ident: 14256_CR36
  doi: 10.6026/97320630013054
– ident: 14256_CR42
  doi: 10.3390/app9214500
– ident: 14256_CR24
  doi: 10.1016/j.apmate.2023.100137
– ident: 14256_CR41
  doi: 10.1109/access.2020.2975067
– ident: 14256_CR85
  doi: 10.1109/comitcon.2019.8862451
– ident: 14256_CR100
  doi: 10.1007/s00170-021-08542-w
– ident: 14256_CR39
  doi: 10.1007/s12525-021-00475-2
– ident: 14256_CR94
  doi: 10.3934/mmc.2023016
– ident: 14256_CR90
  doi: 10.1016/j.cma.2019.112734
– ident: 14256_CR45
  doi: 10.1016/j.matdes.2018.11.060
– ident: 14256_CR51
  doi: 10.1016/j.cma.2019.112734
– ident: 14256_CR95
  doi: 10.1038/s42254-021-00314-5
– ident: 14256_CR46
  doi: 10.1016/j.jmapro.2021.11.037
– ident: 14256_CR60
  doi: 10.1007/s10462-020-09876-9
– ident: 14256_CR28
  doi: 10.1016/j.addma.2015.07.001
– ident: 14256_CR11
  doi: 10.1109/mgrs.2021.3064051
– ident: 14256_CR63
  doi: 10.1007/s10462-019-09784-7
– ident: 14256_CR61
  doi: 10.1002/acs.3529
– ident: 14256_CR78
  doi: 10.1051/matecconf/202032103004
– ident: 14256_CR87
  doi: 10.1007/s00170-021-08155-3
– ident: 14256_CR55
  doi: 10.1007/978-3-319-46976-8_20
– ident: 14256_CR76
  doi: 10.1109/access.2021.3105362
– ident: 14256_CR84
  doi: 10.1007/bf02670257
– ident: 14256_CR21
  doi: 10.1038/s41598-021-03622-z
– ident: 14256_CR102
  doi: 10.1007/s00466-022-02257-9
– ident: 14256_CR58
  doi: 10.1109/access.2022.3205618
– ident: 14256_CR65
  doi: 10.1007/978-3-031-41337-7_3
– ident: 14256_CR35
  doi: 10.1080/24725854.2017.1417656
– ident: 14256_CR52
  doi: 10.1038/nature17439
– ident: 14256_CR77
  doi: 10.1016/j.rcim.2022.102445
– ident: 14256_CR10
  doi: 10.1080/17452759.2021.1944229
– ident: 14256_CR31
  doi: 10.1016/j.ijheatmasstransfer.2016.08.049
– ident: 14256_CR97
  doi: 10.17760/d20467268
– ident: 14256_CR20
  doi: 10.1016/j.addma.2020.101491
– ident: 14256_CR27
  doi: 10.1007/978-1-4939-2113-3
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.4535239
SecondaryResourceType review_article
Snippet This paper provides an overview of the application of machine learning (ML) techniques for predicting the spatiotemporal evolution of thermal fields during...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 2107
SubjectTerms CAE) and Design
Computer-Aided Engineering (CAD
Critical Review
Engineering
Industrial and Production Engineering
Mechanical Engineering
Media Management
Title Neural network prediction of thermal field spatiotemporal evolution during additive manufacturing: an overview
URI https://link.springer.com/article/10.1007/s00170-024-14256-6
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RTjMeXADSKtzaMdtw1tTCB2YtI4VU2anFg37cXfx07bjUkIiVPVxkolPxJbtj8TcpcKCY5E7JhxWjKhY8O05pLFTgojdJZqg4Hi21ANRuJlLMfbPm5f7F5lJP1Bvel180gvDK4UFoCeKab2SV0iHBoo8SjsVEoUtCMchLlRsrCN0-e3SsyF5EVqq0w1qMD3y0EsEqO1xWVnze__3L29dlOn_kbqH5Oj0pWknUL2J2TP5qfk8AfA4BnJEXsDaPKi2JvO5piXQVnQqaPo-01g1Vex0YWvrS6hqj6pXZdKSYtORoqVR3g20kmar7Afwn9-pCnstcYTx36dk1G_9_40YOWEBWbAcVkyAyZos0BlJrQWbD20ImtpBVLl4LmkkWtZaTnH8elt4GEqdJA5CBnBbjXH-PaC1PJpbi-x91tbpwLnIJ4RsG_ssjiFF6CPeGSjBrmvOJfMCiCNZAOZ7PmcAJ8Tz-dENchDxdykNKrFH-RX_yO_JgchCtWXit2Q2nK-srfgWyx1k9Q7_W53iM_nj9de0-vWN7-gxhY
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHYCBN6I8PbCBK5I4TspWoZZCH1MrlSmKHXuBplWbFolfz9lxCkUIqWOSkyPffT7f6V4I3cTUB0MiVEQo7hPKQ0E493wSKp8KypOYC-0odnusNaAvQ39oi8JmRbZ7EZI0mnpZ7GZavRC4U4gDQGOEbaIydR3mllC5_vTabhQ4cmqBnoW5xJlb0wPov3HsUd_Lo1s22sAcUzIH7kioD1xoi2v-_uvqBbYaPTWXUnMPDYrt5Lkob9V5xqvi81enx3X3u492rZWK6zmsDtCGTA_Rzo_ehUco1W09gCbN88jxZKpDPlrMeKywNitH8NUkyOGZSdu2XbDesVxYvOO8SBLrpCatdvEoTue61MK8fsAxrLXQykx-HKNBs9F_bBE7vIEIsIkyIuB0y8RhiXClBDXiSprccwaA8cAoigN1L33peXoyew1kE1PuJAq8UVAJ3NOu8wkqpeNUnuqyci4Vc5QCV4nCuqFKwhgegD7wAhlU0G0hkWiS9-iIlt2YDRcj4GJkuBixCror-B3Z8zr7h_xsPfJrtNXqdztR57nXPkfbrhafyUi7QKVsOpeXYMJk_Moi9gs0zeNP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJEYPvo343IM3XaB0uy3eiIooSjxIgqem2-5elEKgYOKvd2bbIhhjYjy2nWyz89idycx8Q8hZwB1wJDzNQi0dxqUXMilth3na4SGXUSBDDBQfO6LV5fc9pzfXxW-q3fOUZNrTgChNcVIZRroya3wzsC8M7hdmgdIJJpZJkSMyUoEUG7cv7Ztcp6y6i3MxZzpXq-Mw-i-dtrljp5muLPMgLNM-B6GJh8bnZY02P_918TJbzKSaC6q5QYJ8a2ldymt5kshy-PEN9fE_e98k65n3Shupum2RJRVvk7U5TMMdEiPcB9DEaX05HY4wFYTipwNN0d3sw1dTOEfHppw7Q8d6o2qa2QFNmycpFjvhcUz7QTzBFgzz-pIGsNYUDzn1vku6zZvnqxbLhjqwEHylhIVg9SqyRBTWlILjpaZ4VJUCFMkGZylwdVU5yrZxYnsd5BRwaUUaolQ4KqSNIfUeKcSDWO1ju7lUWlhaQwjFYV1PR14AD0Dv2q5yS-Q8l44_TLE7_BlKs-GiD1z0DRd9USIXOe_9zI7Hv5Af_I38lKw8XTf9h7tO-5Cs1lB6plDtiBSS0UQdg2eTyJNMeT8Bx9TsMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+prediction+of+thermal+field+spatiotemporal+evolution+during+additive+manufacturing%3A+an+overview&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Chike%2C+Onuchukwu+Godwin&rft.au=Ahmad%2C+Norhayati&rft.au=Faiz+Wan+Ali%2C+Wan+Fahmin&rft.date=2024-09-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=134&rft.issue=5-6&rft.spage=2107&rft.epage=2128&rft_id=info:doi/10.1007%2Fs00170-024-14256-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_024_14256_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon