Revisiting the NH3-SCR performance of MnO2 with different crystal phases: From electronic structure to catalytic activity
Manganese oxides are among the most promising low-temperature NH3-selective catalytic reduction (NH3-SCR) catalysts. MnO2 with different crystal phases (α-, β-, γ-, and δ-MnO2) exhibits significantly different NH3-SCR performance. The fundamental factors influencing the activity of MnO2 with differe...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 380; p. 125753 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2026
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Manganese oxides are among the most promising low-temperature NH3-selective catalytic reduction (NH3-SCR) catalysts. MnO2 with different crystal phases (α-, β-, γ-, and δ-MnO2) exhibits significantly different NH3-SCR performance. The fundamental factors influencing the activity of MnO2 with different crystal phases remain a subject of considerable debate. This study finds that β- and δ-MnO2 show poor activity due to low reactivity and poor NH3 adsorption. In contrast, α- and γ-MnO2 show high activity but differ in optimal reaction temperature windows. The smaller Mn-O coordination number and longer Mn-O bond distance in α-MnO2 result in an upward shift of its d-band center. Therefore, α-MnO2 exhibits stronger coupling between the Mn-d and N-p orbitals during NH3 adsorption, promoting *NH3 activation. As a result, α-MnO2 outperforms γ-MnO2 in low-temperature catalytic activity. This study reveals the impact of microscopic electronic orbital coupling on macroscopic catalytic performance, providing new insights for developing advanced low-temperature NH3-SCR catalysts.
[Display omitted]
•Coordination environments cause SCR performance differences in MnO2 crystal phases.•d-Band shifts lead to varied NH3 activation barriers in α- and γ-MnO2.•Poor redox ability at low temperature makes β-MnO2 catalytically less active.•Nitrate buildup on δ-MnO2 inhibits SCR performance. |
---|---|
AbstractList | Manganese oxides are among the most promising low-temperature NH3-selective catalytic reduction (NH3-SCR) catalysts. MnO2 with different crystal phases (α-, β-, γ-, and δ-MnO2) exhibits significantly different NH3-SCR performance. The fundamental factors influencing the activity of MnO2 with different crystal phases remain a subject of considerable debate. This study finds that β- and δ-MnO2 show poor activity due to low reactivity and poor NH3 adsorption. In contrast, α- and γ-MnO2 show high activity but differ in optimal reaction temperature windows. The smaller Mn-O coordination number and longer Mn-O bond distance in α-MnO2 result in an upward shift of its d-band center. Therefore, α-MnO2 exhibits stronger coupling between the Mn-d and N-p orbitals during NH3 adsorption, promoting *NH3 activation. As a result, α-MnO2 outperforms γ-MnO2 in low-temperature catalytic activity. This study reveals the impact of microscopic electronic orbital coupling on macroscopic catalytic performance, providing new insights for developing advanced low-temperature NH3-SCR catalysts.
[Display omitted]
•Coordination environments cause SCR performance differences in MnO2 crystal phases.•d-Band shifts lead to varied NH3 activation barriers in α- and γ-MnO2.•Poor redox ability at low temperature makes β-MnO2 catalytically less active.•Nitrate buildup on δ-MnO2 inhibits SCR performance. |
ArticleNumber | 125753 |
Author | Sun, Xiaoyu Wang, Houlin Xi, Yingwei Li, Junhua Yue, Yi Chen, Jianjun Gong, Zhengjun Xiong, Shangchao Ou, Hongjun Yang, Yi |
Author_xml | – sequence: 1 givenname: Yi surname: Yue fullname: Yue, Yi organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 2 givenname: Shangchao orcidid: 0000-0002-6523-0283 surname: Xiong fullname: Xiong, Shangchao email: xiongshangchao@swjtu.edu.cn organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 3 givenname: Hongjun surname: Ou fullname: Ou, Hongjun organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 4 givenname: Yi surname: Yang fullname: Yang, Yi organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 5 givenname: Xiaoyu surname: Sun fullname: Sun, Xiaoyu organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 6 givenname: Houlin surname: Wang fullname: Wang, Houlin organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 7 givenname: Yingwei surname: Xi fullname: Xi, Yingwei organization: Sichuan Ecological Environment Monitoring Station, Chengdu 610091, China – sequence: 8 givenname: Zhengjun surname: Gong fullname: Gong, Zhengjun organization: Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Sichuan International Science and Technology Cooperation base for Intelligent Environmental Protection and Sustainable Development in Rail Transit, School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 9 givenname: Jianjun surname: Chen fullname: Chen, Jianjun organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China – sequence: 10 givenname: Junhua surname: Li fullname: Li, Junhua organization: State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China |
BookMark | eNp90NFKwzAUBuBcTHCbvoEXeYHWNGna1AtBhnPCdDD1OqTpicvompFkk769HfXaqwMHzs9_vhmadK4DhO4ykmYkK-73qTpqFeuUEsrTjPKSswmakooWCWMlu0azEPaEEMqomKJ-C2cbbLTdN447wO8rlnwstvgI3jh_UJ0G7Ax-6zYU_9i4w401Bjx0EWvfh6hafNypAOEBL707YGhBR-86q3GI_qTjyQOODg-VVNvHYa10tGcb-xt0ZVQb4PZvztHX8vlzsUrWm5fXxdM60VlJY1I1XDQFb0AIrouSQlZXrAHD84LnRBjBVaGMySteVzWldcENEVqQuiL5AFKzOcrHXO1dCB6MPHp7UL6XGZEXMrmXI5m8kMmRbDh7HM9g6Ha24GXQFgaOxvrhRdk4-3_AL4OMe_4 |
Cites_doi | 10.1038/s41467-018-03795-8 10.1016/j.electacta.2010.03.090 10.1021/acscatal.4c00069 10.1038/s41467-020-15261-5 10.1002/anie.202401214 10.1002/chem.201704398 10.1016/j.cej.2020.125446 10.1016/j.apsusc.2022.154981 10.1016/j.catcom.2007.03.007 10.1016/j.joule.2018.10.026 10.1021/acs.est.1c08922 10.1016/j.apcatb.2024.124265 10.1021/acs.jpcc.9b03039 10.1021/acsaem.2c03916 10.1021/acs.chemrev.9b00202 10.1016/S1872-2067(17)62922-X 10.1021/acscatal.3c01665 10.1088/0957-4484/19/22/225606 10.1002/jcc.26353 10.1021/acs.est.3c04314 10.1016/j.apcatb.2020.118860 10.1016/j.molliq.2020.115203 10.1016/j.apcatb.2015.10.044 10.1016/j.apsusc.2023.158200 10.1021/acs.jpcc.9b09891 10.1021/acs.est.0c08214 10.1016/j.fuel.2023.130472 10.1016/j.apsusc.2019.03.280 10.1016/j.apcatb.2025.125325 10.1002/ange.201901771 10.1016/j.psep.2022.02.066 10.1021/jacs.4c03299 10.1016/j.apcatb.2019.118150 10.1021/acscatal.8b01357 10.1016/j.jechem.2020.05.029 10.1016/j.apcatb.2025.125279 10.1021/acs.est.2c00113 10.1016/j.apcatb.2023.123607 10.1038/s41467-022-30679-9 10.1016/j.cpc.2021.108033 10.1016/j.jcat.2014.12.033 10.1021/acs.est.2c02255 10.1016/j.cej.2022.139207 10.1002/anie.201205808 10.1016/j.apcatb.2024.124699 10.1016/j.apsusc.2024.160589 10.1016/S1872-2067(18)63204-8 10.1016/S0926-860X(00)00742-0 10.1021/acscatal.3c05337 10.1021/acs.est.3c00461 10.1021/jacs.7b09646 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2025.125753 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
ExternalDocumentID | 10_1016_j_apcatb_2025_125753 S0926337325007362 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACIWK ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AEUPX AFJKZ AFPUW AFRAH AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XPP ~02 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c172t-9d58d65de885c672e1b93def5465408f85a6aff495b9b22b65f08c80b904101b3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 27 16:27:39 EDT 2025 Sat Aug 30 17:17:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MnO2 Reaction mechanism NH3-SCR Electronic structure NOx Low-temperature catalysts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-9d58d65de885c672e1b93def5465408f85a6aff495b9b22b65f08c80b904101b3 |
ORCID | 0000-0002-6523-0283 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2025_125753 elsevier_sciencedirect_doi_10_1016_j_apcatb_2025_125753 |
PublicationCentury | 2000 |
PublicationDate | January 2026 2026-01-00 |
PublicationDateYYYYMMDD | 2026-01-01 |
PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2026 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Medford, Vojvodic, Hummelshøj, Voss, Abild-Pedersen, Studt, Bligaard, Nilsson, Nørskov (bib31) 2015; 328 Zhang, Wang, Wang, Gao, Duan, Hao, Chen, Wang, Zhao, Wang (bib14) 2025; 361 Kubota, Jing, Wan, Tong, Zhang, Mine, Toyao, Toyoshima, Kondoh, Ferri, Shimizu (bib40) 2023; 13 Gevers, Enakonda, Shahid, Ould-Chikh, Silva, Paalanen, Aguilar-Tapia, Hazemann, Hedhili, Wen (bib43) 2022; 13 Yin, Luo, Sun, Xie, Xiong, Zhu, Li (bib55) 2024; 14 Qu, Liu, Chen, Dong, Tang, Chen (bib34) 2020; 11 Huang, Lv, Zhang, Chang, Gan, Yang (bib25) 2010; 55 Yuan, Liu, Byles, Yao, Song, Cheng, Huang, Amine, Pomerantseva, Shahbazian-Yassar, Lu (bib13) 2019; 3 An, Ji, Cheng, Zhao, Cai, Tan, Tong, Ma, Zou, Sun (bib29) 2023; 57 Han, Cai, Gao, Hasegawa, Wang, Zhang, Shi, Zhang (bib1) 2019; 119 Sorrentino, Rega, Sannino, Magliano, Ciambelli, Santacesaria (bib2) 2001; 209 Lv, He, Ge, Liu, Yu, He (bib41) 2024; 359 Yang, Su, Xu, Yang, Peng, Li (bib12) 2020; 260 Chen, Fang, Li, Zhang, Liu (bib47) 2023; 452 Putluru, Schill, Godiksen, Poreddy, Mossin, Jensen, Fehrmann (bib5) 2016; 183 Nelson, Ertural, George, Deringer, Hautier, Dronskowski (bib54) 2020; 41 Wang, Xu, Liu, Tang, Geng (bib53) 2021; 267 Gan, Chen, Chu, Jing, Shi, Zhang, Zhang, Li, Zhang, Pavanello, Wang, Liu (bib48) 2024; 146 Lin, Lian, Shan, He (bib6) 2023; 639 Chen, Li, Li, Zhang, Wei, Wang, Huang (bib23) 2023; 6 Qu, Fang, Ren, Chen, Liu, Ma, Tang (bib42) 2023; 57 Nieminen, Miikkulainen, Settipani, Simonelli, Hönicke, Zech, Kayser, Beckhoff, Honkanen, Heikkilä (bib10) 2019; 123 Wan, Wang, Zhang, Shi, Niu, Wang, Li, Chen, Zhang, Zhou, Wang (bib49) 2022; 56 Xiong, Chen, Liu, Chen, Si, Gong, Peng, Li (bib37) 2022; 56 An, Yang, Cheng, Yan, Sun, Zou, Sun, Tang, Dong (bib44) 2024; 58 Gao, Huang, Chen, Wan, Gu, Ma, Chen, Tang (bib50) 2018; 24 Xu, Liu, Ma, Liang, Yang, Liu, Sun, Huang, Sun, Dong (bib56) 2024; 14 Zhu, Lai, Tumuluri, Wu, Wachs (bib3) 2017; 139 Guan, Cheng, Pei, Chen, Yuan, Lu (bib20) 2024; 63 Liu, Sun, Dong, Hou, Chen (bib15) 2025; 371 Liu, Ma, Li, Wang, Xiao, Li (bib19) 2018; 9 Liang, Wang, Xuan, Fan, An, Meng, Zhu, Yun, Luan, Wang, Peng, Crittenden (bib36) 2025; 373 Yang, Ren, Su, Yao, Cao, Jiang, Hu, Kong, Yang, Liu (bib46) 2020; 397 Huang, Gu, Wen, Hu, Makkee, Lin, Kapteijn, Tang (bib21) 2012; 52 Li, Chen, Ke, Luo, Hao (bib7) 2007; 8 Qu, Yuan, Ren, Qi, Xu, Chen, Chen, Yang, Ma, Liu (bib39) 2022; 134 Song, Cheng, Han, Ji, Cai, Tan, Sun, Tang, Dong (bib18) 2024; 344 Jun-Kun, Wachs (bib8) 2018; 8 Liang, Gao, Zhang, Wang, Xuan, Tong, Wang, Yun, Wang, Peng (bib11) 2023; 546 Yoon, Choi, Kim, Kim, Choi, Kim, Yoon (bib52) 2021; 53 Wei, Cui, Guo, Ma, Wan, Yu (bib33) 2019; 483 Zhou, Zhu, Sun, Chen, Geng, Xu (bib9) 2023; 607 Liu, Long, Tong, Yin, Li, Hu (bib28) 2021; 515 Komaty, Andijani, Wang, Navarro de Miguel, Kumar Veeranmaril, Hedhili, Silva, Wang, Abou-Daher, Han, Ruiz-Martinez (bib45) 2024; 58 Wang, Hua, Zhou, Hu, Liu, Cheng, Wu, Wu, Liu, Zhu (bib17) 2024; 357 Hu, Chen, Li, Chen, Qu, Ma, Tang (bib51) 2019; 124 Yao, Cao, Chen, Kang, Chen, Tian, Yang (bib27) 2019; 40 Hao, Shen, Li, Wang, Zheng, Wang, Liu, Zhan (bib22) 2019; 131 Huang, Lv, Yue, Attia, Yang (bib24) 2008; 19 Claros, Kuta, El-Dahshan, Michalička, Jimenez, Vallejos (bib26) 2021; 325 He, Gao, Peng, Yu, Shan, He (bib4) 2021; 55 Zhang, Li, Cai, Wang, Gao, Hao, Bao, Zhao, Wang (bib16) 2024; 669 He, Ren, Cao (bib32) 2022; 162 Zhang, Wang, Impeng, Lan, Liu, Zhang (bib38) 2022; 56 Zhang, Li, Guo, He, Wu, Song, Zhang, Zhao, Wang, He (bib30) 2020; 270 Gong, Xie, Fang, Han, He, Li, Qi (bib35) 2017; 38 Zhang (10.1016/j.apcatb.2025.125753_bib16) 2024; 669 Yang (10.1016/j.apcatb.2025.125753_bib46) 2020; 397 Lin (10.1016/j.apcatb.2025.125753_bib6) 2023; 639 Qu (10.1016/j.apcatb.2025.125753_bib39) 2022; 134 Wang (10.1016/j.apcatb.2025.125753_bib17) 2024; 357 Huang (10.1016/j.apcatb.2025.125753_bib25) 2010; 55 Huang (10.1016/j.apcatb.2025.125753_bib21) 2012; 52 An (10.1016/j.apcatb.2025.125753_bib29) 2023; 57 Zhang (10.1016/j.apcatb.2025.125753_bib38) 2022; 56 Medford (10.1016/j.apcatb.2025.125753_bib31) 2015; 328 Song (10.1016/j.apcatb.2025.125753_bib18) 2024; 344 Guan (10.1016/j.apcatb.2025.125753_bib20) 2024; 63 Claros (10.1016/j.apcatb.2025.125753_bib26) 2021; 325 Qu (10.1016/j.apcatb.2025.125753_bib42) 2023; 57 Wei (10.1016/j.apcatb.2025.125753_bib33) 2019; 483 Xiong (10.1016/j.apcatb.2025.125753_bib37) 2022; 56 Zhu (10.1016/j.apcatb.2025.125753_bib3) 2017; 139 Chen (10.1016/j.apcatb.2025.125753_bib23) 2023; 6 Liu (10.1016/j.apcatb.2025.125753_bib15) 2025; 371 Wan (10.1016/j.apcatb.2025.125753_bib49) 2022; 56 Yoon (10.1016/j.apcatb.2025.125753_bib52) 2021; 53 Gevers (10.1016/j.apcatb.2025.125753_bib43) 2022; 13 An (10.1016/j.apcatb.2025.125753_bib44) 2024; 58 Jun-Kun (10.1016/j.apcatb.2025.125753_bib8) 2018; 8 Liang (10.1016/j.apcatb.2025.125753_bib11) 2023; 546 Li (10.1016/j.apcatb.2025.125753_bib7) 2007; 8 He (10.1016/j.apcatb.2025.125753_bib4) 2021; 55 Hu (10.1016/j.apcatb.2025.125753_bib51) 2019; 124 Liu (10.1016/j.apcatb.2025.125753_bib28) 2021; 515 Gan (10.1016/j.apcatb.2025.125753_bib48) 2024; 146 Gao (10.1016/j.apcatb.2025.125753_bib50) 2018; 24 Yin (10.1016/j.apcatb.2025.125753_bib55) 2024; 14 Yuan (10.1016/j.apcatb.2025.125753_bib13) 2019; 3 Qu (10.1016/j.apcatb.2025.125753_bib34) 2020; 11 Nelson (10.1016/j.apcatb.2025.125753_bib54) 2020; 41 Nieminen (10.1016/j.apcatb.2025.125753_bib10) 2019; 123 Kubota (10.1016/j.apcatb.2025.125753_bib40) 2023; 13 Wang (10.1016/j.apcatb.2025.125753_bib53) 2021; 267 Hao (10.1016/j.apcatb.2025.125753_bib22) 2019; 131 Chen (10.1016/j.apcatb.2025.125753_bib47) 2023; 452 Huang (10.1016/j.apcatb.2025.125753_bib24) 2008; 19 Putluru (10.1016/j.apcatb.2025.125753_bib5) 2016; 183 Gong (10.1016/j.apcatb.2025.125753_bib35) 2017; 38 Zhou (10.1016/j.apcatb.2025.125753_bib9) 2023; 607 Liang (10.1016/j.apcatb.2025.125753_bib36) 2025; 373 Liu (10.1016/j.apcatb.2025.125753_bib19) 2018; 9 Yao (10.1016/j.apcatb.2025.125753_bib27) 2019; 40 He (10.1016/j.apcatb.2025.125753_bib32) 2022; 162 Lv (10.1016/j.apcatb.2025.125753_bib41) 2024; 359 Yang (10.1016/j.apcatb.2025.125753_bib12) 2020; 260 Komaty (10.1016/j.apcatb.2025.125753_bib45) 2024; 58 Sorrentino (10.1016/j.apcatb.2025.125753_bib2) 2001; 209 Han (10.1016/j.apcatb.2025.125753_bib1) 2019; 119 Zhang (10.1016/j.apcatb.2025.125753_bib14) 2025; 361 Xu (10.1016/j.apcatb.2025.125753_bib56) 2024; 14 Zhang (10.1016/j.apcatb.2025.125753_bib30) 2020; 270 |
References_xml | – volume: 325 year: 2021 ident: bib26 article-title: Hydrothermally synthesized MnO publication-title: J. Mol. Liq. – volume: 53 start-page: 276 year: 2021 end-page: 284 ident: bib52 article-title: Reaction mechanism and additional lithium storage of mesoporous MnO publication-title: J. Energy Chem. – volume: 9 start-page: 1610 year: 2018 ident: bib19 article-title: Heterogeneous Fe publication-title: Nat. Commun. – volume: 13 start-page: 9274 year: 2023 end-page: 9288 ident: bib40 article-title: Operando spectroscopic study of reduction and oxidation half-cycles in NH publication-title: ACS Catal. – volume: 63 year: 2024 ident: bib20 article-title: Probing coordination number of single-atom catalysts by d-band center-regulated luminescence publication-title: Angew. Chem. Int. Ed. Engl. – volume: 11 start-page: 1532 year: 2020 ident: bib34 article-title: Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH publication-title: Nat. Commun. – volume: 3 start-page: 471 year: 2019 end-page: 484 ident: bib13 article-title: Ordering heterogeneity of [MnO publication-title: Joule – volume: 183 start-page: 282 year: 2016 end-page: 290 ident: bib5 article-title: Promoted V publication-title: Appl. Catal. B – volume: 452 year: 2023 ident: bib47 article-title: Mechanistic investigation of the enhanced SO publication-title: Chem. Eng. J. – volume: 55 start-page: 6995 year: 2021 end-page: 7003 ident: bib4 article-title: Superior oxidative dehydrogenation performance toward NH publication-title: Environ. Sci. Technol. – volume: 371 year: 2025 ident: bib15 article-title: Interlayer Cu publication-title: Appl. Catal. B – volume: 344 year: 2024 ident: bib18 article-title: Exploration of the Mn-O coordination regulated reaction stability of manganese oxides in NH publication-title: Appl. Catal. B – volume: 267 year: 2021 ident: bib53 article-title: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code publication-title: Comput. Phys. Commun. – volume: 361 year: 2025 ident: bib14 article-title: Enhancing stability and catalytic activity of layered MnO publication-title: Appl. Catal. B – volume: 57 start-page: 14737 year: 2023 end-page: 14746 ident: bib29 article-title: Facile H publication-title: Environ. Sci. Technol. – volume: 55 start-page: 4915 year: 2010 end-page: 4920 ident: bib25 article-title: Highly crystalline macroporous β-MnO publication-title: Electrochim. Acta – volume: 8 start-page: 6537 year: 2018 end-page: 6551 ident: bib8 article-title: A perspective on the selective catalytic reduction (SCR) of NO with NH publication-title: ACS Catal. – volume: 14 start-page: 3028 year: 2024 end-page: 3040 ident: bib56 article-title: Construction of surface synergetic oxygen vacancies on CuMn publication-title: ACS Catal. – volume: 607 year: 2023 ident: bib9 article-title: Insight into the N publication-title: Appl. Surf. Sci. – volume: 131 start-page: 6417 year: 2019 end-page: 6422 ident: bib22 article-title: The role of alkali metal in α-MnO publication-title: Angew. Chem. Int. Ed. – volume: 146 start-page: 16549 year: 2024 end-page: 16557 ident: bib48 article-title: "Atomic topping" of MnO publication-title: J. Am. Chem. Soc. – volume: 328 start-page: 36 year: 2015 end-page: 42 ident: bib31 article-title: From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis publication-title: J. Catal. – volume: 639 year: 2023 ident: bib6 article-title: V publication-title: Appl. Surf. Sci. – volume: 8 start-page: 1896 year: 2007 end-page: 1900 ident: bib7 article-title: Effects of precursors on the surface mn species and the activities for NO reduction over MnO publication-title: Catal. Commun. – volume: 260 year: 2020 ident: bib12 article-title: Comparative study of α-, β-, γ-and δ-MnO publication-title: Appl. Catal. B – volume: 139 start-page: 15624 year: 2017 end-page: 15627 ident: bib3 article-title: Nature of active sites and surface intermediates during SCR of NO with NH publication-title: J. Am. Chem. Soc. – volume: 515 year: 2021 ident: bib28 article-title: Transition metals modified commercial SCR catalysts as efficient catalysts in NH publication-title: Mol. Catal. – volume: 483 start-page: 391 year: 2019 end-page: 398 ident: bib33 article-title: The mechanism of the deactivation of MnO publication-title: Appl. Surf. Sci. – volume: 270 year: 2020 ident: bib30 article-title: A MnO publication-title: Appl. Catal. B – volume: 56 start-page: 8746 year: 2022 end-page: 8755 ident: bib49 article-title: Ozone decomposition below room temperature using Mn-based mullite YMn publication-title: Environ. Sci. Technol. – volume: 58 start-page: 15279 year: 2024 end-page: 15287 ident: bib45 article-title: Enhancing water tolerance and N publication-title: Environ. Sci. Technol. – volume: 162 start-page: 1 year: 2022 end-page: 16 ident: bib32 article-title: Green Ce-based honeycomb catalyst with excellent water and sulfur dioxide resistances for low-temperature selective catalytic reduction of NO publication-title: Process Saf. Environ. Prot. – volume: 373 year: 2025 ident: bib36 article-title: Significant promoting effect of toluene oxidation by CO on CuMnO catalysts: heterostructure and CO co-accelerated active oxygen cycling publication-title: Appl. Catal. B – volume: 57 start-page: 7858 year: 2023 end-page: 7866 ident: bib42 article-title: NO selective catalytic reduction over Atom-Pair active sites accelerated via in situ NO oxidation publication-title: Environ. Sci. Technol. – volume: 38 start-page: 1925 year: 2017 end-page: 1934 ident: bib35 article-title: Effects of surface physicochemical properties on NH publication-title: Chin. J. Catal. – volume: 397 year: 2020 ident: bib46 article-title: In situ IR comparative study on N publication-title: Chem. Eng. J. – volume: 41 start-page: 1931 year: 2020 end-page: 1940 ident: bib54 article-title: LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory publication-title: J. Comput. Chem. – volume: 124 start-page: 701 year: 2019 end-page: 708 ident: bib51 article-title: The promotional effect of copper in catalytic oxidation by Cu-doped α-MnO publication-title: J. Phys. Chem. C – volume: 13 start-page: 2960 year: 2022 ident: bib43 article-title: Unraveling the structure and role of mn and ce for NO publication-title: Nat. Commun. – volume: 209 start-page: 45 year: 2001 end-page: 57 ident: bib2 article-title: Performances of V publication-title: Appl. Catal. A – volume: 546 year: 2023 ident: bib11 article-title: Modulation of paired acid centers for the α-, β-, γ-and δ-MnO publication-title: Mol. Catal. – volume: 669 year: 2024 ident: bib16 article-title: Spatial geometric effect driven by the different [MnO publication-title: Appl. Surf. Sci. – volume: 40 start-page: 733 year: 2019 end-page: 743 ident: bib27 article-title: Doping effect of cations (Zr publication-title: Chin. J. Catal. – volume: 359 year: 2024 ident: bib41 article-title: Effects of WO publication-title: Fuel – volume: 24 start-page: 681 year: 2018 end-page: 689 ident: bib50 article-title: Activating inert alkali metal ions by electron transfer from manganese oxide for formaldehyde abatement publication-title: Chemistry – volume: 357 year: 2024 ident: bib17 article-title: Regulating the coordination environment of surface alumina on NiMo/Al publication-title: Appl. Catal. B – volume: 14 start-page: 5236 year: 2024 end-page: 5246 ident: bib55 article-title: Activation of lattice oxygen in ceria by plasma exsolution of MoO publication-title: ACS Catal. – volume: 123 start-page: 15802 year: 2019 end-page: 15814 ident: bib10 article-title: Intercalation of lithium ions from gaseous precursors into β-MnO publication-title: J. Phys. Chem. C – volume: 52 start-page: 660 year: 2012 end-page: 664 ident: bib21 article-title: A “Smart” hollandite DeNO publication-title: Angew. Chem. Int. Ed. – volume: 19 year: 2008 ident: bib24 article-title: Controllable synthesis of α- and β-MnO publication-title: Nanotechnology – volume: 56 start-page: 12553 year: 2022 end-page: 12562 ident: bib38 article-title: Unique compensation effects of heavy metals and phosphorus copoisoning over NO publication-title: Environ. Sci. Technol. – volume: 6 start-page: 3329 year: 2023 end-page: 3336 ident: bib23 article-title: Controlling the aspect ratio of α-MnO publication-title: ACS Appl. Energy Mater. – volume: 56 start-page: 3739 year: 2022 end-page: 3747 ident: bib37 article-title: Like cures like: detoxification effect between alkali metals and sulfur over the V publication-title: Environ. Sci. Technol. – volume: 134 year: 2022 ident: bib39 article-title: An Atom-Pair design strategy for optimizing the synergistic electron effects of catalytic sites in NO selective reduction publication-title: Angew. Chem. Int. Ed. Engl. – volume: 58 start-page: 16974 year: 2024 end-page: 16983 ident: bib44 article-title: Water-driven surface lattice oxygen activation in MnO publication-title: Environ. Sci. Technol. – volume: 119 start-page: 10916 year: 2019 end-page: 10976 ident: bib1 article-title: Selective catalytic reduction of NO publication-title: Chem. Rev. – volume: 9 start-page: 1610 year: 2018 ident: 10.1016/j.apcatb.2025.125753_bib19 article-title: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism publication-title: Nat. Commun. doi: 10.1038/s41467-018-03795-8 – volume: 55 start-page: 4915 year: 2010 ident: 10.1016/j.apcatb.2025.125753_bib25 article-title: Highly crystalline macroporous β-MnO2: hydrothermal synthesis and application in lithium battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.03.090 – volume: 58 start-page: 15279 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib45 article-title: Enhancing water tolerance and N2 selectivity in NH3-SCR catalysts by protecting mn oxide nanoparticles in a silicalite-1 layer publication-title: Environ. Sci. Technol. – volume: 14 start-page: 5236 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib55 article-title: Activation of lattice oxygen in ceria by plasma exsolution of MoOx with atomic dispersion for NOx abatement publication-title: ACS Catal. doi: 10.1021/acscatal.4c00069 – volume: 11 start-page: 1532 year: 2020 ident: 10.1016/j.apcatb.2025.125753_bib34 article-title: Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15261-5 – volume: 63 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib20 article-title: Probing coordination number of single-atom catalysts by d-band center-regulated luminescence publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202401214 – volume: 24 start-page: 681 year: 2018 ident: 10.1016/j.apcatb.2025.125753_bib50 article-title: Activating inert alkali metal ions by electron transfer from manganese oxide for formaldehyde abatement publication-title: Chemistry doi: 10.1002/chem.201704398 – volume: 397 year: 2020 ident: 10.1016/j.apcatb.2025.125753_bib46 article-title: In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3–SCR of NO publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125446 – volume: 607 year: 2023 ident: 10.1016/j.apcatb.2025.125753_bib9 article-title: Insight into the N2O formation mechanism on the β-MnO2 (1 1 0) during low-temperature NH3-SCR: reaction pathway and electronic analysis of different intermediates publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154981 – volume: 8 start-page: 1896 year: 2007 ident: 10.1016/j.apcatb.2025.125753_bib7 article-title: Effects of precursors on the surface mn species and the activities for NO reduction over MnOx/TiO2 catalysts publication-title: Catal. Commun. doi: 10.1016/j.catcom.2007.03.007 – volume: 3 start-page: 471 year: 2019 ident: 10.1016/j.apcatb.2025.125753_bib13 article-title: Ordering heterogeneity of [MnO6] octahedra in tunnel-structured MnO2 and its influence on ion storage publication-title: Joule doi: 10.1016/j.joule.2018.10.026 – volume: 58 start-page: 16974 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib44 article-title: Water-driven surface lattice oxygen activation in MnO2 for promoted Low-Temperature NH3-SCR publication-title: Environ. Sci. Technol. – volume: 56 start-page: 8746 year: 2022 ident: 10.1016/j.apcatb.2025.125753_bib49 article-title: Ozone decomposition below room temperature using Mn-based mullite YMn2O5 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08922 – volume: 357 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib17 article-title: Regulating the coordination environment of surface alumina on NiMo/Al2O3 to enhance ultra-deep hydrodesulfurization of diesel publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2024.124265 – volume: 123 start-page: 15802 year: 2019 ident: 10.1016/j.apcatb.2025.125753_bib10 article-title: Intercalation of lithium ions from gaseous precursors into β-MnO2 thin films deposited by atomic layer deposition publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b03039 – volume: 6 start-page: 3329 year: 2023 ident: 10.1016/j.apcatb.2025.125753_bib23 article-title: Controlling the aspect ratio of α-MnO2 via the confined-space growth effect to enhance the performance in aqueous Zinc-Ion storage publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c03916 – volume: 119 start-page: 10916 year: 2019 ident: 10.1016/j.apcatb.2025.125753_bib1 article-title: Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00202 – volume: 38 start-page: 1925 year: 2017 ident: 10.1016/j.apcatb.2025.125753_bib35 article-title: Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62922-X – volume: 515 year: 2021 ident: 10.1016/j.apcatb.2025.125753_bib28 article-title: Transition metals modified commercial SCR catalysts as efficient catalysts in NH3-SCO and NH3-SCR reactions publication-title: Mol. Catal. – volume: 13 start-page: 9274 year: 2023 ident: 10.1016/j.apcatb.2025.125753_bib40 article-title: Operando spectroscopic study of reduction and oxidation half-cycles in NH3-SCR over CeO2-supported WO3 publication-title: ACS Catal. doi: 10.1021/acscatal.3c01665 – volume: 546 year: 2023 ident: 10.1016/j.apcatb.2025.125753_bib11 article-title: Modulation of paired acid centers for the α-, β-, γ-and δ-MnO2 for the NH3-SCR: a comparative density functional theory (DFT) study publication-title: Mol. Catal. – volume: 19 year: 2008 ident: 10.1016/j.apcatb.2025.125753_bib24 article-title: Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization publication-title: Nanotechnology doi: 10.1088/0957-4484/19/22/225606 – volume: 41 start-page: 1931 year: 2020 ident: 10.1016/j.apcatb.2025.125753_bib54 article-title: LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.26353 – volume: 57 start-page: 14737 year: 2023 ident: 10.1016/j.apcatb.2025.125753_bib29 article-title: Facile H2O-Contributed O2 activation strategy over Mn-Based SCR catalysts to counteract SO2 poisoning publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c04314 – volume: 270 year: 2020 ident: 10.1016/j.apcatb.2025.125753_bib30 article-title: A MnO2-based catalyst with H2O resistance for NH3-SCR: study of catalytic activity and reactants-H2O competitive adsorption publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118860 – volume: 325 year: 2021 ident: 10.1016/j.apcatb.2025.125753_bib26 article-title: Hydrothermally synthesized MnO2 nanowires and their application in lead (II) and copper (II) batch adsorption publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.115203 – volume: 183 start-page: 282 year: 2016 ident: 10.1016/j.apcatb.2025.125753_bib5 article-title: Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.10.044 – volume: 639 year: 2023 ident: 10.1016/j.apcatb.2025.125753_bib6 article-title: V2O5 supported on NbTiOx: a novel NH3-SCR catalyst with high performance induced by V-Nb-Ti interaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.158200 – volume: 124 start-page: 701 year: 2019 ident: 10.1016/j.apcatb.2025.125753_bib51 article-title: The promotional effect of copper in catalytic oxidation by Cu-doped α-MnO2 nanorods publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b09891 – volume: 55 start-page: 6995 year: 2021 ident: 10.1016/j.apcatb.2025.125753_bib4 article-title: Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c08214 – volume: 359 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib41 article-title: Effects of WO3 and MoO3 loadings on vanadia-based catalysts for NH3-SCR: revealed by in situ infrared and two-dimensional correlation spectroscopy publication-title: Fuel doi: 10.1016/j.fuel.2023.130472 – volume: 483 start-page: 391 year: 2019 ident: 10.1016/j.apcatb.2025.125753_bib33 article-title: The mechanism of the deactivation of MnOx/TiO2 catalyst for low-temperature SCR of NO publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.280 – volume: 134 year: 2022 ident: 10.1016/j.apcatb.2025.125753_bib39 article-title: An Atom-Pair design strategy for optimizing the synergistic electron effects of catalytic sites in NO selective reduction publication-title: Angew. Chem. Int. Ed. Engl. – volume: 373 year: 2025 ident: 10.1016/j.apcatb.2025.125753_bib36 article-title: Significant promoting effect of toluene oxidation by CO on CuMnO catalysts: heterostructure and CO co-accelerated active oxygen cycling publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2025.125325 – volume: 131 start-page: 6417 year: 2019 ident: 10.1016/j.apcatb.2025.125753_bib22 article-title: The role of alkali metal in α-MnO2 catalyzed Ammonia-Selective catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201901771 – volume: 162 start-page: 1 year: 2022 ident: 10.1016/j.apcatb.2025.125753_bib32 article-title: Green Ce-based honeycomb catalyst with excellent water and sulfur dioxide resistances for low-temperature selective catalytic reduction of NOx with ammonia publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.02.066 – volume: 146 start-page: 16549 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib48 article-title: "Atomic topping" of MnOx on Al2O3 to create electron-rich, aperiodic, lattice oxygens that resemble noble metals for catalytic oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c03299 – volume: 260 year: 2020 ident: 10.1016/j.apcatb.2025.125753_bib12 article-title: Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118150 – volume: 8 start-page: 6537 year: 2018 ident: 10.1016/j.apcatb.2025.125753_bib8 article-title: A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.8b01357 – volume: 53 start-page: 276 year: 2021 ident: 10.1016/j.apcatb.2025.125753_bib52 article-title: Reaction mechanism and additional lithium storage of mesoporous MnO2 anode in li batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.05.029 – volume: 371 year: 2025 ident: 10.1016/j.apcatb.2025.125753_bib15 article-title: Interlayer Cu2+ modulation of local electronic structures in CuO1-x@Cu-MnO2 core-shell nanoarrays for synergistic photothermal formaldehyde degradation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2025.125279 – volume: 56 start-page: 3739 year: 2022 ident: 10.1016/j.apcatb.2025.125753_bib37 article-title: Like cures like: detoxification effect between alkali metals and sulfur over the V2O5/TiO2 deNOx catalyst publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00113 – volume: 344 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib18 article-title: Exploration of the Mn-O coordination regulated reaction stability of manganese oxides in NH3-SCR: effect of deposited ammonium nitrates publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2023.123607 – volume: 13 start-page: 2960 year: 2022 ident: 10.1016/j.apcatb.2025.125753_bib43 article-title: Unraveling the structure and role of mn and ce for NOx reduction in application-relevant catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-022-30679-9 – volume: 267 year: 2021 ident: 10.1016/j.apcatb.2025.125753_bib53 article-title: VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 328 start-page: 36 year: 2015 ident: 10.1016/j.apcatb.2025.125753_bib31 article-title: From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis publication-title: J. Catal. doi: 10.1016/j.jcat.2014.12.033 – volume: 56 start-page: 12553 year: 2022 ident: 10.1016/j.apcatb.2025.125753_bib38 article-title: Unique compensation effects of heavy metals and phosphorus copoisoning over NOx reduction catalysts publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c02255 – volume: 452 year: 2023 ident: 10.1016/j.apcatb.2025.125753_bib47 article-title: Mechanistic investigation of the enhanced SO2 resistance of Co-modified MnOx catalyst for the selective catalytic reduction of NOx by NH3 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139207 – volume: 52 start-page: 660 year: 2012 ident: 10.1016/j.apcatb.2025.125753_bib21 article-title: A “Smart” hollandite DeNOx catalyst: self-protection against alkali poisoning publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201205808 – volume: 361 year: 2025 ident: 10.1016/j.apcatb.2025.125753_bib14 article-title: Enhancing stability and catalytic activity of layered MnO2 via interfacing with YMn2O5 towards H2O2 decomposition publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2024.124699 – volume: 669 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib16 article-title: Spatial geometric effect driven by the different [MnO6] octahedra entity stacking configurations to facilitate the catalytic decomposition of H2O2 in wastewater publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2024.160589 – volume: 40 start-page: 733 year: 2019 ident: 10.1016/j.apcatb.2025.125753_bib27 article-title: Doping effect of cations (Zr4+, Al3+, and Si4+) on MnOx/CeO2 nano-rod catalyst for NH3-SCR reaction at low temperature publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(18)63204-8 – volume: 209 start-page: 45 year: 2001 ident: 10.1016/j.apcatb.2025.125753_bib2 article-title: Performances of V2O5-based catalysts obtained by grafting vanadyl tri-isopropoxide on TiO2-SiO2 in SCR publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(00)00742-0 – volume: 14 start-page: 3028 year: 2024 ident: 10.1016/j.apcatb.2025.125753_bib56 article-title: Construction of surface synergetic oxygen vacancies on CuMn2O4 spinel for enhancing NO reduction with CO publication-title: ACS Catal. doi: 10.1021/acscatal.3c05337 – volume: 57 start-page: 7858 year: 2023 ident: 10.1016/j.apcatb.2025.125753_bib42 article-title: NO selective catalytic reduction over Atom-Pair active sites accelerated via in situ NO oxidation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c00461 – volume: 139 start-page: 15624 year: 2017 ident: 10.1016/j.apcatb.2025.125753_bib3 article-title: Nature of active sites and surface intermediates during SCR of NO with NH3 by supported V2O5–WO3/TiO2 catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09646 |
SSID | ssj0002328 |
Score | 2.488868 |
Snippet | Manganese oxides are among the most promising low-temperature NH3-selective catalytic reduction (NH3-SCR) catalysts. MnO2 with different crystal phases (α-,... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 125753 |
SubjectTerms | Electronic structure Low-temperature catalysts MnO2 NH3-SCR NOx Reaction mechanism |
Title | Revisiting the NH3-SCR performance of MnO2 with different crystal phases: From electronic structure to catalytic activity |
URI | https://dx.doi.org/10.1016/j.apcatb.2025.125753 |
Volume | 380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED-pBtCrWF3vwujbNPrLrrRRLVaygFnoL2WQXFWxDGw-9-NudzYMqiAdPIWEnLDOzM7PDfDMAF8xFyqpMUmm0olwmvgdkFFJrGQ-ywIRJ5i-K9yM5HPPbiZisQb_Bwviyytr2Vza9tNb1l07NzU7--tp5CnQoGYsYOnHU09IOcx55Lb_8XJV5YMRQWmNcTP3qBj5X1ngleZoUBm-JobhETx8J9rt7-uZyBruwU8eKpFdtZw_W7LQFm_1mRFsLtr91E2zB4fUKtIZk9ald7MPysYSQ-wJngvEeGQ0Zfeo_knwFGiAzR-6nDyHxeVnSTE0pSDpfLvzP8hf0dosrMpjP3slqdA6p2s9-zC0pZqRMBS1xs8SjJfxQigMYD66f-0Naj1ygKUYyBdWZQMGJzColUpSZ7RrNMuv8yHQeKKdEIhPn8FZltAlDI4ULVKoCowOOPDXsENans6k9AqIx9GJdI22ShFzhI3U863ZTpYW2mZNtoA2n47zqrBE3JWdvcSWZ2EsmriTThqgRR_xDQ2I0_n9SHv-b8gS28K1OuZzCOvLUnmEQUpjzUsvOYaN3czccfQEqpd07 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQHIADggFiPHPgmq1rmjThhqZN47EhAZO4VU2biCGxVVs57MJvx-lDAwlx4FSpjavIdmzHsv0BXDIbSiNTQYVWkgYidjMgQ58awwIv9bQfp-6iOByJwTi4feEva9Cte2FcWWVl-0ubXljr6k274mY7m0zaT57yBWMhQyeOeurs8EaAx9fBGLQ-V3UeGDIU5hhXU7e87p8rirziLIlzjddEn7fQ1Yec_e6fvvmc_i7sVMEiuS73swdrZtqAzW6N0daA7W_jBBtw2Ft1rSFZdWwX-7B8LHrIXYUzwYCPjAaMPnUfSbbqGiAzS4bTB5-4xCypYVNyksyXC_ez7BXd3eKK9Oezd7LCziHl_NmPuSH5jBS5oCVulrh2CYdKcQDjfu-5O6AV5gJNMJTJqUo5So6nRkqeoNBMRyuWGusw0wNPWsljEVuL1yqttO9rwa0nE-lp5QXIU80OYX06m5ojIApjL9bRwsSxH0h8JDZIO51EKq5MakUTaM3pKCtHa0R1zdlbVEomcpKJSsk0IazFEf1QkQit_5-Ux_-mvIDNwfPwPrq_Gd2dwBZ-qfIvp7CO_DVnGJHk-rzQuC9U297J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+NH3-SCR+performance+of+MnO2+with+different+crystal+phases%3A+From+electronic+structure+to+catalytic+activity&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Yue%2C+Yi&rft.au=Xiong%2C+Shangchao&rft.au=Ou%2C+Hongjun&rft.au=Yang%2C+Yi&rft.date=2026-01-01&rft.issn=0926-3373&rft.volume=380&rft.spage=125753&rft_id=info:doi/10.1016%2Fj.apcatb.2025.125753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2025_125753 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |