A deep learning approach for contrast-agent-free breast lesion detection and classification using adversarial synthesis of contrast-enhanced mammograms

Contrast-enhanced digital mammography (CEDM) has emerged as a promising complementary imaging modality for breast cancer diagnosis, offering enhanced lesion visualization and improved diagnostic accuracy, particularly for patients with dense breast tissues. However, the reliance of CEDM on contrast...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 162; p. 105692
Main Authors Amin, Manar N., Rushdi, Muhammad A., Kamal, Rasha, Farouk, Amr, Gomaa, Mohamed, Fouad, Noha M., Mahmoud, Ahmed M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Contrast-enhanced digital mammography (CEDM) has emerged as a promising complementary imaging modality for breast cancer diagnosis, offering enhanced lesion visualization and improved diagnostic accuracy, particularly for patients with dense breast tissues. However, the reliance of CEDM on contrast agents poses challenges to patient safety and accessibility. To overcome those challenges, this paper introduces a deep learning methodology for improved breast lesion detection and classification. In particular, an image-to-image translation model based on cycle-consistent generative adversarial networks (CycleGAN) is utilized to generate synthetic CEDM (SynCEDM) images from full-field digital mammography in order to enhance visual contrast perception without the need for contrast agents. A new dataset of 3958 pairs of low-energy (LE) and CEDM images was collected from 2908 female subjects to train the CycleGAN model to generate SynCEDM images. Thus, we trained different You-Only-Look-Once (YOLO) architectures on CEDM and SynCEDM images for breast lesion detection and classification. SynCEDM images were generated with a structural similarity index (SSIM) of 0.94 ± 0.02. A YOLO lesion detector trained on original CEDM images led to a 91.34% accuracy, a 90.37% sensitivity, and a 92.06% specificity. In comparison, a detector trained on the SynCEDM images exhibited a comparable accuracy of 91.20%, a marginally higher sensitivity of 91.44%, and a slightly lower specificity of 91.30%. This approach not only aims to mitigate contrast agent risks but also to improve breast cancer detection and characterization using mammography. •Synthetic CEDM images can be generated via image-to-image translation.•Synthesized CEDM images are safer to obtain than conventional CEDM.•CAD systems were developed for breast lesion detection and classification.•Remarkable performance was obtained with synthetic CEDM images.
AbstractList Contrast-enhanced digital mammography (CEDM) has emerged as a promising complementary imaging modality for breast cancer diagnosis, offering enhanced lesion visualization and improved diagnostic accuracy, particularly for patients with dense breast tissues. However, the reliance of CEDM on contrast agents poses challenges to patient safety and accessibility. To overcome those challenges, this paper introduces a deep learning methodology for improved breast lesion detection and classification. In particular, an image-to-image translation model based on cycle-consistent generative adversarial networks (CycleGAN) is utilized to generate synthetic CEDM (SynCEDM) images from full-field digital mammography in order to enhance visual contrast perception without the need for contrast agents. A new dataset of 3958 pairs of low-energy (LE) and CEDM images was collected from 2908 female subjects to train the CycleGAN model to generate SynCEDM images. Thus, we trained different You-Only-Look-Once (YOLO) architectures on CEDM and SynCEDM images for breast lesion detection and classification. SynCEDM images were generated with a structural similarity index (SSIM) of 0.94 ± 0.02. A YOLO lesion detector trained on original CEDM images led to a 91.34% accuracy, a 90.37% sensitivity, and a 92.06% specificity. In comparison, a detector trained on the SynCEDM images exhibited a comparable accuracy of 91.20%, a marginally higher sensitivity of 91.44%, and a slightly lower specificity of 91.30%. This approach not only aims to mitigate contrast agent risks but also to improve breast cancer detection and characterization using mammography. •Synthetic CEDM images can be generated via image-to-image translation.•Synthesized CEDM images are safer to obtain than conventional CEDM.•CAD systems were developed for breast lesion detection and classification.•Remarkable performance was obtained with synthetic CEDM images.
ArticleNumber 105692
Author Mahmoud, Ahmed M.
Gomaa, Mohamed
Kamal, Rasha
Rushdi, Muhammad A.
Farouk, Amr
Fouad, Noha M.
Amin, Manar N.
Author_xml – sequence: 1
  givenname: Manar N.
  surname: Amin
  fullname: Amin, Manar N.
  organization: Department of Biomedical Engineering and Systems, Cairo University, Giza 12613, Egypt
– sequence: 2
  givenname: Muhammad A.
  surname: Rushdi
  fullname: Rushdi, Muhammad A.
  organization: Department of Biomedical Engineering and Systems, Cairo University, Giza 12613, Egypt
– sequence: 3
  givenname: Rasha
  surname: Kamal
  fullname: Kamal, Rasha
  organization: Radiology Department, Faculty of Medicine - Kasr ElAiny Hospital (Women's Imaging Unit), Cairo University, Giza, Egypt
– sequence: 4
  givenname: Amr
  surname: Farouk
  fullname: Farouk, Amr
  organization: Department of Diagnostic Radiology, National Cancer Institute, Cairo, Egypt
– sequence: 5
  givenname: Mohamed
  surname: Gomaa
  fullname: Gomaa, Mohamed
  organization: Department of Diagnostic Radiology, National Cancer Institute, Cairo, Egypt
– sequence: 6
  givenname: Noha M.
  surname: Fouad
  fullname: Fouad, Noha M.
  organization: Department of Biomedical Engineering and Systems, Cairo University, Giza 12613, Egypt
– sequence: 7
  givenname: Ahmed M.
  surname: Mahmoud
  fullname: Mahmoud, Ahmed M.
  email: a.ehab.mahmoud@eng1.cu.edu.eg
  organization: Department of Biomedical Engineering and Systems, Cairo University, Giza 12613, Egypt
BookMark eNp9kM9qAjEQh3OwULV9gx7yAmuT6G52LwWR_oNCL-05jJNZjbiJJFvBJ-nrNquF3nqa4Qffj5lvwkY-eGLsToqZFLK6381cB0eXZkqoMkdl1agRGwtVqaKuy-qaTVLaCSG00M2YfS-5JTrwPUH0zm84HA4xAG55GyLH4PsIqS9gQ74v2kjE15FykoHkgs9wT9gPG3jLcQ8pudYhnKOvdG60R4oJooM9TyffbzOZeGj_2slvwSNZ3kHXhU2ELt2wqxb2iW5_55R9Pj1-rF6Kt_fn19XyrUCpVV-ssamlXpOQDc6taLCptC2xkaCppVqDklTpRqGVUMs5qIWWLUicI1otrZ1P2eLSizGkFKk1h5gFxpORwgxCzc5chJpBqLkIzdjDBaN829FRNAkdDT-4mH0YG9z_BT-r-Yof
Cites_doi 10.1016/j.bspc.2024.106255
10.1001/jamainternmed.2014.981
10.1021/cr100025t
10.1038/s41598-022-09929-9
10.1016/j.asoc.2023.110224
10.1016/j.radi.2023.02.025
10.1109/TPAMI.2020.2970919
10.3390/machines11070677
10.1016/j.ejrad.2014.05.015
10.1080/13696998.2023.2222035
10.1016/j.diii.2016.08.013
10.1109/TKDE.2021.3130191
10.1016/j.eswa.2023.120943
10.1016/j.bspc.2016.02.006
10.1186/1471-2288-13-91
10.1007/s10439-018-2044-4
10.1186/s13244-019-0756-0
10.1016/S0720-048X(99)00066-2
10.1117/1.JMI.4.3.035501
10.1016/j.engappai.2022.105151
10.1016/j.neunet.2023.05.028
10.1016/j.bspc.2023.104808
10.1016/j.acra.2019.10.034
10.1109/MSP.2017.2765202
10.1007/s11548-018-1876-6
10.1016/j.compmedimag.2024.102398
10.3390/technologies11020040
10.1007/s00330-015-3904-z
10.1016/j.jacr.2019.04.007
10.3390/jimaging9030069
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2025.105692
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_imavis_2025_105692
S026288562500280X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XPP
ZMT
ZY4
~G-
AAYXX
CITATION
EFLBG
ID FETCH-LOGICAL-c172t-bc9817be019c3d09c967d5c91a7efe87a21e6792cd1a813a2471fa1c3ccd71dd3
IEDL.DBID .~1
ISSN 0262-8856
IngestDate Wed Sep 03 16:41:34 EDT 2025
Sat Aug 30 17:13:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Image-to-image translation
Breast cancer
Generative adversarial network
Contrast-enhanced digital mammography
CycleGAN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-bc9817be019c3d09c967d5c91a7efe87a21e6792cd1a813a2471fa1c3ccd71dd3
ParticipantIDs crossref_primary_10_1016_j_imavis_2025_105692
elsevier_sciencedirect_doi_10_1016_j_imavis_2025_105692
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Alukić, Homar, Pavić, Žibert, Mekiš (bb0025) May 2023; 29
Terreno, Castelli, Viale, Aime (bb0035) May 2010; 110
Karthi, Muthulakshmi, Priscilla, Praveen, Vanisri (bb0210) 2021
Sorin (bb0065) Sep. 2020; 27
Ndajah, Kikuchi, Watanabe, Muramatsu, Yukawa (bb0230) 2011; 4
National Cancer Institute (bb0015) 2025
Nori, Kaur (bb0175) 2018
Blankenburg (bb0075) Dec. 2023; 26
Zanardo (bb0070) Aug. 2019; 10
Kim, Cha, Kim, Lee, Kim (bb0140) 2017
Skandarani, Jodoin, Lalande (bb0100) Mar. 2023; 9
Shcherbakov, Brebels, Shcherbakova, Tyukov, Janovsky, Kamaev (bb0235) 2013; 24
Iman, Arabnia, Rasheed (bb0250) Mar. 2023; 11
Cheung, Tsai, Lo, Ueng, Huang, Chen (bb0060) Apr. 2016; 26
Goodfellow (bb0195) Jun. 2014; 3
The American Cancer Society medical and editorial content team (bb0010) 2025
Mi, Ma, Zheng, Zhang, Li, Wang (bb0205) Dec. 2023; 233
Ganaie, Hu, Malik, Tanveer, Suganthan (bb0255) Oct. 2022; 115
Abdelhafiz, Yang, Ammar, Nabavi (bb0080) Jun. 2019; 20
Al Jaberi, Patel, Al-Masri (bb0115) May 2023; 139
Mehmood, Bashir, Giri (bb0200) September-2022; 9
Isola, Zhu, Zhou, Efros (bb0120) Nov. 2017
Gwet (bb0260) 2019
Muller (bb0020) Jul. 1999; 31
Chow, Paramesran (bb0240) May 2016; 27
Perek, Kiryati, Zimmerman-Moreno, Sklair-Levy, Konen, Mayer (bb0085) Feb. 2019; 14
Danala (bb0045) Sep. 2018; 46
Radford, Metz, Chintala (bb0125) 2015
Francescone (bb0165) Aug. 2014; 83
Rofena (bb0160) Sep. 2024; 116
Weng (bb0150) 2019
Hussain (bb0190) Jul. 2023; 11
Serrano (bb0090) Aug. 2023; 165
Chaudhury, Sau (bb0095) May 2023; 3
Kim (bb0055) Oct. 2019; 16
Tosteson (bb0030) Jun. 2014; 174
Liu, Breuel, Kautz (bb0155) 2017
Oyelade, Ezugwu, Almutairi, Saha, Abualigah, Chiroma (bb0105) Apr. 2022; 12
Jiang, Zheng, Jia, Song, Ding (bb0265) 2021
World Health Organization (bb0005) 2025
Bochkovskiy, Wang, Liao (bb0220) Apr. 2020
Mao, Li, Xie, Lau, Wang, Smolley (bb0145) Dec. 2017
Karras, Laine, Aila (bb0135) Dec. 2018; 43
Chu, Zhmoginov, Sandler (bb0130) 2017
Wang, Mark Liao, Wu, Chen, Hsieh, Yeh (bb0215) Jun. 2020
Creswell, White, Dumoulin, Arulkumaran, Sengupta, Bharath (bb0180) Jan. 2018; 35
Runge (bb0040) 2001
Gui, Sun, Wen, Tao, Ye (bb0185) 2023; 35
Renieblas, Nogués, A. M. G. M.D, León, del Castillo (bb0225) Jul. 2017; 4
Fagerland, Lydersen, Laake (bb0245) Jul. 2013; 13
Li (bb0050) Feb. 2017; 98
Amin, Kamal, Farouk, Gomaa, Rushdi, Mahmoud (bb0170) Aug. 2023; 85
Jiménez-Gaona, Carrión-Figueroa, Lakshminarayanan, José Rodríguez-Álvarez (bb0110) Aug. 2024; 94
Radford (10.1016/j.imavis.2025.105692_bb0125) 2015
Fagerland (10.1016/j.imavis.2025.105692_bb0245) 2013; 13
World Health Organization (10.1016/j.imavis.2025.105692_bb0005)
Ganaie (10.1016/j.imavis.2025.105692_bb0255) 2022; 115
Karthi (10.1016/j.imavis.2025.105692_bb0210) 2021
Gwet (10.1016/j.imavis.2025.105692_bb0260) 2019
Al Jaberi (10.1016/j.imavis.2025.105692_bb0115) 2023; 139
Gui (10.1016/j.imavis.2025.105692_bb0185) 2023; 35
Renieblas (10.1016/j.imavis.2025.105692_bb0225) 2017; 4
Amin (10.1016/j.imavis.2025.105692_bb0170) 2023; 85
Jiménez-Gaona (10.1016/j.imavis.2025.105692_bb0110) 2024; 94
Hussain (10.1016/j.imavis.2025.105692_bb0190) 2023; 11
Goodfellow (10.1016/j.imavis.2025.105692_bb0195) 2014; 3
Karras (10.1016/j.imavis.2025.105692_bb0135) 2018; 43
Tosteson (10.1016/j.imavis.2025.105692_bb0030) 2014; 174
Blankenburg (10.1016/j.imavis.2025.105692_bb0075) 2023; 26
Runge (10.1016/j.imavis.2025.105692_bb0040)
Danala (10.1016/j.imavis.2025.105692_bb0045) 2018; 46
Bochkovskiy (10.1016/j.imavis.2025.105692_bb0220)
Serrano (10.1016/j.imavis.2025.105692_bb0090) 2023; 165
Chow (10.1016/j.imavis.2025.105692_bb0240) 2016; 27
National Cancer Institute (10.1016/j.imavis.2025.105692_bb0015) 2025
Liu (10.1016/j.imavis.2025.105692_bb0155) 2017
Weng (10.1016/j.imavis.2025.105692_bb0150) 2019
Kim (10.1016/j.imavis.2025.105692_bb0140) 2017
Sorin (10.1016/j.imavis.2025.105692_bb0065) 2020; 27
Francescone (10.1016/j.imavis.2025.105692_bb0165) 2014; 83
Isola (10.1016/j.imavis.2025.105692_bb0120) 2017
Mao (10.1016/j.imavis.2025.105692_bb0145) 2017
Nori (10.1016/j.imavis.2025.105692_bb0175) 2018
The American Cancer Society medical and editorial content team (10.1016/j.imavis.2025.105692_bb0010) 2025
Rofena (10.1016/j.imavis.2025.105692_bb0160) 2024; 116
Ndajah (10.1016/j.imavis.2025.105692_bb0230) 2011; 4
Perek (10.1016/j.imavis.2025.105692_bb0085) 2019; 14
Cheung (10.1016/j.imavis.2025.105692_bb0060) 2016; 26
Abdelhafiz (10.1016/j.imavis.2025.105692_bb0080) 2019; 20
Oyelade (10.1016/j.imavis.2025.105692_bb0105) 2022; 12
Shcherbakov (10.1016/j.imavis.2025.105692_bb0235) 2013; 24
Alukić (10.1016/j.imavis.2025.105692_bb0025) 2023; 29
Iman (10.1016/j.imavis.2025.105692_bb0250) 2023; 11
Terreno (10.1016/j.imavis.2025.105692_bb0035) 2010; 110
Wang (10.1016/j.imavis.2025.105692_bb0215) 2020
Zanardo (10.1016/j.imavis.2025.105692_bb0070) 2019; 10
Creswell (10.1016/j.imavis.2025.105692_bb0180) 2018; 35
Mi (10.1016/j.imavis.2025.105692_bb0205) 2023; 233
Li (10.1016/j.imavis.2025.105692_bb0050) 2017; 98
Chaudhury (10.1016/j.imavis.2025.105692_bb0095) 2023; 3
Muller (10.1016/j.imavis.2025.105692_bb0020) 1999; 31
Skandarani (10.1016/j.imavis.2025.105692_bb0100) 2023; 9
Mehmood (10.1016/j.imavis.2025.105692_bb0200) 2022; 9
Chu (10.1016/j.imavis.2025.105692_bb0130) 2017
Kim (10.1016/j.imavis.2025.105692_bb0055) 2019; 16
Jiang (10.1016/j.imavis.2025.105692_bb0265) 2021
References_xml – year: 2025
  ident: bb0005
  article-title: Breast Cancer
– start-page: 68
  year: 2021
  end-page: 77
  ident: bb0265
  article-title: Synthesis of contrast-enhanced spectral mammograms from low-energy mammograms using cGAN-based synthesis network
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
– year: 2018
  ident: bb0175
  article-title: Contrast-Enhanced Digital Mammography (CEDM)
– year: Apr. 2020
  ident: bb0220
  article-title: YOLOv4: Optimal Speed and Accuracy of Object Detection
– volume: 115
  year: Oct. 2022
  ident: bb0255
  article-title: Ensemble deep learning: a review
  publication-title: Eng. Appl. Artif. Intell.
– volume: 27
  start-page: 145
  year: May 2016
  end-page: 154
  ident: bb0240
  article-title: Review of medical image quality assessment
  publication-title: Biomed. Signal Process. Control
– volume: 31
  start-page: 25
  year: Jul. 1999
  end-page: 34
  ident: bb0020
  article-title: Full-field digital mammography designed as a complete system
  publication-title: Eur. J. Radiol.
– volume: 27
  start-page: 1234
  year: Sep. 2020
  end-page: 1240
  ident: bb0065
  article-title: Background parenchymal enhancement at contrast-enhanced spectral mammography (CESM) as a breast cancer risk factor
  publication-title: Acad. Radiol.
– volume: 10
  start-page: 1
  year: Aug. 2019
  end-page: 15
  ident: bb0070
  article-title: Technique, protocols and adverse reactions for contrast-enhanced spectral mammography (CESM): a systematic review
  publication-title: Insights Imaging
– start-page: 700
  year: 2017
  end-page: 708
  ident: bb0155
  article-title: Unsupervised image-to-image translation networks
  publication-title: NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 20
  start-page: 1
  year: Jun. 2019
  end-page: 20
  ident: bb0080
  article-title: Deep convolutional neural networks for mammography: advances, challenges and applications
  publication-title: BMC Bioinform.
– volume: 12
  start-page: 1
  year: Apr. 2022
  end-page: 30
  ident: bb0105
  article-title: A generative adversarial network for synthetization of regions of interest based on digital mammograms
  publication-title: Sci. Rep.
– volume: 9
  start-page: 2394
  year: September-2022
  end-page: 7454
  ident: bb0200
  article-title: Mathematical analysis of loss function of GAN and its loss function variants
  publication-title: Int. J. Adv. Technol. Eng. Explor.
– year: 2021
  ident: bb0210
  article-title: Evolution of YOLO-V5 algorithm for object detection: automated detection of library books and performace validation of dataset
  publication-title: Proceedings of the 2021 IEEE International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2021
– year: 2017
  ident: bb0140
  article-title: Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
– volume: 3
  start-page: 142
  year: May 2023
  end-page: 153
  ident: bb0095
  article-title: Classification of breast masses using ultrasound images by approaching GAN, transfer learning, and deep learning techniques
  publication-title: J. Artif. Intell. Technol.
– volume: 43
  start-page: 4217
  year: Dec. 2018
  end-page: 4228
  ident: bb0135
  article-title: A style-based generator architecture for generative adversarial networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2015
  ident: bb0125
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: International Conference on Learning Representations
– volume: 94
  year: Aug. 2024
  ident: bb0110
  article-title: Gan-based data augmentation to improve breast ultrasound and mammography mass classification
  publication-title: Biomed. Signal Process. Control
– volume: 11
  year: Jul. 2023
  ident: bb0190
  article-title: YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection
  publication-title: Machines
– volume: 83
  start-page: 1350
  year: Aug. 2014
  end-page: 1355
  ident: bb0165
  article-title: Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM)
  publication-title: Eur. J. Radiol.
– volume: 110
  start-page: 3019
  year: May 2010
  end-page: 3042
  ident: bb0035
  article-title: Challenges for molecular magnetic resonance imaging
  publication-title: Chem. Rev.
– volume: 98
  start-page: 113
  year: Feb. 2017
  end-page: 123
  ident: bb0050
  article-title: Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): a retrospective comparison in 66 breast lesions
  publication-title: Diagn. Interv. Imaging
– volume: 139
  year: May 2023
  ident: bb0115
  article-title: Object tracking and detection techniques under GANN threats: a systemic review
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 850
  year: Dec. 2023
  end-page: 861
  ident: bb0075
  article-title: Economic evaluation of supplemental breast cancer screening modalities to mammography or digital breast tomosynthesis in women with heterogeneously and extremely dense breasts and average or intermediate breast cancer risk in US healthcare
  publication-title: J. Med. Econ.
– volume: 14
  start-page: 249
  year: Feb. 2019
  end-page: 257
  ident: bb0085
  article-title: Classification of contrast-enhanced spectral mammography (CESM) images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– year: 2019
  ident: bb0260
  article-title: Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement among Raters
– volume: 3
  start-page: 2672
  year: Jun. 2014
  end-page: 2680
  ident: bb0195
  article-title: Generative adversarial networks
  publication-title: Sci. Robot.
– volume: 11
  start-page: 40
  year: Mar. 2023
  ident: bb0250
  article-title: A review of deep transfer learning and recent advancements
  publication-title: Technologies
– volume: 165
  start-page: 420
  year: Aug. 2023
  end-page: 434
  ident: bb0090
  article-title: The deep learning generative adversarial random neural network in data marketplaces: the digital creative
  publication-title: Neural Netw.
– volume: 116
  year: Sep. 2024
  ident: bb0160
  article-title: A deep learning approach for virtual contrast enhancement in contrast enhanced spectral mammography
  publication-title: Comput. Med. Imaging Graph.
– year: 2001
  ident: bb0040
  article-title: Safety of Magnetic Resonance Contrast Media
– year: 2017
  ident: bb0130
  article-title: CycleGAN, A Master of Steganography
– start-page: 1571
  year: Jun. 2020
  end-page: 1580
  ident: bb0215
  article-title: CSPNet: a new backbone that can enhance learning capability of CNN
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Vol. 2020-June
– volume: 13
  start-page: 1
  year: Jul. 2013
  end-page: 8
  ident: bb0245
  article-title: The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional
  publication-title: BMC Med. Res. Methodol.
– volume: 35
  start-page: 3313
  year: 2023
  end-page: 3332
  ident: bb0185
  article-title: A review on generative adversarial networks: algorithms, theory, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 26
  start-page: 1082
  year: Apr. 2016
  end-page: 1089
  ident: bb0060
  article-title: Clinical utility of dual-energy contrast-enhanced spectral mammography for breast microcalcifications without associated mass: a preliminary analysis
  publication-title: Eur. Radiol.
– start-page: 2813
  year: Dec. 2017
  end-page: 2821
  ident: bb0145
  article-title: Least squares generative adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision, Vol. 2017-October
– volume: 4
  year: Jul. 2017
  ident: bb0225
  article-title: Structural similarity index family for image quality assessment in radiological images
  publication-title: J. Med. Imaging
– volume: 4
  year: 2011
  ident: bb0230
  article-title: An investigation on the quality of denoised images
  publication-title: Int. J. Circ. Syst. Signal Process.
– volume: 24
  start-page: 171
  year: 2013
  end-page: 176
  ident: bb0235
  article-title: A survey of forecast error measures
  publication-title: World Appl. Sci. J.
– volume: 35
  start-page: 53
  year: Jan. 2018
  end-page: 65
  ident: bb0180
  article-title: Generative adversarial networks: an overview
  publication-title: IEEE Signal Process. Mag.
– volume: 85
  year: Aug. 2023
  ident: bb0170
  article-title: An efficient hybrid computer-aided breast cancer diagnosis system with wavelet packet transform and synthetically-generated contrast-enhanced spectral mammography images
  publication-title: Biomed Signal Process Control
– year: 2025
  ident: bb0010
  article-title: Breast Cancer Statistics | How Common Is Breast Cancer?
– volume: 29
  start-page: 526
  year: May 2023
  end-page: 532
  ident: bb0025
  article-title: The impact of subjective image quality evaluation in mammography
  publication-title: Radiography
– year: 2025
  ident: bb0015
  article-title: Female breast cancer — cancer stat facts
  publication-title: Female Breast Cancer — Cancer Stat Facts
– volume: 16
  start-page: 1456
  year: Oct. 2019
  end-page: 1463
  ident: bb0055
  article-title: Comparison of contrast-enhanced mammography with conventional digital mammography in breast cancer screening: a pilot study
  publication-title: J. Am. Coll. Radiol.
– volume: 233
  year: Dec. 2023
  ident: bb0205
  article-title: WGAN-CL: a Wasserstein GAN with confidence loss for small-sample augmentation
  publication-title: Expert Syst. Appl.
– volume: 9
  year: Mar. 2023
  ident: bb0100
  article-title: GANs for medical image synthesis: an empirical study
  publication-title: J. Imaging
– start-page: 5967
  year: Nov. 2017
  end-page: 5976
  ident: bb0120
  article-title: Image-to-image translation with conditional adversarial networks
  publication-title: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Vol. 2017-January
– year: 2019
  ident: bb0150
  article-title: From GAN to WGAN
– volume: 46
  start-page: 1419
  year: Sep. 2018
  end-page: 1431
  ident: bb0045
  article-title: Classification of breast masses using a computer-aided diagnosis scheme of contrast enhanced digital mammograms
  publication-title: Ann. Biomed. Eng.
– volume: 174
  start-page: 954
  year: Jun. 2014
  end-page: 961
  ident: bb0030
  article-title: Consequences of false-positive screening mammograms
  publication-title: JAMA Intern. Med.
– volume: 94
  year: 2024
  ident: 10.1016/j.imavis.2025.105692_bb0110
  article-title: Gan-based data augmentation to improve breast ultrasound and mammography mass classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106255
– year: 2025
  ident: 10.1016/j.imavis.2025.105692_bb0010
– year: 2018
  ident: 10.1016/j.imavis.2025.105692_bb0175
– volume: 3
  start-page: 2672
  issue: January
  year: 2014
  ident: 10.1016/j.imavis.2025.105692_bb0195
  article-title: Generative adversarial networks
  publication-title: Sci. Robot.
– year: 2021
  ident: 10.1016/j.imavis.2025.105692_bb0210
  article-title: Evolution of YOLO-V5 algorithm for object detection: automated detection of library books and performace validation of dataset
– ident: 10.1016/j.imavis.2025.105692_bb0005
– volume: 174
  start-page: 954
  issue: 6
  year: 2014
  ident: 10.1016/j.imavis.2025.105692_bb0030
  article-title: Consequences of false-positive screening mammograms
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2014.981
– start-page: 1571
  year: 2020
  ident: 10.1016/j.imavis.2025.105692_bb0215
  article-title: CSPNet: a new backbone that can enhance learning capability of CNN
– volume: 110
  start-page: 3019
  issue: 5
  year: 2010
  ident: 10.1016/j.imavis.2025.105692_bb0035
  article-title: Challenges for molecular magnetic resonance imaging
  publication-title: Chem. Rev.
  doi: 10.1021/cr100025t
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.imavis.2025.105692_bb0105
  article-title: A generative adversarial network for synthetization of regions of interest based on digital mammograms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09929-9
– year: 2015
  ident: 10.1016/j.imavis.2025.105692_bb0125
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– volume: 139
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0115
  article-title: Object tracking and detection techniques under GANN threats: a systemic review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110224
– year: 2019
  ident: 10.1016/j.imavis.2025.105692_bb0150
– year: 2019
  ident: 10.1016/j.imavis.2025.105692_bb0260
– volume: 29
  start-page: 526
  issue: 3
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0025
  article-title: The impact of subjective image quality evaluation in mammography
  publication-title: Radiography
  doi: 10.1016/j.radi.2023.02.025
– volume: 43
  start-page: 4217
  issue: 12
  year: 2018
  ident: 10.1016/j.imavis.2025.105692_bb0135
  article-title: A style-based generator architecture for generative adversarial networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2970919
– volume: 11
  issue: 7
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0190
  article-title: YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection
  publication-title: Machines
  doi: 10.3390/machines11070677
– year: 2025
  ident: 10.1016/j.imavis.2025.105692_bb0015
  article-title: Female breast cancer — cancer stat facts
– volume: 24
  start-page: 171
  issue: 24
  year: 2013
  ident: 10.1016/j.imavis.2025.105692_bb0235
  article-title: A survey of forecast error measures
  publication-title: World Appl. Sci. J.
– volume: 83
  start-page: 1350
  issue: 8
  year: 2014
  ident: 10.1016/j.imavis.2025.105692_bb0165
  article-title: Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM)
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2014.05.015
– volume: 26
  start-page: 850
  issue: 1
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0075
  article-title: Economic evaluation of supplemental breast cancer screening modalities to mammography or digital breast tomosynthesis in women with heterogeneously and extremely dense breasts and average or intermediate breast cancer risk in US healthcare
  publication-title: J. Med. Econ.
  doi: 10.1080/13696998.2023.2222035
– volume: 98
  start-page: 113
  issue: 2
  year: 2017
  ident: 10.1016/j.imavis.2025.105692_bb0050
  article-title: Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): a retrospective comparison in 66 breast lesions
  publication-title: Diagn. Interv. Imaging
  doi: 10.1016/j.diii.2016.08.013
– volume: 35
  start-page: 3313
  issue: 4
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0185
  article-title: A review on generative adversarial networks: algorithms, theory, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3130191
– start-page: 68
  year: 2021
  ident: 10.1016/j.imavis.2025.105692_bb0265
  article-title: Synthesis of contrast-enhanced spectral mammograms from low-energy mammograms using cGAN-based synthesis network
– volume: 233
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0205
  article-title: WGAN-CL: a Wasserstein GAN with confidence loss for small-sample augmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120943
– ident: 10.1016/j.imavis.2025.105692_bb0040
– volume: 27
  start-page: 145
  year: 2016
  ident: 10.1016/j.imavis.2025.105692_bb0240
  article-title: Review of medical image quality assessment
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.02.006
– volume: 3
  start-page: 142
  issue: 4
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0095
  article-title: Classification of breast masses using ultrasound images by approaching GAN, transfer learning, and deep learning techniques
  publication-title: J. Artif. Intell. Technol.
– volume: 13
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.imavis.2025.105692_bb0245
  article-title: The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-13-91
– volume: 46
  start-page: 1419
  issue: 9
  year: 2018
  ident: 10.1016/j.imavis.2025.105692_bb0045
  article-title: Classification of breast masses using a computer-aided diagnosis scheme of contrast enhanced digital mammograms
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2044-4
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.imavis.2025.105692_bb0070
  article-title: Technique, protocols and adverse reactions for contrast-enhanced spectral mammography (CESM): a systematic review
  publication-title: Insights Imaging
  doi: 10.1186/s13244-019-0756-0
– ident: 10.1016/j.imavis.2025.105692_bb0220
– volume: 31
  start-page: 25
  issue: 1
  year: 1999
  ident: 10.1016/j.imavis.2025.105692_bb0020
  article-title: Full-field digital mammography designed as a complete system
  publication-title: Eur. J. Radiol.
  doi: 10.1016/S0720-048X(99)00066-2
– volume: 4
  issue: 3
  year: 2017
  ident: 10.1016/j.imavis.2025.105692_bb0225
  article-title: Structural similarity index family for image quality assessment in radiological images
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.3.035501
– volume: 115
  year: 2022
  ident: 10.1016/j.imavis.2025.105692_bb0255
  article-title: Ensemble deep learning: a review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105151
– volume: 165
  start-page: 420
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0090
  article-title: The deep learning generative adversarial random neural network in data marketplaces: the digital creative
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.05.028
– year: 2017
  ident: 10.1016/j.imavis.2025.105692_bb0140
– volume: 20
  start-page: 1
  issue: 11
  year: 2019
  ident: 10.1016/j.imavis.2025.105692_bb0080
  article-title: Deep convolutional neural networks for mammography: advances, challenges and applications
  publication-title: BMC Bioinform.
– volume: 4
  issue: 5
  year: 2011
  ident: 10.1016/j.imavis.2025.105692_bb0230
  article-title: An investigation on the quality of denoised images
  publication-title: Int. J. Circ. Syst. Signal Process.
– volume: 85
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0170
  article-title: An efficient hybrid computer-aided breast cancer diagnosis system with wavelet packet transform and synthetically-generated contrast-enhanced spectral mammography images
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104808
– volume: 27
  start-page: 1234
  issue: 9
  year: 2020
  ident: 10.1016/j.imavis.2025.105692_bb0065
  article-title: Background parenchymal enhancement at contrast-enhanced spectral mammography (CESM) as a breast cancer risk factor
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2019.10.034
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  ident: 10.1016/j.imavis.2025.105692_bb0180
  article-title: Generative adversarial networks: an overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765202
– start-page: 2813
  year: 2017
  ident: 10.1016/j.imavis.2025.105692_bb0145
  article-title: Least squares generative adversarial networks
– volume: 14
  start-page: 249
  issue: 2
  year: 2019
  ident: 10.1016/j.imavis.2025.105692_bb0085
  article-title: Classification of contrast-enhanced spectral mammography (CESM) images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1876-6
– volume: 116
  year: 2024
  ident: 10.1016/j.imavis.2025.105692_bb0160
  article-title: A deep learning approach for virtual contrast enhancement in contrast enhanced spectral mammography
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2024.102398
– volume: 11
  start-page: 40
  issue: 2
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0250
  article-title: A review of deep transfer learning and recent advancements
  publication-title: Technologies
  doi: 10.3390/technologies11020040
– start-page: 5967
  year: 2017
  ident: 10.1016/j.imavis.2025.105692_bb0120
  article-title: Image-to-image translation with conditional adversarial networks
– volume: 26
  start-page: 1082
  issue: 4
  year: 2016
  ident: 10.1016/j.imavis.2025.105692_bb0060
  article-title: Clinical utility of dual-energy contrast-enhanced spectral mammography for breast microcalcifications without associated mass: a preliminary analysis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-015-3904-z
– volume: 16
  start-page: 1456
  issue: 10
  year: 2019
  ident: 10.1016/j.imavis.2025.105692_bb0055
  article-title: Comparison of contrast-enhanced mammography with conventional digital mammography in breast cancer screening: a pilot study
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2019.04.007
– start-page: 700
  year: 2017
  ident: 10.1016/j.imavis.2025.105692_bb0155
  article-title: Unsupervised image-to-image translation networks
– volume: 9
  start-page: 2394
  issue: 94
  year: 2022
  ident: 10.1016/j.imavis.2025.105692_bb0200
  article-title: Mathematical analysis of loss function of GAN and its loss function variants
  publication-title: Int. J. Adv. Technol. Eng. Explor.
– volume: 9
  issue: 3
  year: 2023
  ident: 10.1016/j.imavis.2025.105692_bb0100
  article-title: GANs for medical image synthesis: an empirical study
  publication-title: J. Imaging
  doi: 10.3390/jimaging9030069
– year: 2017
  ident: 10.1016/j.imavis.2025.105692_bb0130
SSID ssj0007079
Score 2.460549
Snippet Contrast-enhanced digital mammography (CEDM) has emerged as a promising complementary imaging modality for breast cancer diagnosis, offering enhanced lesion...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105692
SubjectTerms Breast cancer
Contrast-enhanced digital mammography
CycleGAN
Deep learning
Generative adversarial network
Image-to-image translation
Title A deep learning approach for contrast-agent-free breast lesion detection and classification using adversarial synthesis of contrast-enhanced mammograms
URI https://dx.doi.org/10.1016/j.imavis.2025.105692
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWDgUUA8Kw-spnWSxvFYIaoCogsgdYsc-wJFaqhIGFj4G_xd7pxEgIQYGBPlrMh3vvtsf3fH2GkMkdMYSUTujBKRAym0UUoMnBsmcaJz6avr30zjyX10NRvOVth5mwtDtMrG99c-3Xvr5k2_mc3-cj7v3-LuIUgSAvD-fnBGGeyRIis_e_-ieVAFuPqcBVc-ft2mz3mO13xBqfy4SwyGvgW9Dn4PT99CzniLbTRYkY_q39lmK1B02WaDG3mzKssuW_9WVHCHfYy4A1jyph_EA2_LhnPEp9xT001ZCUM5VSJ_AeAZEdMrFKCTMxSuPD2r4KZw3BK6JjqR1yAnmjyOSF2cS0O2y8u3AjFkOS_5c_41OhSPnlrAFwYNnRhg5S67H1_cnU9E035BWEQ1lcisTqTKAEGgDd1AWx0rN7RaGgU5JMoEEmKlA-ukSWRoAoxzuZE2tNYp6Vy4xzrFcwH7jMPA4MYuBPQWNgqczEJtJchMGaPyRAcHTLSzni7rKhtpSz97SmstpaSltNbSAVOtatIf1pJiIPhT8vDfkkdsjZ5qIt8x61Qvr3CCgKTKet7iemx1dHk9mX4C32bk6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R3QPlUL6KgLbgA1dr18kmjo8rVLSU3b10kfYWOfaELhJhRcKBX8LfZew4lEqoB66Jxoo845k3zpsZgLMUR1ZRJOGl1ZKPLAqutJR8aG2SpZkqhe-uP5unk-vRr2Wy3IDzrhbG0SqD7299uvfW4ckg7OZgvVoNflP2EGWZA_D-_-DyE_Rdd6qkB_3x5dVk_uqQXRO49qqFDj8JdBV0nua1unPV_JQoRomfQq-i9yPUm6hzsQNfAlxk4_aLdmEDqz3YDtCRhYNZ78HWm76C-_A8ZhZxzcJIiBvWdQ5nBFGZZ6fruuHalVXx8gGRFY6b3pCAuzwj4cYztCqmK8uMA9iOUeSVyBxTnlZ0g5xr7cyX1U8Vwch6VbP78u_qWP3x7AJ2p8nWHQms_grXFz8X5xMeJjBwQ8Cm4YVRmZAFEg40sR0qo1JpE6OEllhiJnUkMJUqMlboTMQ6olBXamFiY6wU1sYH0KvuKzwEhkNNuV2M5DDMKLKiiJURKAqptSwzFR0B73Y9X7eNNvKOgXabt1rKnZbyVktHIDvV5P8YTE6x4L-Sxx-WPIXNyWI2zaeX86tv8Nm9aXl936HXPDziD8InTXES7O8Fs4fnnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+approach+for+contrast-agent-free+breast+lesion+detection+and+classification+using+adversarial+synthesis+of+contrast-enhanced+mammograms&rft.jtitle=Image+and+vision+computing&rft.au=Amin%2C+Manar+N.&rft.au=Rushdi%2C+Muhammad+A.&rft.au=Kamal%2C+Rasha&rft.au=Farouk%2C+Amr&rft.date=2025-10-01&rft.issn=0262-8856&rft.volume=162&rft.spage=105692&rft_id=info:doi/10.1016%2Fj.imavis.2025.105692&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2025_105692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon