Smart grid stability prediction using artificial intelligence: A study based on the UCI smart grid stability dataset
Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solut...
Saved in:
Published in | Sustainable computing informatics and systems Vol. 47; p. 101175 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2210-5379 |
DOI | 10.1016/j.suscom.2025.101175 |
Cover
Loading…
Abstract | Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solutions. This work studies the employment of machine learning (ML) to help classify and forecast SG stability, aiming to improve reliability and systems’ operational efficiency. Six algorithms, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Categorical Boosting (CatBoost), were tested using such robust metrics as accuracy, precision, recall, F1-score, ROC AUC, Log Loss, Cohen Kappa, and Matthews Correlation Coefficient. Performance of the models was increased by using GridSearchCV and Bayesian Optimization (BO) techniques. The finding is that BO-SVM achieved the highest accuracy, precision, recall, F1-score (all by 96.00 %) as well as greatest balanced accuracy and surpassed all the other methods investigated. Moreover, CatBoost and XGBoost had also steady and effective results when used with both optimization techniques. On the other hand, KNN exhibited overfitting and LR failed to capture stability patterns. These results prove that optimized SVM models are very useful for real-time monitoring of superconductor stability. Such models help make wise and prompt decisions which leads to stronger resilience in the smart grid and efficient energy use. Deploying these models under real-time, noisy, and dynamic grid environments for broader applicability would be more beneficial.
•Utilization of ML-based techniques to develop predictive models to identify the stability state of smart grids.•Conducting the training and testing of the predictive model using the UCI smart grid stability dataset.•Performing the hyperparameter tuning through GridSearchCV technique.•Achieving the great efficiency of the CatBoost with the numerous accuracy and precision values of 0.944333, and 0.924905.•Providing competitive performance of XGBoost, due to their ability to understand complex relationships in the data. |
---|---|
AbstractList | Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solutions. This work studies the employment of machine learning (ML) to help classify and forecast SG stability, aiming to improve reliability and systems’ operational efficiency. Six algorithms, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Categorical Boosting (CatBoost), were tested using such robust metrics as accuracy, precision, recall, F1-score, ROC AUC, Log Loss, Cohen Kappa, and Matthews Correlation Coefficient. Performance of the models was increased by using GridSearchCV and Bayesian Optimization (BO) techniques. The finding is that BO-SVM achieved the highest accuracy, precision, recall, F1-score (all by 96.00 %) as well as greatest balanced accuracy and surpassed all the other methods investigated. Moreover, CatBoost and XGBoost had also steady and effective results when used with both optimization techniques. On the other hand, KNN exhibited overfitting and LR failed to capture stability patterns. These results prove that optimized SVM models are very useful for real-time monitoring of superconductor stability. Such models help make wise and prompt decisions which leads to stronger resilience in the smart grid and efficient energy use. Deploying these models under real-time, noisy, and dynamic grid environments for broader applicability would be more beneficial.
•Utilization of ML-based techniques to develop predictive models to identify the stability state of smart grids.•Conducting the training and testing of the predictive model using the UCI smart grid stability dataset.•Performing the hyperparameter tuning through GridSearchCV technique.•Achieving the great efficiency of the CatBoost with the numerous accuracy and precision values of 0.944333, and 0.924905.•Providing competitive performance of XGBoost, due to their ability to understand complex relationships in the data. |
ArticleNumber | 101175 |
Author | Wang, Xuan Zhou, Feng Zhang, XiaoFeng Xu, Xiang |
Author_xml | – sequence: 1 givenname: Xuan surname: Wang fullname: Wang, Xuan organization: Jiaxing Key Laboratory of Intelligent Manufacturing and Operation & Maintenance of Automotive Parts, College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing, China – sequence: 2 givenname: XiaoFeng surname: Zhang fullname: Zhang, XiaoFeng email: karen6886@163.com organization: Beijing Institute of Technology,, Zhuhai, Guangdong 519088, China – sequence: 3 givenname: Feng surname: Zhou fullname: Zhou, Feng organization: College of Information Engineering, Jiaxing Nanhu University, Jiaxing, Zhejiang 314000, China – sequence: 4 givenname: Xiang surname: Xu fullname: Xu, Xiang organization: College of Information Engineering, Jiaxing Nanhu University, Jiaxing, Zhejiang 314000, China |
BookMark | eNp9kM1qwzAQhHVIoWmaN-hBL-BUki3Z7qEQQv8g0EObs5CldbrBsYOkFPL2lXGPpXtZWGaG2e-GzPqhB0LuOFtxxtX9YRXOwQ7HlWBCjideyhmZC8FZJvOyvibLEA4sjVS8zos5iR9H4yPde3Q0RNNgh_FCTx4c2ohDT88B-z1NGmzRouko9hG6DvfQW3ig6-Q6uwttTABHkz5-Ad1t3mj4K9eZmHTxlly1pguw_N0Lsnt--ty8Ztv3l7fNeptZXoqYVbmRBnjVKFE5xQ0w1TSsBNdIUXHOwdSqLXlZFA7ygpnacKuUkKyqZeMKlS9IMeVaP4TgodUnj6nXRXOmR2D6oCdgegSmJ2DJ9jjZIHX7RvA6WBzfdejBRu0G_D_gB5WTe1A |
Cites_doi | 10.1080/23311916.2016.1167990 10.1016/j.aej.2023.05.063 10.1007/s11356-021-17671-4 10.54216/MOR.030205 10.1016/j.egyr.2024.06.034 10.1002/2050-7038.12706 10.1109/ACCESS.2022.3166146 10.1186/s41601-023-00319-5 10.1016/j.rineng.2024.103261 10.1109/ACCESS.2023.3326724 10.52783/jes.1463 10.1016/j.epsr.2023.109792 10.54216/JAIM.090102 10.70470/KHWARIZMIA/2023/011 10.3390/ma15217432 10.3390/su15075949 10.1016/j.rser.2016.03.039 10.1016/j.cosrev.2024.100617 10.1007/s42979-021-00463-5 10.1140/epjst/e2015-50136-y 10.1007/s13042-023-01796-8 10.1016/j.egyr.2024.04.059 10.1109/ACCESS.2022.3187839 10.11591/ijece.v10i2.pp1179-1186 10.1016/j.joule.2023.01.001 10.1016/j.neucom.2017.08.017 10.1016/j.apenergy.2020.115733 10.1016/j.est.2023.108926 10.1109/ACCESS.2020.2991067 10.21833/ijaas.2024.05.025 10.1016/j.egyr.2024.09.056 10.1111/exsy.12832 10.51594/estj.v4i6.636 10.1016/j.est.2021.102811 10.3390/s21238087 10.1016/j.engappai.2023.107368 10.1016/j.rser.2022.112128 10.1016/j.rser.2023.114023 10.1016/j.eswa.2023.122147 10.1371/journal.pone.0278491 10.1016/j.ijcip.2022.100547 10.1109/NPSC49263.2020.9331859 10.1002/er.6679 10.1109/ACCESS.2021.3111408 10.1186/s13705-021-00304-6 10.70470/SHIFRA/2024/006 10.1016/j.egyr.2024.08.069 10.1007/s43937-022-00013-x 10.1186/s42162-023-00262-7 10.1016/j.rser.2018.05.013 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.suscom.2025.101175 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_suscom_2025_101175 S2210537925000964 |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AFJKZ AFTJW AGCQF AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BELTK BKOJK BLXMC EBS EFJIC EFKBS EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SES SPC SPCBC SSR SSV SSZ T5K ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c172t-83a5ae18b628d61ae06bb07edb528111ea96f71744de340a9a1c66250895bd463 |
IEDL.DBID | .~1 |
ISSN | 2210-5379 |
IngestDate | Wed Sep 03 16:37:35 EDT 2025 Sat Sep 06 17:17:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | UCI smart grid stability dataset Support vector machine Stability prediction Bayesian optimization Smart grid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-83a5ae18b628d61ae06bb07edb528111ea96f71744de340a9a1c66250895bd463 |
ParticipantIDs | crossref_primary_10_1016_j_suscom_2025_101175 elsevier_sciencedirect_doi_10_1016_j_suscom_2025_101175 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable computing informatics and systems |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wazirali, Yaghoubi, Abujazar, Ahmad, Vakili (bib59) 2023; 225 M. El-kenawy, Ibrahim, Mirjalili, Zhang, Elnazer, M. Zaki (bib32) 2022; 71 Bingi, Prusty (bib53) 2021; 2021 Hussein, Abouessaouab (bib55) 2023; 2023 Wu, Chen, Zhang, Xiong, Lei, Deng (bib66) 2019; 17 Chandratreya (bib31) 2024; 20 Boopathy, Liyanage, Deepa, Velavali, Reddy, Maddikunta, Khare, Gadekallu, Hwang, Pham (bib46) 2024; 51 Ghasempour, Martínez-Ramón (bib47) 2023; 2023 Tiwari, Jain, Ahmed, Charu, Alkwai, Dafhalla, Hamad (bib52) 2022; 39 Alazab, Khan, Krishnan, Pham, Reddy, Gadekallu (bib69) 2020; 8 El-kenawy, Khodadadi, Mirjalili, Abdelhamid, Eid, Ibrahim (bib41) 2024; 238 Alsirhani, Alshahrani, Abukwaik, Taloba, Abd El-Aziz, Salem (bib54) 2023; 74 Al-Selwi, Hassan, Abdulkadir, Ragab, Alqushaibi, Sumiea (bib61) 2024; 24 Alhakeem, Jebur, Henedy, Imran, Bernardo, Hussein (bib63) 2022; 15 Raza, Rind, Javed, Zubair, Mehmood, Massoud (bib43) 2023 Abdullah, Hassan (bib24) 2022; 2 Biswas, Rashid, Biswas, Nasim, Gupta, George (bib44) 2024; 2406 Bashir, Khan, Prabadevi, Deepa, Alnumay, Gadekallu, Maddikunta (bib50) 2021; 31 Breviglieri, Erdem, Eken (bib51) 2021; 2 Mahmoud (bib3) 2025; 3 P.U. Rao, B. Sodhi, R. SodhiCyber security enhancement of smart grids via machine learning-a review, In: Proceedings of the 2020 21st National Power Systems Conference (NPSC), IEEE, 2020: pp. 1–6.. Abdalla, Nazir, Tao, Cao, Ji, Jiang, Yao (bib40) 2021; 40 Devaraj, Madurai Elavarasan, Shafiullah, Jamal, Khan (bib33) 2021; 45 Sarker, Shanmugam, Azam, Thennadil (bib58) 2024; 23 Naderi, Hosseini, Zadeh, Mohammadi-Ivatloo, Vasquez, Guerrero (bib16) 2018; 93 Muralitharan, Sakthivel, Vishnuvarthan (bib45) 2018; 273 Salkuti (bib23) 2020; 10 Yanmei, Mingsheng, Yangyang, Yaping, Jingyun, Yifeng, Chunyang (bib49) 2024; 15 S.S. Sarma, M.R.P. ReddyAssimilation of sustainable energy resources into the smart grid: current advancements in the realm of information and communication technologies, 2024.. Lepolesa, Achari, Cheng (bib65) 2022; 10 Padmini, Omran, Chatterjee, Khaparde (bib29) 2017; 2017 A. GéronHands-on machine learning with Scikit-Learn, Keras, and TensorFlow, “ O’Reilly Media, Inc.,” 2022.. Völker, Reinhardt, Faustine, Pereira (bib42) 2021; 14 Janjua, Ahmad, Abbas, Mohammed, Khan, Daud, Abbas, Khan (bib48) 2024; 11 El-kenawy, Mirjalili, Khodadadi, Abdelhamid, Eid, El-Said, Ibrahim (bib4) 2023; 18 Aderibigbe, Ani, Ohenhen, Ohalete, Daraojimba (bib34) 2023; 4 Gupta, Chaturvedi (bib20) 2023; 16 Abdullah, Periyasamy, Kamaludeen, Towfek, Marappan, Kidambi Raju, Alharbi, Khafaga (bib67) 2023; 15 H. Ritchie, P. Rosado, M. RoserElectricity mix, Our world in data 2024.. Zheng, Zhang, Huang, Liu, Cai, Bian, Chang, Du (bib39) 2023; 73 Moretti, Djomo, Azadi, May, De Vos, Van Passel, Witters (bib28) 2017; 68 Ahmad, Ghadi, Adnan, Ali (bib15) 2022; 10 Ahmad, Madonski, Zhang, Huang, Mujeeb (bib30) 2022; 160 Akagic, Džafić (bib36) 2024; 127 Abrahamsen, Ai, Cheffena (bib22) 2021; 21 Ibrahim, Mirjalili, El-Said, Ghoneim, Al-Harthi, Ibrahim, El-Kenawy (bib9) 2021; 9 Wang, Hausfather, Davis, Lloyd, Olson, Liebermann, Núñez-Mujica, McBride (bib10) 2023; 7 Stanelyte, Radziukynas (bib12) 2019; 13 Ahsan, Dana, Sarker, Li, Muyeen, Ali, Tasneem, Hasan, Abhi, Islam (bib25) 2023; 8 Owusu, Asumadu-Sarkodie (bib6) 2016; 3 Yang, Wang, Qin, Wang, Ma, Zhong (bib27) 2024; 12 Mohebbi, Sobhani (bib5) 2024; 003 Ye, Xie, Yu, Lu, Yan, Su, Wang, Jiang (bib26) 2024; 11 Alkanhel, El-Kenawy, Eid, Abualigah, Saeed (bib62) 2024; 12 Chen, Tackie, Ahakwa, Musah, Salakpi, Alfred, Atingabili (bib2) 2022; 29 Binbusayyis, Sha (bib60) 2025; 142 Nayyef, Abdulrahman, Al (bib56) 2024; 2024 Y. Naderi, S.H. Hosseini, S. Ghassemzadeh, B. Mohammadi-Ivatloo, M. Savaghebi, J.C. Vasquez, J.M. GuerreroPower quality issues of smart grids: applied methods and techniques, ResearchGate:[Сайт].–2019.–Сентябрь.–URL: Https://Www. Researchgate. Net/Publication/336124457_Power_Quality_Issues_of_Smart_Grids_Applied_Methods_and_Techniques2019. Zheng, Shafique, Luo, Wang (bib17) 2024; 189 Gholizadeh, Abedi, Nafisi, Marzband (bib19) 2019; 51 Vo, Vo (bib1) 2021; 11 Berghout, Benbouzid, Muyeen (bib37) 2022; 38 Bakare, Abdulkarim, Zeeshan, Shuaibu (bib11) 2023; 6 Khaled, Singla (bib8) 2025; 09 Kiasari, Ghaffari, Aly (bib21) 2024; 17 Biswal, Deb, Datta, Ustun, Cali (bib57) 2024; 12 Schäfer, Grabow, Auer, Kurths, Witthaut, Timme (bib68) 2016; 225 McDonald, Wojszczyk, Flynn, Voloh (bib13) 2012 Shi, Yao, Li, Zeng, Zhao, Zhang, Tang, Wen (bib35) 2020; 278 Biswal (10.1016/j.suscom.2025.101175_bib57) 2024; 12 Salkuti (10.1016/j.suscom.2025.101175_bib23) 2020; 10 Nayyef (10.1016/j.suscom.2025.101175_bib56) 2024; 2024 Schäfer (10.1016/j.suscom.2025.101175_bib68) 2016; 225 Wang (10.1016/j.suscom.2025.101175_bib10) 2023; 7 Abdullah (10.1016/j.suscom.2025.101175_bib24) 2022; 2 Yanmei (10.1016/j.suscom.2025.101175_bib49) 2024; 15 Lepolesa (10.1016/j.suscom.2025.101175_bib65) 2022; 10 Vo (10.1016/j.suscom.2025.101175_bib1) 2021; 11 Zheng (10.1016/j.suscom.2025.101175_bib17) 2024; 189 Berghout (10.1016/j.suscom.2025.101175_bib37) 2022; 38 Ye (10.1016/j.suscom.2025.101175_bib26) 2024; 11 Zheng (10.1016/j.suscom.2025.101175_bib39) 2023; 73 Khaled (10.1016/j.suscom.2025.101175_bib8) 2025; 09 Muralitharan (10.1016/j.suscom.2025.101175_bib45) 2018; 273 Shi (10.1016/j.suscom.2025.101175_bib35) 2020; 278 Völker (10.1016/j.suscom.2025.101175_bib42) 2021; 14 Abdullah (10.1016/j.suscom.2025.101175_bib67) 2023; 15 Bingi (10.1016/j.suscom.2025.101175_bib53) 2021; 2021 Ghasempour (10.1016/j.suscom.2025.101175_bib47) 2023; 2023 Akagic (10.1016/j.suscom.2025.101175_bib36) 2024; 127 Alsirhani (10.1016/j.suscom.2025.101175_bib54) 2023; 74 Janjua (10.1016/j.suscom.2025.101175_bib48) 2024; 11 Hussein (10.1016/j.suscom.2025.101175_bib55) 2023; 2023 Wu (10.1016/j.suscom.2025.101175_bib66) 2019; 17 Tiwari (10.1016/j.suscom.2025.101175_bib52) 2022; 39 Moretti (10.1016/j.suscom.2025.101175_bib28) 2017; 68 Naderi (10.1016/j.suscom.2025.101175_bib16) 2018; 93 10.1016/j.suscom.2025.101175_bib7 Padmini (10.1016/j.suscom.2025.101175_bib29) 2017; 2017 Bakare (10.1016/j.suscom.2025.101175_bib11) 2023; 6 10.1016/j.suscom.2025.101175_bib38 Al-Selwi (10.1016/j.suscom.2025.101175_bib61) 2024; 24 Owusu (10.1016/j.suscom.2025.101175_bib6) 2016; 3 Kiasari (10.1016/j.suscom.2025.101175_bib21) 2024; 17 Ahmad (10.1016/j.suscom.2025.101175_bib15) 2022; 10 Bashir (10.1016/j.suscom.2025.101175_bib50) 2021; 31 M. El-kenawy (10.1016/j.suscom.2025.101175_bib32) 2022; 71 Raza (10.1016/j.suscom.2025.101175_bib43) 2023 El-kenawy (10.1016/j.suscom.2025.101175_bib4) 2023; 18 McDonald (10.1016/j.suscom.2025.101175_bib13) 2012 Biswas (10.1016/j.suscom.2025.101175_bib44) 2024; 2406 Alkanhel (10.1016/j.suscom.2025.101175_bib62) 2024; 12 Alhakeem (10.1016/j.suscom.2025.101175_bib63) 2022; 15 Ibrahim (10.1016/j.suscom.2025.101175_bib9) 2021; 9 Chandratreya (10.1016/j.suscom.2025.101175_bib31) 2024; 20 10.1016/j.suscom.2025.101175_bib64 Alazab (10.1016/j.suscom.2025.101175_bib69) 2020; 8 Gupta (10.1016/j.suscom.2025.101175_bib20) 2023; 16 Mahmoud (10.1016/j.suscom.2025.101175_bib3) 2025; 3 Aderibigbe (10.1016/j.suscom.2025.101175_bib34) 2023; 4 Sarker (10.1016/j.suscom.2025.101175_bib58) 2024; 23 Ahmad (10.1016/j.suscom.2025.101175_bib30) 2022; 160 Devaraj (10.1016/j.suscom.2025.101175_bib33) 2021; 45 Breviglieri (10.1016/j.suscom.2025.101175_bib51) 2021; 2 Abrahamsen (10.1016/j.suscom.2025.101175_bib22) 2021; 21 Abdalla (10.1016/j.suscom.2025.101175_bib40) 2021; 40 Yang (10.1016/j.suscom.2025.101175_bib27) 2024; 12 Boopathy (10.1016/j.suscom.2025.101175_bib46) 2024; 51 Chen (10.1016/j.suscom.2025.101175_bib2) 2022; 29 Binbusayyis (10.1016/j.suscom.2025.101175_bib60) 2025; 142 Ahsan (10.1016/j.suscom.2025.101175_bib25) 2023; 8 El-kenawy (10.1016/j.suscom.2025.101175_bib41) 2024; 238 Mohebbi (10.1016/j.suscom.2025.101175_bib5) 2024; 003 10.1016/j.suscom.2025.101175_bib18 Gholizadeh (10.1016/j.suscom.2025.101175_bib19) 2019; 51 Wazirali (10.1016/j.suscom.2025.101175_bib59) 2023; 225 Stanelyte (10.1016/j.suscom.2025.101175_bib12) 2019; 13 10.1016/j.suscom.2025.101175_bib14 |
References_xml | – reference: Y. Naderi, S.H. Hosseini, S. Ghassemzadeh, B. Mohammadi-Ivatloo, M. Savaghebi, J.C. Vasquez, J.M. GuerreroPower quality issues of smart grids: applied methods and techniques, ResearchGate:[Сайт].–2019.–Сентябрь.–URL: Https://Www. Researchgate. Net/Publication/336124457_Power_Quality_Issues_of_Smart_Grids_Applied_Methods_and_Techniques2019. – volume: 17 start-page: 4128 year: 2024 ident: bib21 article-title: A comprehensive review of the current status of smart grid technologies for renewable energies integration and future trends: the role of machine learning and energy storage systems publication-title: Energy – volume: 2 start-page: 8 year: 2022 ident: bib24 article-title: Smart grid (SG) properties and challenges: an overview publication-title: Discov. Energy – volume: 68 start-page: 888 year: 2017 end-page: 898 ident: bib28 article-title: A systematic review of environmental and economic impacts of smart grids publication-title: Renew. Sustain. Energy Rev. – volume: 2024 start-page: 46 year: 2024 end-page: 54 ident: bib56 article-title: Kurdi, Optimizing energy efficiency in smart grids using machine learning algorithms: a case study in electrical engineering publication-title: SHIFRA – volume: 29 start-page: 37598 year: 2022 end-page: 37616 ident: bib2 article-title: RETRACTED ARTICLE: does energy consumption, economic growth, urbanization, and population growth influence carbon emissions in the BRICS? Evidence from panel models robust to cross-sectional dependence and slope heterogeneity publication-title: Environ. Sci. Pollut. Res. – reference: P.U. Rao, B. Sodhi, R. SodhiCyber security enhancement of smart grids via machine learning-a review, In: Proceedings of the 2020 21st National Power Systems Conference (NPSC), IEEE, 2020: pp. 1–6.. – volume: 11 start-page: 30 year: 2021 ident: bib1 article-title: Renewable energy and population growth for sustainable development in the Southeast Asian countries publication-title: Energy Sustain. Soc. – volume: 39 year: 2022 ident: bib52 article-title: Machine learning-based model for prediction of power consumption in smart grid-smart way towards smart city publication-title: Expert Syst. – volume: 189 year: 2024 ident: bib17 article-title: A systematic review towards integrative energy management of smart grids and urban energy systems publication-title: Renew. Sustain. Energy Rev. – volume: 8 start-page: 85454 year: 2020 end-page: 85463 ident: bib69 article-title: A multidirectional LSTM model for predicting the stability of a smart grid publication-title: IEEE Access – volume: 2021 start-page: 1 year: 2021 end-page: 6 ident: bib53 article-title: Neural network-based models for prediction of smart grid stability publication-title: Innovations in Power and Advanced Computing Technologies (i-PACT) – reference: S.S. Sarma, M.R.P. ReddyAssimilation of sustainable energy resources into the smart grid: current advancements in the realm of information and communication technologies, 2024.. – reference: A. GéronHands-on machine learning with Scikit-Learn, Keras, and TensorFlow, “ O’Reilly Media, Inc.,” 2022.. – volume: 6 start-page: 4 year: 2023 ident: bib11 article-title: A comprehensive overview on demand side energy management towards smart grids: challenges, solutions, and future direction publication-title: Energy Inform. – volume: 160 year: 2022 ident: bib30 article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm publication-title: Renew. Sustain. Energy Rev. – volume: 7 start-page: 309 year: 2023 end-page: 332 ident: bib10 article-title: Future demand for electricity generation materials under different climate mitigation scenarios publication-title: Joule – volume: 23 year: 2024 ident: bib58 article-title: Enhancing smart grid load forecasting: An attention-based deep learning model integrated with federated learning and XAI for security and interpretability publication-title: Intell. Syst. Appl. – volume: 2 start-page: 1 year: 2021 end-page: 12 ident: bib51 article-title: Predicting smart grid stability with optimized deep models publication-title: SN Comput. Sci. – start-page: 7 year: 2012 end-page: 68 ident: bib13 article-title: Distribution systems, substations, and integration of distributed generation publication-title: Electrical Transmission Systems and Smart Grids: Selected Entries from the Encyclopedia of Sustainability Science and Technology – volume: 10 start-page: 1179 year: 2020 end-page: 1186 ident: bib23 article-title: Challenges, issues and opportunities for the development of smart grid publication-title: Int. J. Electr. Comput. Eng. (IJECE) – volume: 09 start-page: 11 year: 2025 end-page: 19 ident: bib8 article-title: Predictive analysis of groundwater resources using random forest regression publication-title: J. Artif. Intell. Metaheuristics – volume: 2023 start-page: 113 year: 2023 end-page: 120 ident: bib55 article-title: Optimizing energy efficiency in smart grids using machine learning algorithms: a case study in electrical engineering publication-title: KHWARIZMIA – volume: 12 start-page: 305 year: 2024 end-page: 320 ident: bib62 article-title: Optimizing IoT-driven smart grid stability prediction with dipper throated optimization algorithm for gradient boosting hyperparameters publication-title: Energy Rep. – volume: 15 start-page: 129 year: 2024 end-page: 148 ident: bib49 article-title: Enhanced neighborhood node graph neural networks for load forecasting in smart grid publication-title: Int. J. Mach. Learn. Cybern. – volume: 31 year: 2021 ident: bib50 article-title: Comparative analysis of machine learning algorithms for prediction of smart grid stability publication-title: Int. Trans. Electr. Energy Syst. – volume: 3 start-page: 47 year: 2025 end-page: 58 ident: bib3 article-title: A review on waste management techniques for sustainable energy production publication-title: Metaheuristic Optim. Rev. – volume: 278 year: 2020 ident: bib35 article-title: Artificial intelligence techniques for stability analysis and control in smart grids: methodologies, applications, challenges and future directions publication-title: Appl. Energy – volume: 15 start-page: 5949 year: 2023 ident: bib67 article-title: Optimizing traffic flow in smart cities: soft GRU-based recurrent neural networks for enhanced congestion prediction using deep learning publication-title: Sustainability – volume: 93 start-page: 201 year: 2018 end-page: 214 ident: bib16 article-title: An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks publication-title: Renew. Sustain. Energy Rev. – volume: 10 start-page: 39638 year: 2022 end-page: 39655 ident: bib65 article-title: Electricity theft detection in smart grids based on deep neural network publication-title: IEEE Access – volume: 10 start-page: 71054 year: 2022 end-page: 71090 ident: bib15 article-title: Load forecasting techniques for power system: research challenges and survey publication-title: IEEE Access – volume: 11 start-page: 230 year: 2024 end-page: 248 ident: bib48 article-title: Enhancing smart grid electricity prediction with the fusion of intelligent modeling and XAI integration publication-title: Int. J. Adv. Appl. Sci. – volume: 20 start-page: 1580 year: 2024 end-page: 1587 ident: bib31 article-title: AI-powered innovations in electrical engineering: enhancing efficiency, reliability, and sustainability publication-title: J. Electr. Syst. – volume: 40 year: 2021 ident: bib40 article-title: Integration of energy storage system and renewable energy sources based on artificial intelligence: an overview publication-title: J. Energy Storage – volume: 2023 start-page: 1 year: 2023 end-page: 6 ident: bib47 article-title: Short-term electric load prediction in smart grid using multi-output gaussian processes regression publication-title: IEEE Kansas Power and Energy Conference (KPEC) – volume: 21 start-page: 8087 year: 2021 ident: bib22 article-title: Communication technologies for smart grid: a comprehensive survey publication-title: Sensors – volume: 12 start-page: 3654 year: 2024 end-page: 3670 ident: bib57 article-title: Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques publication-title: Energy Rep. – volume: 225 year: 2023 ident: bib59 article-title: State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques publication-title: Electr. Power Syst. Res. – volume: 51 year: 2024 ident: bib46 article-title: Deep learning for intelligent demand response and smart grids: a comprehensive survey publication-title: Comput. Sci. Rev. – volume: 273 start-page: 199 year: 2018 end-page: 208 ident: bib45 article-title: Neural network based optimization approach for energy demand prediction in smart grid publication-title: Neurocomputing – volume: 73 year: 2023 ident: bib39 article-title: Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage publication-title: J. Energy Storage – volume: 16 start-page: 6016 year: 2023 ident: bib20 article-title: Adaptive energy management of big data analytics in smart grids publication-title: Energy – volume: 11 start-page: 5069 year: 2024 end-page: 5082 ident: bib26 article-title: Technical and economic study of renewable-energy-powered system for a newly constructed city in China publication-title: Energy Rep. – volume: 2017 start-page: 1 year: 2017 end-page: 6 ident: bib29 article-title: Cost benefit analysis of smart grid: A case study from India publication-title: North American Power Symposium (NAPS) – volume: 45 start-page: 13489 year: 2021 end-page: 13530 ident: bib33 article-title: A holistic review on energy forecasting using big data and deep learning models publication-title: Int. J. Energy Res. – volume: 38 year: 2022 ident: bib37 article-title: Machine learning for cybersecurity in smart grids: a comprehensive review-based study on methods, solutions, and prospects publication-title: Int. J. Crit. Infrastruct. Prot. – reference: H. Ritchie, P. Rosado, M. RoserElectricity mix, Our world in data 2024.. – volume: 3 start-page: 1167990 year: 2016 ident: bib6 article-title: A review of renewable energy sources, sustainability issues and climate change mitigation publication-title: Cogent Eng. – volume: 4 start-page: 341 year: 2023 end-page: 356 ident: bib34 article-title: Enhancing energy efficiency with ai: a review of machine learning models in electricity demand forecasting publication-title: Eng. Sci. Technol. J. – volume: 15 start-page: 7432 year: 2022 ident: bib63 article-title: Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with GridSearchCV hyperparameter-optimization techniques publication-title: Materials – volume: 8 start-page: 1 year: 2023 end-page: 42 ident: bib25 article-title: Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review publication-title: Prot. Control Mod. Power Syst. – volume: 2406 year: 2024 ident: bib44 article-title: AI-driven approaches for optimizing power consumption: a comprehensive survey publication-title: ArXiv Prepr. ArXiv – volume: 18 year: 2023 ident: bib4 article-title: Feature selection in wind speed forecasting systems based on meta-heuristic optimization publication-title: PLOS One – volume: 13 start-page: 58 year: 2019 ident: bib12 article-title: Review of voltage and reactive power control algorithms in electrical distribution networks publication-title: Energy – volume: 24 year: 2024 ident: bib61 article-title: Smart grid stability prediction using adaptive aquila optimizer and ensemble stacked BiLSTM publication-title: Results Eng. – year: 2023 ident: bib43 article-title: Smart meters for smart energy: a review of business intelligence applications publication-title: IEEE Access – volume: 142 year: 2025 ident: bib60 article-title: Stability prediction in smart grid using PSO optimized XGBoost algorithm with dynamic inertia weight updation publication-title: CMESComput. Model. Eng. Sci. – volume: 12 start-page: 2786 year: 2024 end-page: 2800 ident: bib27 article-title: Review of vehicle to grid integration to support power grid security publication-title: Energy Rep. – volume: 9 start-page: 125787 year: 2021 end-page: 125804 ident: bib9 article-title: Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm publication-title: IEEE Access – volume: 74 start-page: 495 year: 2023 end-page: 508 ident: bib54 article-title: A novel approach to predicting the stability of the smart grid utilizing MLP-ELM technique publication-title: Alex. Eng. J. – volume: 14 start-page: 719 year: 2021 ident: bib42 article-title: Watt’s up at home? Smart meter data analytics from a consumer-centric perspective publication-title: Energy – volume: 127 year: 2024 ident: bib36 article-title: Enhancing smart grid resilience with deep learning anomaly detection prior to state estimation publication-title: Eng. Appl. Artif. Intell. – volume: 238 year: 2024 ident: bib41 article-title: Greylag Goose Optimization: Nature-inspired optimization algorithm publication-title: Expert Syst. Appl. – volume: 225 start-page: 569 year: 2016 end-page: 582 ident: bib68 article-title: Taming instabilities in power grid networks by decentralized control publication-title: Eur. Phys. J. Spec. Top. – volume: 71 start-page: 4989 year: 2022 end-page: 5003 ident: bib32 article-title: Optimized ensemble algorithm for predicting metamaterial antenna parameters publication-title: Comput. Mater. Contin. – volume: 51 start-page: 211 year: 2019 end-page: 218 ident: bib19 article-title: Learning-based energy management system for scheduling of appliances inside smart homes publication-title: AUT J. Electr. Eng. – volume: 17 start-page: 26 year: 2019 end-page: 40 ident: bib66 article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization publication-title: J. Electron. Sci. Technol. – volume: 003 start-page: 143 year: 2024 end-page: 175 ident: bib5 article-title: Enhancing residential electricity consumption forecasting with meta-heuristic algorithms publication-title: Adv. Eng. Intell. Syst. – volume: 3 start-page: 1167990 year: 2016 ident: 10.1016/j.suscom.2025.101175_bib6 article-title: A review of renewable energy sources, sustainability issues and climate change mitigation publication-title: Cogent Eng. doi: 10.1080/23311916.2016.1167990 – ident: 10.1016/j.suscom.2025.101175_bib7 – volume: 2023 start-page: 1 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib47 article-title: Short-term electric load prediction in smart grid using multi-output gaussian processes regression – volume: 74 start-page: 495 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib54 article-title: A novel approach to predicting the stability of the smart grid utilizing MLP-ELM technique publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.05.063 – volume: 29 start-page: 37598 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib2 article-title: RETRACTED ARTICLE: does energy consumption, economic growth, urbanization, and population growth influence carbon emissions in the BRICS? Evidence from panel models robust to cross-sectional dependence and slope heterogeneity publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-17671-4 – volume: 3 start-page: 47 year: 2025 ident: 10.1016/j.suscom.2025.101175_bib3 article-title: A review on waste management techniques for sustainable energy production publication-title: Metaheuristic Optim. Rev. doi: 10.54216/MOR.030205 – volume: 12 start-page: 305 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib62 article-title: Optimizing IoT-driven smart grid stability prediction with dipper throated optimization algorithm for gradient boosting hyperparameters publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.06.034 – volume: 31 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib50 article-title: Comparative analysis of machine learning algorithms for prediction of smart grid stability publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/2050-7038.12706 – volume: 10 start-page: 39638 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib65 article-title: Electricity theft detection in smart grids based on deep neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166146 – volume: 8 start-page: 1 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib25 article-title: Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review publication-title: Prot. Control Mod. Power Syst. doi: 10.1186/s41601-023-00319-5 – volume: 2406 issue: 15732 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib44 article-title: AI-driven approaches for optimizing power consumption: a comprehensive survey publication-title: ArXiv Prepr. ArXiv – ident: 10.1016/j.suscom.2025.101175_bib18 – volume: 24 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib61 article-title: Smart grid stability prediction using adaptive aquila optimizer and ensemble stacked BiLSTM publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103261 – volume: 17 start-page: 26 year: 2019 ident: 10.1016/j.suscom.2025.101175_bib66 article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization publication-title: J. Electron. Sci. Technol. – year: 2023 ident: 10.1016/j.suscom.2025.101175_bib43 article-title: Smart meters for smart energy: a review of business intelligence applications publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3326724 – volume: 20 start-page: 1580 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib31 article-title: AI-powered innovations in electrical engineering: enhancing efficiency, reliability, and sustainability publication-title: J. Electr. Syst. doi: 10.52783/jes.1463 – volume: 225 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib59 article-title: State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109792 – volume: 09 start-page: 11 year: 2025 ident: 10.1016/j.suscom.2025.101175_bib8 article-title: Predictive analysis of groundwater resources using random forest regression publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.090102 – volume: 13 start-page: 58 year: 2019 ident: 10.1016/j.suscom.2025.101175_bib12 article-title: Review of voltage and reactive power control algorithms in electrical distribution networks publication-title: Energy – volume: 142 year: 2025 ident: 10.1016/j.suscom.2025.101175_bib60 article-title: Stability prediction in smart grid using PSO optimized XGBoost algorithm with dynamic inertia weight updation publication-title: CMESComput. Model. Eng. Sci. – volume: 16 start-page: 6016 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib20 article-title: Adaptive energy management of big data analytics in smart grids publication-title: Energy – ident: 10.1016/j.suscom.2025.101175_bib64 – volume: 2023 start-page: 113 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib55 article-title: Optimizing energy efficiency in smart grids using machine learning algorithms: a case study in electrical engineering publication-title: KHWARIZMIA doi: 10.70470/KHWARIZMIA/2023/011 – volume: 15 start-page: 7432 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib63 article-title: Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with GridSearchCV hyperparameter-optimization techniques publication-title: Materials doi: 10.3390/ma15217432 – volume: 15 start-page: 5949 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib67 article-title: Optimizing traffic flow in smart cities: soft GRU-based recurrent neural networks for enhanced congestion prediction using deep learning publication-title: Sustainability doi: 10.3390/su15075949 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib53 article-title: Neural network-based models for prediction of smart grid stability – volume: 68 start-page: 888 year: 2017 ident: 10.1016/j.suscom.2025.101175_bib28 article-title: A systematic review of environmental and economic impacts of smart grids publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.03.039 – volume: 51 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib46 article-title: Deep learning for intelligent demand response and smart grids: a comprehensive survey publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2024.100617 – volume: 2 start-page: 1 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib51 article-title: Predicting smart grid stability with optimized deep models publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00463-5 – volume: 225 start-page: 569 year: 2016 ident: 10.1016/j.suscom.2025.101175_bib68 article-title: Taming instabilities in power grid networks by decentralized control publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2015-50136-y – volume: 15 start-page: 129 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib49 article-title: Enhanced neighborhood node graph neural networks for load forecasting in smart grid publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-023-01796-8 – volume: 11 start-page: 5069 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib26 article-title: Technical and economic study of renewable-energy-powered system for a newly constructed city in China publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.04.059 – volume: 10 start-page: 71054 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib15 article-title: Load forecasting techniques for power system: research challenges and survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3187839 – volume: 10 start-page: 1179 year: 2020 ident: 10.1016/j.suscom.2025.101175_bib23 article-title: Challenges, issues and opportunities for the development of smart grid publication-title: Int. J. Electr. Comput. Eng. (IJECE) doi: 10.11591/ijece.v10i2.pp1179-1186 – volume: 7 start-page: 309 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib10 article-title: Future demand for electricity generation materials under different climate mitigation scenarios publication-title: Joule doi: 10.1016/j.joule.2023.01.001 – volume: 273 start-page: 199 year: 2018 ident: 10.1016/j.suscom.2025.101175_bib45 article-title: Neural network based optimization approach for energy demand prediction in smart grid publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.017 – volume: 278 year: 2020 ident: 10.1016/j.suscom.2025.101175_bib35 article-title: Artificial intelligence techniques for stability analysis and control in smart grids: methodologies, applications, challenges and future directions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115733 – volume: 73 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib39 article-title: Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108926 – volume: 003 start-page: 143 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib5 article-title: Enhancing residential electricity consumption forecasting with meta-heuristic algorithms publication-title: Adv. Eng. Intell. Syst. – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.suscom.2025.101175_bib29 article-title: Cost benefit analysis of smart grid: A case study from India – volume: 8 start-page: 85454 year: 2020 ident: 10.1016/j.suscom.2025.101175_bib69 article-title: A multidirectional LSTM model for predicting the stability of a smart grid publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991067 – volume: 11 start-page: 230 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib48 article-title: Enhancing smart grid electricity prediction with the fusion of intelligent modeling and XAI integration publication-title: Int. J. Adv. Appl. Sci. doi: 10.21833/ijaas.2024.05.025 – volume: 12 start-page: 3654 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib57 article-title: Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.09.056 – volume: 39 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib52 article-title: Machine learning-based model for prediction of power consumption in smart grid-smart way towards smart city publication-title: Expert Syst. doi: 10.1111/exsy.12832 – volume: 4 start-page: 341 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib34 article-title: Enhancing energy efficiency with ai: a review of machine learning models in electricity demand forecasting publication-title: Eng. Sci. Technol. J. doi: 10.51594/estj.v4i6.636 – volume: 51 start-page: 211 year: 2019 ident: 10.1016/j.suscom.2025.101175_bib19 article-title: Learning-based energy management system for scheduling of appliances inside smart homes publication-title: AUT J. Electr. Eng. – ident: 10.1016/j.suscom.2025.101175_bib14 – volume: 40 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib40 article-title: Integration of energy storage system and renewable energy sources based on artificial intelligence: an overview publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102811 – volume: 21 start-page: 8087 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib22 article-title: Communication technologies for smart grid: a comprehensive survey publication-title: Sensors doi: 10.3390/s21238087 – volume: 71 start-page: 4989 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib32 article-title: Optimized ensemble algorithm for predicting metamaterial antenna parameters publication-title: Comput. Mater. Contin. – volume: 127 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib36 article-title: Enhancing smart grid resilience with deep learning anomaly detection prior to state estimation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107368 – start-page: 7 year: 2012 ident: 10.1016/j.suscom.2025.101175_bib13 article-title: Distribution systems, substations, and integration of distributed generation – volume: 160 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib30 article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112128 – volume: 189 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib17 article-title: A systematic review towards integrative energy management of smart grids and urban energy systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.114023 – volume: 238 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib41 article-title: Greylag Goose Optimization: Nature-inspired optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122147 – volume: 18 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib4 article-title: Feature selection in wind speed forecasting systems based on meta-heuristic optimization publication-title: PLOS One doi: 10.1371/journal.pone.0278491 – volume: 38 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib37 article-title: Machine learning for cybersecurity in smart grids: a comprehensive review-based study on methods, solutions, and prospects publication-title: Int. J. Crit. Infrastruct. Prot. doi: 10.1016/j.ijcip.2022.100547 – volume: 17 start-page: 4128 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib21 article-title: A comprehensive review of the current status of smart grid technologies for renewable energies integration and future trends: the role of machine learning and energy storage systems publication-title: Energy – ident: 10.1016/j.suscom.2025.101175_bib38 doi: 10.1109/NPSC49263.2020.9331859 – volume: 45 start-page: 13489 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib33 article-title: A holistic review on energy forecasting using big data and deep learning models publication-title: Int. J. Energy Res. doi: 10.1002/er.6679 – volume: 23 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib58 article-title: Enhancing smart grid load forecasting: An attention-based deep learning model integrated with federated learning and XAI for security and interpretability publication-title: Intell. Syst. Appl. – volume: 9 start-page: 125787 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib9 article-title: Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3111408 – volume: 11 start-page: 30 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib1 article-title: Renewable energy and population growth for sustainable development in the Southeast Asian countries publication-title: Energy Sustain. Soc. doi: 10.1186/s13705-021-00304-6 – volume: 14 start-page: 719 year: 2021 ident: 10.1016/j.suscom.2025.101175_bib42 article-title: Watt’s up at home? Smart meter data analytics from a consumer-centric perspective publication-title: Energy – volume: 2024 start-page: 46 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib56 article-title: Kurdi, Optimizing energy efficiency in smart grids using machine learning algorithms: a case study in electrical engineering publication-title: SHIFRA doi: 10.70470/SHIFRA/2024/006 – volume: 12 start-page: 2786 year: 2024 ident: 10.1016/j.suscom.2025.101175_bib27 article-title: Review of vehicle to grid integration to support power grid security publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.08.069 – volume: 2 start-page: 8 year: 2022 ident: 10.1016/j.suscom.2025.101175_bib24 article-title: Smart grid (SG) properties and challenges: an overview publication-title: Discov. Energy doi: 10.1007/s43937-022-00013-x – volume: 6 start-page: 4 year: 2023 ident: 10.1016/j.suscom.2025.101175_bib11 article-title: A comprehensive overview on demand side energy management towards smart grids: challenges, solutions, and future direction publication-title: Energy Inform. doi: 10.1186/s42162-023-00262-7 – volume: 93 start-page: 201 year: 2018 ident: 10.1016/j.suscom.2025.101175_bib16 article-title: An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.05.013 |
SSID | ssj0000561934 |
Score | 2.3309438 |
Snippet | Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 101175 |
SubjectTerms | Bayesian optimization Smart grid Stability prediction Support vector machine UCI smart grid stability dataset |
Title | Smart grid stability prediction using artificial intelligence: A study based on the UCI smart grid stability dataset |
URI | https://dx.doi.org/10.1016/j.suscom.2025.101175 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqsrDwRpRH5YE1NHFsx2GrKqoWpC6lUrfIjp0qSJSqTQcWvp1780BFqhgYMsTyjZyT5D7i42NC7lOICuDkhJdGBgoUCBmeElx7qXRK-o4znpVqnxM5mvHnuZi3yKBZC4O0ytr3Vz699NZ1S69Gs7fK896UQbUiwihmpaa_RE1QziPUz3_4Cn7-s2CGHJeTy9jfQ4NmBV1J89psN0gbYRD7sSlAwuG-CLUTdYYn5KhOF2m_GtEpabnlGTlutmKg9Zd5TorpO4yaLta5pZDvlYzXT7pa4zQMQk-R376geGeVZATNd7Q4H2mfljqzFIOapdAf8kI6G4zpZt91kVa6ccUFmQ2fXgcjr95QwUshTyk8FWqhXaCMZMrKQDtfGuNHzhrBFDg9p2OZQX3HuXUh93Wsg1RCgeSrWBjLZXhJ2suPpbsiNEqt8YWwoc0YV8wq5nTINBx-amQWdojXgJisKt2MpCGUvSUV6AmCnlSgd0jUIJ38ev4JuPY_La__bXlDDvGsYozdknax3ro7SDEK0y3foS456I9fRpNvAaTROg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27bsIwFLUoDO3Sd1X69NA1InFsx-mGUFEolAWQ2CI7dhCVShEJQ_--13lUVEIdOmRxciPnyLkP-_gYoacEogI4OeYkgYICBUKGIxiVTsKN4K6hhKaF2ueYRzP6OmfzBurVe2EsrbLy_aVPL7x11dKp0Oysl8vOhEC1wvwgJIWmP6cHqGXVqWCwt7qDYTT-mWqxSXJYrC9bE8fa1JvoCqZXts0sc4RA-LdNnuUc7gtSO4Gnf4qOq4wRd8tOnaGGWZ2jk_o0Blz9nBcon3xAx_Fis9QYUr6C9PqF1xu7EmPRx5bivsD240rVCLzckeN8xl1cSM1iG9c0huchNcSz3gBn-95rmaWZyS_RrP8y7UVOdaaCk0CqkjvCl0waTyhOhOaeNC5Xyg2MVowI8HtGhjyFEo9SbXzqylB6CYcayRUhU5py_wo1V58rc41wkGjlMqZ9nRIqiBbESJ9IuNxE8dRvI6cGMV6X0hlxzSl7j0vQYwt6XILeRkGNdPxrCMTg3f-0vPm35SM6jKZvo3g0GA9v0ZG9UxLI7lAz32zNPWQcuXqoRtQ3OVzT6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+grid+stability+prediction+using+artificial+intelligence%3A+A+study+based+on+the+UCI+smart+grid+stability+dataset&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Wang%2C+Xuan&rft.au=Zhang%2C+XiaoFeng&rft.au=Zhou%2C+Feng&rft.au=Xu%2C+Xiang&rft.date=2025-09-01&rft.issn=2210-5379&rft.volume=47&rft.spage=101175&rft_id=info:doi/10.1016%2Fj.suscom.2025.101175&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2025_101175 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |