Revisiting the NH3-SCR performance of MnO2 with different crystal phases: From electronic structure to catalytic activity

Manganese oxides are among the most promising low-temperature NH3-selective catalytic reduction (NH3-SCR) catalysts. MnO2 with different crystal phases (α-, β-, γ-, and δ-MnO2) exhibits significantly different NH3-SCR performance. The fundamental factors influencing the activity of MnO2 with differe...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 380; p. 125753
Main Authors Yue, Yi, Xiong, Shangchao, Ou, Hongjun, Yang, Yi, Sun, Xiaoyu, Wang, Houlin, Xi, Yingwei, Gong, Zhengjun, Chen, Jianjun, Li, Junhua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2026
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Manganese oxides are among the most promising low-temperature NH3-selective catalytic reduction (NH3-SCR) catalysts. MnO2 with different crystal phases (α-, β-, γ-, and δ-MnO2) exhibits significantly different NH3-SCR performance. The fundamental factors influencing the activity of MnO2 with different crystal phases remain a subject of considerable debate. This study finds that β- and δ-MnO2 show poor activity due to low reactivity and poor NH3 adsorption. In contrast, α- and γ-MnO2 show high activity but differ in optimal reaction temperature windows. The smaller Mn-O coordination number and longer Mn-O bond distance in α-MnO2 result in an upward shift of its d-band center. Therefore, α-MnO2 exhibits stronger coupling between the Mn-d and N-p orbitals during NH3 adsorption, promoting *NH3 activation. As a result, α-MnO2 outperforms γ-MnO2 in low-temperature catalytic activity. This study reveals the impact of microscopic electronic orbital coupling on macroscopic catalytic performance, providing new insights for developing advanced low-temperature NH3-SCR catalysts. [Display omitted] •Coordination environments cause SCR performance differences in MnO2 crystal phases.•d-Band shifts lead to varied NH3 activation barriers in α- and γ-MnO2.•Poor redox ability at low temperature makes β-MnO2 catalytically less active.•Nitrate buildup on δ-MnO2 inhibits SCR performance.
AbstractList Manganese oxides are among the most promising low-temperature NH3-selective catalytic reduction (NH3-SCR) catalysts. MnO2 with different crystal phases (α-, β-, γ-, and δ-MnO2) exhibits significantly different NH3-SCR performance. The fundamental factors influencing the activity of MnO2 with different crystal phases remain a subject of considerable debate. This study finds that β- and δ-MnO2 show poor activity due to low reactivity and poor NH3 adsorption. In contrast, α- and γ-MnO2 show high activity but differ in optimal reaction temperature windows. The smaller Mn-O coordination number and longer Mn-O bond distance in α-MnO2 result in an upward shift of its d-band center. Therefore, α-MnO2 exhibits stronger coupling between the Mn-d and N-p orbitals during NH3 adsorption, promoting *NH3 activation. As a result, α-MnO2 outperforms γ-MnO2 in low-temperature catalytic activity. This study reveals the impact of microscopic electronic orbital coupling on macroscopic catalytic performance, providing new insights for developing advanced low-temperature NH3-SCR catalysts. [Display omitted] •Coordination environments cause SCR performance differences in MnO2 crystal phases.•d-Band shifts lead to varied NH3 activation barriers in α- and γ-MnO2.•Poor redox ability at low temperature makes β-MnO2 catalytically less active.•Nitrate buildup on δ-MnO2 inhibits SCR performance.
ArticleNumber 125753
Author Sun, Xiaoyu
Wang, Houlin
Xi, Yingwei
Li, Junhua
Yue, Yi
Chen, Jianjun
Gong, Zhengjun
Xiong, Shangchao
Ou, Hongjun
Yang, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Yue
  fullname: Yue, Yi
  organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 2
  givenname: Shangchao
  orcidid: 0000-0002-6523-0283
  surname: Xiong
  fullname: Xiong, Shangchao
  email: xiongshangchao@swjtu.edu.cn
  organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 3
  givenname: Hongjun
  surname: Ou
  fullname: Ou, Hongjun
  organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 4
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 5
  givenname: Xiaoyu
  surname: Sun
  fullname: Sun, Xiaoyu
  organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 6
  givenname: Houlin
  surname: Wang
  fullname: Wang, Houlin
  organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 7
  givenname: Yingwei
  surname: Xi
  fullname: Xi, Yingwei
  organization: Sichuan Ecological Environment Monitoring Station, Chengdu 610091, China
– sequence: 8
  givenname: Zhengjun
  surname: Gong
  fullname: Gong, Zhengjun
  organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 9
  givenname: Jianjun
  surname: Chen
  fullname: Chen, Jianjun
  organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
– sequence: 10
  givenname: Junhua
  surname: Li
  fullname: Li, Junhua
  organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
BookMark eNp90NFKwzAUBuBcTHCbvoEXeYHWNGna1AtBhnPCdDD1OqTpicvompFkk769HfXaqwMHzs9_vhmadK4DhO4ykmYkK-73qTpqFeuUEsrTjPKSswmakooWCWMlu0azEPaEEMqomKJ-C2cbbLTdN447wO8rlnwstvgI3jh_UJ0G7Ax-6zYU_9i4w401Bjx0EWvfh6hafNypAOEBL707YGhBR-86q3GI_qTjyQOODg-VVNvHYa10tGcb-xt0ZVQb4PZvztHX8vlzsUrWm5fXxdM60VlJY1I1XDQFb0AIrouSQlZXrAHD84LnRBjBVaGMySteVzWldcENEVqQuiL5AFKzOcrHXO1dCB6MPHp7UL6XGZEXMrmXI5m8kMmRbDh7HM9g6Ha24GXQFgaOxvrhRdk4-3_AL4OMe_4
Cites_doi 10.1038/s41467-018-03795-8
10.1016/j.electacta.2010.03.090
10.1021/acscatal.4c00069
10.1038/s41467-020-15261-5
10.1002/anie.202401214
10.1002/chem.201704398
10.1016/j.cej.2020.125446
10.1016/j.apsusc.2022.154981
10.1016/j.catcom.2007.03.007
10.1016/j.joule.2018.10.026
10.1021/acs.est.1c08922
10.1016/j.apcatb.2024.124265
10.1021/acs.jpcc.9b03039
10.1021/acsaem.2c03916
10.1021/acs.chemrev.9b00202
10.1016/S1872-2067(17)62922-X
10.1021/acscatal.3c01665
10.1088/0957-4484/19/22/225606
10.1002/jcc.26353
10.1021/acs.est.3c04314
10.1016/j.apcatb.2020.118860
10.1016/j.molliq.2020.115203
10.1016/j.apcatb.2015.10.044
10.1016/j.apsusc.2023.158200
10.1021/acs.jpcc.9b09891
10.1021/acs.est.0c08214
10.1016/j.fuel.2023.130472
10.1016/j.apsusc.2019.03.280
10.1016/j.apcatb.2025.125325
10.1002/ange.201901771
10.1016/j.psep.2022.02.066
10.1021/jacs.4c03299
10.1016/j.apcatb.2019.118150
10.1021/acscatal.8b01357
10.1016/j.jechem.2020.05.029
10.1016/j.apcatb.2025.125279
10.1021/acs.est.2c00113
10.1016/j.apcatb.2023.123607
10.1038/s41467-022-30679-9
10.1016/j.cpc.2021.108033
10.1016/j.jcat.2014.12.033
10.1021/acs.est.2c02255
10.1016/j.cej.2022.139207
10.1002/anie.201205808
10.1016/j.apcatb.2024.124699
10.1016/j.apsusc.2024.160589
10.1016/S1872-2067(18)63204-8
10.1016/S0926-860X(00)00742-0
10.1021/acscatal.3c05337
10.1021/acs.est.3c00461
10.1021/jacs.7b09646
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2025.125753
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
ExternalDocumentID 10_1016_j_apcatb_2025_125753
S0926337325007362
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XPP
~02
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c172t-9d58d65de885c672e1b93def5465408f85a6aff495b9b22b65f08c80b904101b3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 27 16:27:39 EDT 2025
Sat Aug 30 17:17:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords MnO2
Reaction mechanism
NH3-SCR
Electronic structure
NOx
Low-temperature catalysts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-9d58d65de885c672e1b93def5465408f85a6aff495b9b22b65f08c80b904101b3
ORCID 0000-0002-6523-0283
ParticipantIDs crossref_primary_10_1016_j_apcatb_2025_125753
elsevier_sciencedirect_doi_10_1016_j_apcatb_2025_125753
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Medford, Vojvodic, Hummelshøj, Voss, Abild-Pedersen, Studt, Bligaard, Nilsson, Nørskov (bib31) 2015; 328
Zhang, Wang, Wang, Gao, Duan, Hao, Chen, Wang, Zhao, Wang (bib14) 2025; 361
Kubota, Jing, Wan, Tong, Zhang, Mine, Toyao, Toyoshima, Kondoh, Ferri, Shimizu (bib40) 2023; 13
Gevers, Enakonda, Shahid, Ould-Chikh, Silva, Paalanen, Aguilar-Tapia, Hazemann, Hedhili, Wen (bib43) 2022; 13
Yin, Luo, Sun, Xie, Xiong, Zhu, Li (bib55) 2024; 14
Qu, Liu, Chen, Dong, Tang, Chen (bib34) 2020; 11
Huang, Lv, Zhang, Chang, Gan, Yang (bib25) 2010; 55
Yuan, Liu, Byles, Yao, Song, Cheng, Huang, Amine, Pomerantseva, Shahbazian-Yassar, Lu (bib13) 2019; 3
An, Ji, Cheng, Zhao, Cai, Tan, Tong, Ma, Zou, Sun (bib29) 2023; 57
Han, Cai, Gao, Hasegawa, Wang, Zhang, Shi, Zhang (bib1) 2019; 119
Sorrentino, Rega, Sannino, Magliano, Ciambelli, Santacesaria (bib2) 2001; 209
Lv, He, Ge, Liu, Yu, He (bib41) 2024; 359
Yang, Su, Xu, Yang, Peng, Li (bib12) 2020; 260
Chen, Fang, Li, Zhang, Liu (bib47) 2023; 452
Putluru, Schill, Godiksen, Poreddy, Mossin, Jensen, Fehrmann (bib5) 2016; 183
Nelson, Ertural, George, Deringer, Hautier, Dronskowski (bib54) 2020; 41
Wang, Xu, Liu, Tang, Geng (bib53) 2021; 267
Gan, Chen, Chu, Jing, Shi, Zhang, Zhang, Li, Zhang, Pavanello, Wang, Liu (bib48) 2024; 146
Lin, Lian, Shan, He (bib6) 2023; 639
Chen, Li, Li, Zhang, Wei, Wang, Huang (bib23) 2023; 6
Qu, Fang, Ren, Chen, Liu, Ma, Tang (bib42) 2023; 57
Nieminen, Miikkulainen, Settipani, Simonelli, Hönicke, Zech, Kayser, Beckhoff, Honkanen, Heikkilä (bib10) 2019; 123
Wan, Wang, Zhang, Shi, Niu, Wang, Li, Chen, Zhang, Zhou, Wang (bib49) 2022; 56
Xiong, Chen, Liu, Chen, Si, Gong, Peng, Li (bib37) 2022; 56
An, Yang, Cheng, Yan, Sun, Zou, Sun, Tang, Dong (bib44) 2024; 58
Gao, Huang, Chen, Wan, Gu, Ma, Chen, Tang (bib50) 2018; 24
Xu, Liu, Ma, Liang, Yang, Liu, Sun, Huang, Sun, Dong (bib56) 2024; 14
Zhu, Lai, Tumuluri, Wu, Wachs (bib3) 2017; 139
Guan, Cheng, Pei, Chen, Yuan, Lu (bib20) 2024; 63
Liu, Sun, Dong, Hou, Chen (bib15) 2025; 371
Liu, Ma, Li, Wang, Xiao, Li (bib19) 2018; 9
Liang, Wang, Xuan, Fan, An, Meng, Zhu, Yun, Luan, Wang, Peng, Crittenden (bib36) 2025; 373
Yang, Ren, Su, Yao, Cao, Jiang, Hu, Kong, Yang, Liu (bib46) 2020; 397
Huang, Gu, Wen, Hu, Makkee, Lin, Kapteijn, Tang (bib21) 2012; 52
Li, Chen, Ke, Luo, Hao (bib7) 2007; 8
Qu, Yuan, Ren, Qi, Xu, Chen, Chen, Yang, Ma, Liu (bib39) 2022; 134
Song, Cheng, Han, Ji, Cai, Tan, Sun, Tang, Dong (bib18) 2024; 344
Jun-Kun, Wachs (bib8) 2018; 8
Liang, Gao, Zhang, Wang, Xuan, Tong, Wang, Yun, Wang, Peng (bib11) 2023; 546
Yoon, Choi, Kim, Kim, Choi, Kim, Yoon (bib52) 2021; 53
Wei, Cui, Guo, Ma, Wan, Yu (bib33) 2019; 483
Zhou, Zhu, Sun, Chen, Geng, Xu (bib9) 2023; 607
Liu, Long, Tong, Yin, Li, Hu (bib28) 2021; 515
Komaty, Andijani, Wang, Navarro de Miguel, Kumar Veeranmaril, Hedhili, Silva, Wang, Abou-Daher, Han, Ruiz-Martinez (bib45) 2024; 58
Wang, Hua, Zhou, Hu, Liu, Cheng, Wu, Wu, Liu, Zhu (bib17) 2024; 357
Hu, Chen, Li, Chen, Qu, Ma, Tang (bib51) 2019; 124
Yao, Cao, Chen, Kang, Chen, Tian, Yang (bib27) 2019; 40
Hao, Shen, Li, Wang, Zheng, Wang, Liu, Zhan (bib22) 2019; 131
Huang, Lv, Yue, Attia, Yang (bib24) 2008; 19
Claros, Kuta, El-Dahshan, Michalička, Jimenez, Vallejos (bib26) 2021; 325
He, Gao, Peng, Yu, Shan, He (bib4) 2021; 55
Zhang, Li, Cai, Wang, Gao, Hao, Bao, Zhao, Wang (bib16) 2024; 669
He, Ren, Cao (bib32) 2022; 162
Zhang, Wang, Impeng, Lan, Liu, Zhang (bib38) 2022; 56
Zhang, Li, Guo, He, Wu, Song, Zhang, Zhao, Wang, He (bib30) 2020; 270
Gong, Xie, Fang, Han, He, Li, Qi (bib35) 2017; 38
Zhang (10.1016/j.apcatb.2025.125753_bib16) 2024; 669
Yang (10.1016/j.apcatb.2025.125753_bib46) 2020; 397
Lin (10.1016/j.apcatb.2025.125753_bib6) 2023; 639
Qu (10.1016/j.apcatb.2025.125753_bib39) 2022; 134
Wang (10.1016/j.apcatb.2025.125753_bib17) 2024; 357
Huang (10.1016/j.apcatb.2025.125753_bib25) 2010; 55
Huang (10.1016/j.apcatb.2025.125753_bib21) 2012; 52
An (10.1016/j.apcatb.2025.125753_bib29) 2023; 57
Zhang (10.1016/j.apcatb.2025.125753_bib38) 2022; 56
Medford (10.1016/j.apcatb.2025.125753_bib31) 2015; 328
Song (10.1016/j.apcatb.2025.125753_bib18) 2024; 344
Guan (10.1016/j.apcatb.2025.125753_bib20) 2024; 63
Claros (10.1016/j.apcatb.2025.125753_bib26) 2021; 325
Qu (10.1016/j.apcatb.2025.125753_bib42) 2023; 57
Wei (10.1016/j.apcatb.2025.125753_bib33) 2019; 483
Xiong (10.1016/j.apcatb.2025.125753_bib37) 2022; 56
Zhu (10.1016/j.apcatb.2025.125753_bib3) 2017; 139
Chen (10.1016/j.apcatb.2025.125753_bib23) 2023; 6
Liu (10.1016/j.apcatb.2025.125753_bib15) 2025; 371
Wan (10.1016/j.apcatb.2025.125753_bib49) 2022; 56
Yoon (10.1016/j.apcatb.2025.125753_bib52) 2021; 53
Gevers (10.1016/j.apcatb.2025.125753_bib43) 2022; 13
An (10.1016/j.apcatb.2025.125753_bib44) 2024; 58
Jun-Kun (10.1016/j.apcatb.2025.125753_bib8) 2018; 8
Liang (10.1016/j.apcatb.2025.125753_bib11) 2023; 546
Li (10.1016/j.apcatb.2025.125753_bib7) 2007; 8
He (10.1016/j.apcatb.2025.125753_bib4) 2021; 55
Hu (10.1016/j.apcatb.2025.125753_bib51) 2019; 124
Liu (10.1016/j.apcatb.2025.125753_bib28) 2021; 515
Gan (10.1016/j.apcatb.2025.125753_bib48) 2024; 146
Gao (10.1016/j.apcatb.2025.125753_bib50) 2018; 24
Yin (10.1016/j.apcatb.2025.125753_bib55) 2024; 14
Yuan (10.1016/j.apcatb.2025.125753_bib13) 2019; 3
Qu (10.1016/j.apcatb.2025.125753_bib34) 2020; 11
Nelson (10.1016/j.apcatb.2025.125753_bib54) 2020; 41
Nieminen (10.1016/j.apcatb.2025.125753_bib10) 2019; 123
Kubota (10.1016/j.apcatb.2025.125753_bib40) 2023; 13
Wang (10.1016/j.apcatb.2025.125753_bib53) 2021; 267
Hao (10.1016/j.apcatb.2025.125753_bib22) 2019; 131
Chen (10.1016/j.apcatb.2025.125753_bib47) 2023; 452
Huang (10.1016/j.apcatb.2025.125753_bib24) 2008; 19
Putluru (10.1016/j.apcatb.2025.125753_bib5) 2016; 183
Gong (10.1016/j.apcatb.2025.125753_bib35) 2017; 38
Zhou (10.1016/j.apcatb.2025.125753_bib9) 2023; 607
Liang (10.1016/j.apcatb.2025.125753_bib36) 2025; 373
Liu (10.1016/j.apcatb.2025.125753_bib19) 2018; 9
Yao (10.1016/j.apcatb.2025.125753_bib27) 2019; 40
He (10.1016/j.apcatb.2025.125753_bib32) 2022; 162
Lv (10.1016/j.apcatb.2025.125753_bib41) 2024; 359
Yang (10.1016/j.apcatb.2025.125753_bib12) 2020; 260
Komaty (10.1016/j.apcatb.2025.125753_bib45) 2024; 58
Sorrentino (10.1016/j.apcatb.2025.125753_bib2) 2001; 209
Han (10.1016/j.apcatb.2025.125753_bib1) 2019; 119
Zhang (10.1016/j.apcatb.2025.125753_bib14) 2025; 361
Xu (10.1016/j.apcatb.2025.125753_bib56) 2024; 14
Zhang (10.1016/j.apcatb.2025.125753_bib30) 2020; 270
References_xml – volume: 325
  year: 2021
  ident: bib26
  article-title: Hydrothermally synthesized MnO
  publication-title: J. Mol. Liq.
– volume: 53
  start-page: 276
  year: 2021
  end-page: 284
  ident: bib52
  article-title: Reaction mechanism and additional lithium storage of mesoporous MnO
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 1610
  year: 2018
  ident: bib19
  article-title: Heterogeneous Fe
  publication-title: Nat. Commun.
– volume: 13
  start-page: 9274
  year: 2023
  end-page: 9288
  ident: bib40
  article-title: Operando spectroscopic study of reduction and oxidation half-cycles in NH
  publication-title: ACS Catal.
– volume: 63
  year: 2024
  ident: bib20
  article-title: Probing coordination number of single-atom catalysts by d-band center-regulated luminescence
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 11
  start-page: 1532
  year: 2020
  ident: bib34
  article-title: Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH
  publication-title: Nat. Commun.
– volume: 3
  start-page: 471
  year: 2019
  end-page: 484
  ident: bib13
  article-title: Ordering heterogeneity of [MnO
  publication-title: Joule
– volume: 183
  start-page: 282
  year: 2016
  end-page: 290
  ident: bib5
  article-title: Promoted V
  publication-title: Appl. Catal. B
– volume: 452
  year: 2023
  ident: bib47
  article-title: Mechanistic investigation of the enhanced SO
  publication-title: Chem. Eng. J.
– volume: 55
  start-page: 6995
  year: 2021
  end-page: 7003
  ident: bib4
  article-title: Superior oxidative dehydrogenation performance toward NH
  publication-title: Environ. Sci. Technol.
– volume: 371
  year: 2025
  ident: bib15
  article-title: Interlayer Cu
  publication-title: Appl. Catal. B
– volume: 344
  year: 2024
  ident: bib18
  article-title: Exploration of the Mn-O coordination regulated reaction stability of manganese oxides in NH
  publication-title: Appl. Catal. B
– volume: 267
  year: 2021
  ident: bib53
  article-title: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code
  publication-title: Comput. Phys. Commun.
– volume: 361
  year: 2025
  ident: bib14
  article-title: Enhancing stability and catalytic activity of layered MnO
  publication-title: Appl. Catal. B
– volume: 57
  start-page: 14737
  year: 2023
  end-page: 14746
  ident: bib29
  article-title: Facile H
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 4915
  year: 2010
  end-page: 4920
  ident: bib25
  article-title: Highly crystalline macroporous β-MnO
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 6537
  year: 2018
  end-page: 6551
  ident: bib8
  article-title: A perspective on the selective catalytic reduction (SCR) of NO with NH
  publication-title: ACS Catal.
– volume: 14
  start-page: 3028
  year: 2024
  end-page: 3040
  ident: bib56
  article-title: Construction of surface synergetic oxygen vacancies on CuMn
  publication-title: ACS Catal.
– volume: 607
  year: 2023
  ident: bib9
  article-title: Insight into the N
  publication-title: Appl. Surf. Sci.
– volume: 131
  start-page: 6417
  year: 2019
  end-page: 6422
  ident: bib22
  article-title: The role of alkali metal in α-MnO
  publication-title: Angew. Chem. Int. Ed.
– volume: 146
  start-page: 16549
  year: 2024
  end-page: 16557
  ident: bib48
  article-title: "Atomic topping" of MnO
  publication-title: J. Am. Chem. Soc.
– volume: 328
  start-page: 36
  year: 2015
  end-page: 42
  ident: bib31
  article-title: From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
  publication-title: J. Catal.
– volume: 639
  year: 2023
  ident: bib6
  article-title: V
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 1896
  year: 2007
  end-page: 1900
  ident: bib7
  article-title: Effects of precursors on the surface mn species and the activities for NO reduction over MnO
  publication-title: Catal. Commun.
– volume: 260
  year: 2020
  ident: bib12
  article-title: Comparative study of α-, β-, γ-and δ-MnO
  publication-title: Appl. Catal. B
– volume: 139
  start-page: 15624
  year: 2017
  end-page: 15627
  ident: bib3
  article-title: Nature of active sites and surface intermediates during SCR of NO with NH
  publication-title: J. Am. Chem. Soc.
– volume: 515
  year: 2021
  ident: bib28
  article-title: Transition metals modified commercial SCR catalysts as efficient catalysts in NH
  publication-title: Mol. Catal.
– volume: 483
  start-page: 391
  year: 2019
  end-page: 398
  ident: bib33
  article-title: The mechanism of the deactivation of MnO
  publication-title: Appl. Surf. Sci.
– volume: 270
  year: 2020
  ident: bib30
  article-title: A MnO
  publication-title: Appl. Catal. B
– volume: 56
  start-page: 8746
  year: 2022
  end-page: 8755
  ident: bib49
  article-title: Ozone decomposition below room temperature using Mn-based mullite YMn
  publication-title: Environ. Sci. Technol.
– volume: 58
  start-page: 15279
  year: 2024
  end-page: 15287
  ident: bib45
  article-title: Enhancing water tolerance and N
  publication-title: Environ. Sci. Technol.
– volume: 162
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib32
  article-title: Green Ce-based honeycomb catalyst with excellent water and sulfur dioxide resistances for low-temperature selective catalytic reduction of NO
  publication-title: Process Saf. Environ. Prot.
– volume: 373
  year: 2025
  ident: bib36
  article-title: Significant promoting effect of toluene oxidation by CO on CuMnO catalysts: heterostructure and CO co-accelerated active oxygen cycling
  publication-title: Appl. Catal. B
– volume: 57
  start-page: 7858
  year: 2023
  end-page: 7866
  ident: bib42
  article-title: NO selective catalytic reduction over Atom-Pair active sites accelerated via in situ NO oxidation
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 1925
  year: 2017
  end-page: 1934
  ident: bib35
  article-title: Effects of surface physicochemical properties on NH
  publication-title: Chin. J. Catal.
– volume: 397
  year: 2020
  ident: bib46
  article-title: In situ IR comparative study on N
  publication-title: Chem. Eng. J.
– volume: 41
  start-page: 1931
  year: 2020
  end-page: 1940
  ident: bib54
  article-title: LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory
  publication-title: J. Comput. Chem.
– volume: 124
  start-page: 701
  year: 2019
  end-page: 708
  ident: bib51
  article-title: The promotional effect of copper in catalytic oxidation by Cu-doped α-MnO
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 2960
  year: 2022
  ident: bib43
  article-title: Unraveling the structure and role of mn and ce for NO
  publication-title: Nat. Commun.
– volume: 209
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib2
  article-title: Performances of V
  publication-title: Appl. Catal. A
– volume: 546
  year: 2023
  ident: bib11
  article-title: Modulation of paired acid centers for the α-, β-, γ-and δ-MnO
  publication-title: Mol. Catal.
– volume: 669
  year: 2024
  ident: bib16
  article-title: Spatial geometric effect driven by the different [MnO
  publication-title: Appl. Surf. Sci.
– volume: 40
  start-page: 733
  year: 2019
  end-page: 743
  ident: bib27
  article-title: Doping effect of cations (Zr
  publication-title: Chin. J. Catal.
– volume: 359
  year: 2024
  ident: bib41
  article-title: Effects of WO
  publication-title: Fuel
– volume: 24
  start-page: 681
  year: 2018
  end-page: 689
  ident: bib50
  article-title: Activating inert alkali metal ions by electron transfer from manganese oxide for formaldehyde abatement
  publication-title: Chemistry
– volume: 357
  year: 2024
  ident: bib17
  article-title: Regulating the coordination environment of surface alumina on NiMo/Al
  publication-title: Appl. Catal. B
– volume: 14
  start-page: 5236
  year: 2024
  end-page: 5246
  ident: bib55
  article-title: Activation of lattice oxygen in ceria by plasma exsolution of MoO
  publication-title: ACS Catal.
– volume: 123
  start-page: 15802
  year: 2019
  end-page: 15814
  ident: bib10
  article-title: Intercalation of lithium ions from gaseous precursors into β-MnO
  publication-title: J. Phys. Chem. C
– volume: 52
  start-page: 660
  year: 2012
  end-page: 664
  ident: bib21
  article-title: A “Smart” hollandite DeNO
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  year: 2008
  ident: bib24
  article-title: Controllable synthesis of α- and β-MnO
  publication-title: Nanotechnology
– volume: 56
  start-page: 12553
  year: 2022
  end-page: 12562
  ident: bib38
  article-title: Unique compensation effects of heavy metals and phosphorus copoisoning over NO
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 3329
  year: 2023
  end-page: 3336
  ident: bib23
  article-title: Controlling the aspect ratio of α-MnO
  publication-title: ACS Appl. Energy Mater.
– volume: 56
  start-page: 3739
  year: 2022
  end-page: 3747
  ident: bib37
  article-title: Like cures like: detoxification effect between alkali metals and sulfur over the V
  publication-title: Environ. Sci. Technol.
– volume: 134
  year: 2022
  ident: bib39
  article-title: An Atom-Pair design strategy for optimizing the synergistic electron effects of catalytic sites in NO selective reduction
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 58
  start-page: 16974
  year: 2024
  end-page: 16983
  ident: bib44
  article-title: Water-driven surface lattice oxygen activation in MnO
  publication-title: Environ. Sci. Technol.
– volume: 119
  start-page: 10916
  year: 2019
  end-page: 10976
  ident: bib1
  article-title: Selective catalytic reduction of NO
  publication-title: Chem. Rev.
– volume: 9
  start-page: 1610
  year: 2018
  ident: 10.1016/j.apcatb.2025.125753_bib19
  article-title: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03795-8
– volume: 55
  start-page: 4915
  year: 2010
  ident: 10.1016/j.apcatb.2025.125753_bib25
  article-title: Highly crystalline macroporous β-MnO2: hydrothermal synthesis and application in lithium battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.03.090
– volume: 58
  start-page: 15279
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib45
  article-title: Enhancing water tolerance and N2 selectivity in NH3-SCR catalysts by protecting mn oxide nanoparticles in a silicalite-1 layer
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 5236
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib55
  article-title: Activation of lattice oxygen in ceria by plasma exsolution of MoOx with atomic dispersion for NOx abatement
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.4c00069
– volume: 11
  start-page: 1532
  year: 2020
  ident: 10.1016/j.apcatb.2025.125753_bib34
  article-title: Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15261-5
– volume: 63
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib20
  article-title: Probing coordination number of single-atom catalysts by d-band center-regulated luminescence
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202401214
– volume: 24
  start-page: 681
  year: 2018
  ident: 10.1016/j.apcatb.2025.125753_bib50
  article-title: Activating inert alkali metal ions by electron transfer from manganese oxide for formaldehyde abatement
  publication-title: Chemistry
  doi: 10.1002/chem.201704398
– volume: 397
  year: 2020
  ident: 10.1016/j.apcatb.2025.125753_bib46
  article-title: In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3–SCR of NO
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125446
– volume: 607
  year: 2023
  ident: 10.1016/j.apcatb.2025.125753_bib9
  article-title: Insight into the N2O formation mechanism on the β-MnO2 (1 1 0) during low-temperature NH3-SCR: reaction pathway and electronic analysis of different intermediates
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154981
– volume: 8
  start-page: 1896
  year: 2007
  ident: 10.1016/j.apcatb.2025.125753_bib7
  article-title: Effects of precursors on the surface mn species and the activities for NO reduction over MnOx/TiO2 catalysts
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2007.03.007
– volume: 3
  start-page: 471
  year: 2019
  ident: 10.1016/j.apcatb.2025.125753_bib13
  article-title: Ordering heterogeneity of [MnO6] octahedra in tunnel-structured MnO2 and its influence on ion storage
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.026
– volume: 58
  start-page: 16974
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib44
  article-title: Water-driven surface lattice oxygen activation in MnO2 for promoted Low-Temperature NH3-SCR
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 8746
  year: 2022
  ident: 10.1016/j.apcatb.2025.125753_bib49
  article-title: Ozone decomposition below room temperature using Mn-based mullite YMn2O5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08922
– volume: 357
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib17
  article-title: Regulating the coordination environment of surface alumina on NiMo/Al2O3 to enhance ultra-deep hydrodesulfurization of diesel
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2024.124265
– volume: 123
  start-page: 15802
  year: 2019
  ident: 10.1016/j.apcatb.2025.125753_bib10
  article-title: Intercalation of lithium ions from gaseous precursors into β-MnO2 thin films deposited by atomic layer deposition
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03039
– volume: 6
  start-page: 3329
  year: 2023
  ident: 10.1016/j.apcatb.2025.125753_bib23
  article-title: Controlling the aspect ratio of α-MnO2 via the confined-space growth effect to enhance the performance in aqueous Zinc-Ion storage
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c03916
– volume: 119
  start-page: 10916
  year: 2019
  ident: 10.1016/j.apcatb.2025.125753_bib1
  article-title: Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00202
– volume: 38
  start-page: 1925
  year: 2017
  ident: 10.1016/j.apcatb.2025.125753_bib35
  article-title: Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62922-X
– volume: 515
  year: 2021
  ident: 10.1016/j.apcatb.2025.125753_bib28
  article-title: Transition metals modified commercial SCR catalysts as efficient catalysts in NH3-SCO and NH3-SCR reactions
  publication-title: Mol. Catal.
– volume: 13
  start-page: 9274
  year: 2023
  ident: 10.1016/j.apcatb.2025.125753_bib40
  article-title: Operando spectroscopic study of reduction and oxidation half-cycles in NH3-SCR over CeO2-supported WO3
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c01665
– volume: 546
  year: 2023
  ident: 10.1016/j.apcatb.2025.125753_bib11
  article-title: Modulation of paired acid centers for the α-, β-, γ-and δ-MnO2 for the NH3-SCR: a comparative density functional theory (DFT) study
  publication-title: Mol. Catal.
– volume: 19
  year: 2008
  ident: 10.1016/j.apcatb.2025.125753_bib24
  article-title: Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/22/225606
– volume: 41
  start-page: 1931
  year: 2020
  ident: 10.1016/j.apcatb.2025.125753_bib54
  article-title: LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26353
– volume: 57
  start-page: 14737
  year: 2023
  ident: 10.1016/j.apcatb.2025.125753_bib29
  article-title: Facile H2O-Contributed O2 activation strategy over Mn-Based SCR catalysts to counteract SO2 poisoning
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c04314
– volume: 270
  year: 2020
  ident: 10.1016/j.apcatb.2025.125753_bib30
  article-title: A MnO2-based catalyst with H2O resistance for NH3-SCR: study of catalytic activity and reactants-H2O competitive adsorption
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118860
– volume: 325
  year: 2021
  ident: 10.1016/j.apcatb.2025.125753_bib26
  article-title: Hydrothermally synthesized MnO2 nanowires and their application in lead (II) and copper (II) batch adsorption
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.115203
– volume: 183
  start-page: 282
  year: 2016
  ident: 10.1016/j.apcatb.2025.125753_bib5
  article-title: Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.10.044
– volume: 639
  year: 2023
  ident: 10.1016/j.apcatb.2025.125753_bib6
  article-title: V2O5 supported on NbTiOx: a novel NH3-SCR catalyst with high performance induced by V-Nb-Ti interaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.158200
– volume: 124
  start-page: 701
  year: 2019
  ident: 10.1016/j.apcatb.2025.125753_bib51
  article-title: The promotional effect of copper in catalytic oxidation by Cu-doped α-MnO2 nanorods
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b09891
– volume: 55
  start-page: 6995
  year: 2021
  ident: 10.1016/j.apcatb.2025.125753_bib4
  article-title: Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c08214
– volume: 359
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib41
  article-title: Effects of WO3 and MoO3 loadings on vanadia-based catalysts for NH3-SCR: revealed by in situ infrared and two-dimensional correlation spectroscopy
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.130472
– volume: 483
  start-page: 391
  year: 2019
  ident: 10.1016/j.apcatb.2025.125753_bib33
  article-title: The mechanism of the deactivation of MnOx/TiO2 catalyst for low-temperature SCR of NO
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.280
– volume: 134
  year: 2022
  ident: 10.1016/j.apcatb.2025.125753_bib39
  article-title: An Atom-Pair design strategy for optimizing the synergistic electron effects of catalytic sites in NO selective reduction
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 373
  year: 2025
  ident: 10.1016/j.apcatb.2025.125753_bib36
  article-title: Significant promoting effect of toluene oxidation by CO on CuMnO catalysts: heterostructure and CO co-accelerated active oxygen cycling
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2025.125325
– volume: 131
  start-page: 6417
  year: 2019
  ident: 10.1016/j.apcatb.2025.125753_bib22
  article-title: The role of alkali metal in α-MnO2 catalyzed Ammonia-Selective catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201901771
– volume: 162
  start-page: 1
  year: 2022
  ident: 10.1016/j.apcatb.2025.125753_bib32
  article-title: Green Ce-based honeycomb catalyst with excellent water and sulfur dioxide resistances for low-temperature selective catalytic reduction of NOx with ammonia
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.02.066
– volume: 146
  start-page: 16549
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib48
  article-title: "Atomic topping" of MnOx on Al2O3 to create electron-rich, aperiodic, lattice oxygens that resemble noble metals for catalytic oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c03299
– volume: 260
  year: 2020
  ident: 10.1016/j.apcatb.2025.125753_bib12
  article-title: Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118150
– volume: 8
  start-page: 6537
  year: 2018
  ident: 10.1016/j.apcatb.2025.125753_bib8
  article-title: A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01357
– volume: 53
  start-page: 276
  year: 2021
  ident: 10.1016/j.apcatb.2025.125753_bib52
  article-title: Reaction mechanism and additional lithium storage of mesoporous MnO2 anode in li batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.05.029
– volume: 371
  year: 2025
  ident: 10.1016/j.apcatb.2025.125753_bib15
  article-title: Interlayer Cu2+ modulation of local electronic structures in CuO1-x@Cu-MnO2 core-shell nanoarrays for synergistic photothermal formaldehyde degradation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2025.125279
– volume: 56
  start-page: 3739
  year: 2022
  ident: 10.1016/j.apcatb.2025.125753_bib37
  article-title: Like cures like: detoxification effect between alkali metals and sulfur over the V2O5/TiO2 deNOx catalyst
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c00113
– volume: 344
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib18
  article-title: Exploration of the Mn-O coordination regulated reaction stability of manganese oxides in NH3-SCR: effect of deposited ammonium nitrates
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2023.123607
– volume: 13
  start-page: 2960
  year: 2022
  ident: 10.1016/j.apcatb.2025.125753_bib43
  article-title: Unraveling the structure and role of mn and ce for NOx reduction in application-relevant catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30679-9
– volume: 267
  year: 2021
  ident: 10.1016/j.apcatb.2025.125753_bib53
  article-title: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108033
– volume: 328
  start-page: 36
  year: 2015
  ident: 10.1016/j.apcatb.2025.125753_bib31
  article-title: From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.12.033
– volume: 56
  start-page: 12553
  year: 2022
  ident: 10.1016/j.apcatb.2025.125753_bib38
  article-title: Unique compensation effects of heavy metals and phosphorus copoisoning over NOx reduction catalysts
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c02255
– volume: 452
  year: 2023
  ident: 10.1016/j.apcatb.2025.125753_bib47
  article-title: Mechanistic investigation of the enhanced SO2 resistance of Co-modified MnOx catalyst for the selective catalytic reduction of NOx by NH3
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139207
– volume: 52
  start-page: 660
  year: 2012
  ident: 10.1016/j.apcatb.2025.125753_bib21
  article-title: A “Smart” hollandite DeNOx catalyst: self-protection against alkali poisoning
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205808
– volume: 361
  year: 2025
  ident: 10.1016/j.apcatb.2025.125753_bib14
  article-title: Enhancing stability and catalytic activity of layered MnO2 via interfacing with YMn2O5 towards H2O2 decomposition
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2024.124699
– volume: 669
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib16
  article-title: Spatial geometric effect driven by the different [MnO6] octahedra entity stacking configurations to facilitate the catalytic decomposition of H2O2 in wastewater
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2024.160589
– volume: 40
  start-page: 733
  year: 2019
  ident: 10.1016/j.apcatb.2025.125753_bib27
  article-title: Doping effect of cations (Zr4+, Al3+, and Si4+) on MnOx/CeO2 nano-rod catalyst for NH3-SCR reaction at low temperature
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(18)63204-8
– volume: 209
  start-page: 45
  year: 2001
  ident: 10.1016/j.apcatb.2025.125753_bib2
  article-title: Performances of V2O5-based catalysts obtained by grafting vanadyl tri-isopropoxide on TiO2-SiO2 in SCR
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(00)00742-0
– volume: 14
  start-page: 3028
  year: 2024
  ident: 10.1016/j.apcatb.2025.125753_bib56
  article-title: Construction of surface synergetic oxygen vacancies on CuMn2O4 spinel for enhancing NO reduction with CO
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c05337
– volume: 57
  start-page: 7858
  year: 2023
  ident: 10.1016/j.apcatb.2025.125753_bib42
  article-title: NO selective catalytic reduction over Atom-Pair active sites accelerated via in situ NO oxidation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c00461
– volume: 139
  start-page: 15624
  year: 2017
  ident: 10.1016/j.apcatb.2025.125753_bib3
  article-title: Nature of active sites and surface intermediates during SCR of NO with NH3 by supported V2O5–WO3/TiO2 catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09646
SSID ssj0002328
Score 2.488868
Snippet Manganese oxides are among the most promising low-temperature NH3-selective catalytic reduction (NH3-SCR) catalysts. MnO2 with different crystal phases (α-,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 125753
SubjectTerms Electronic structure
Low-temperature catalysts
MnO2
NH3-SCR
NOx
Reaction mechanism
Title Revisiting the NH3-SCR performance of MnO2 with different crystal phases: From electronic structure to catalytic activity
URI https://dx.doi.org/10.1016/j.apcatb.2025.125753
Volume 380
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED-pBtCrWF3vwujbNPrLrrRRLVaygFnoL2WQXFWxDGw-9-NudzYMqiAdPIWEnLDOzM7PDfDMAF8xFyqpMUmm0olwmvgdkFFJrGQ-ywIRJ5i-K9yM5HPPbiZisQb_Bwviyytr2Vza9tNb1l07NzU7--tp5CnQoGYsYOnHU09IOcx55Lb_8XJV5YMRQWmNcTP3qBj5X1ngleZoUBm-JobhETx8J9rt7-uZyBruwU8eKpFdtZw_W7LQFm_1mRFsLtr91E2zB4fUKtIZk9ald7MPysYSQ-wJngvEeGQ0Zfeo_knwFGiAzR-6nDyHxeVnSTE0pSDpfLvzP8hf0dosrMpjP3slqdA6p2s9-zC0pZqRMBS1xs8SjJfxQigMYD66f-0Naj1ygKUYyBdWZQMGJzColUpSZ7RrNMuv8yHQeKKdEIhPn8FZltAlDI4ULVKoCowOOPDXsENans6k9AqIx9GJdI22ShFzhI3U863ZTpYW2mZNtoA2n47zqrBE3JWdvcSWZ2EsmriTThqgRR_xDQ2I0_n9SHv-b8gS28K1OuZzCOvLUnmEQUpjzUsvOYaN3czccfQEqpd07
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQHIADggFiPHPgmq1rmjThhqZN47EhAZO4VU2biCGxVVs57MJvx-lDAwlx4FSpjavIdmzHsv0BXDIbSiNTQYVWkgYidjMgQ58awwIv9bQfp-6iOByJwTi4feEva9Cte2FcWWVl-0ubXljr6k274mY7m0zaT57yBWMhQyeOeurs8EaAx9fBGLQ-V3UeGDIU5hhXU7e87p8rirziLIlzjddEn7fQ1Yec_e6fvvmc_i7sVMEiuS73swdrZtqAzW6N0daA7W_jBBtw2Ft1rSFZdWwX-7B8LHrIXYUzwYCPjAaMPnUfSbbqGiAzS4bTB5-4xCypYVNyksyXC_ez7BXd3eKK9Oezd7LCziHl_NmPuSH5jBS5oCVulrh2CYdKcQDjfu-5O6AV5gJNMJTJqUo5So6nRkqeoNBMRyuWGusw0wNPWsljEVuL1yqttO9rwa0nE-lp5QXIU80OYX06m5ojIApjL9bRwsSxH0h8JDZIO51EKq5MakUTaM3pKCtHa0R1zdlbVEomcpKJSsk0IazFEf1QkQit_5-Ux_-mvIDNwfPwPrq_Gd2dwBZ-qfIvp7CO_DVnGJHk-rzQuC9U297J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+NH3-SCR+performance+of+MnO2+with+different+crystal+phases%3A+From+electronic+structure+to+catalytic+activity&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Yue%2C+Yi&rft.au=Xiong%2C+Shangchao&rft.au=Ou%2C+Hongjun&rft.au=Yang%2C+Yi&rft.date=2026-01-01&rft.issn=0926-3373&rft.volume=380&rft.spage=125753&rft_id=info:doi/10.1016%2Fj.apcatb.2025.125753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2025_125753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon