Smart grid stability prediction using artificial intelligence: A study based on the UCI smart grid stability dataset

Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solut...

Full description

Saved in:
Bibliographic Details
Published inSustainable computing informatics and systems Vol. 47; p. 101175
Main Authors Wang, Xuan, Zhang, XiaoFeng, Zhou, Feng, Xu, Xiang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2025
Subjects
Online AccessGet full text
ISSN2210-5379
DOI10.1016/j.suscom.2025.101175

Cover

Loading…
Abstract Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solutions. This work studies the employment of machine learning (ML) to help classify and forecast SG stability, aiming to improve reliability and systems’ operational efficiency. Six algorithms, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Categorical Boosting (CatBoost), were tested using such robust metrics as accuracy, precision, recall, F1-score, ROC AUC, Log Loss, Cohen Kappa, and Matthews Correlation Coefficient. Performance of the models was increased by using GridSearchCV and Bayesian Optimization (BO) techniques. The finding is that BO-SVM achieved the highest accuracy, precision, recall, F1-score (all by 96.00 %) as well as greatest balanced accuracy and surpassed all the other methods investigated. Moreover, CatBoost and XGBoost had also steady and effective results when used with both optimization techniques. On the other hand, KNN exhibited overfitting and LR failed to capture stability patterns. These results prove that optimized SVM models are very useful for real-time monitoring of superconductor stability. Such models help make wise and prompt decisions which leads to stronger resilience in the smart grid and efficient energy use. Deploying these models under real-time, noisy, and dynamic grid environments for broader applicability would be more beneficial. •Utilization of ML-based techniques to develop predictive models to identify the stability state of smart grids.•Conducting the training and testing of the predictive model using the UCI smart grid stability dataset.•Performing the hyperparameter tuning through GridSearchCV technique.•Achieving the great efficiency of the CatBoost with the numerous accuracy and precision values of 0.944333, and 0.924905.•Providing competitive performance of XGBoost, due to their ability to understand complex relationships in the data.
AbstractList Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solutions. This work studies the employment of machine learning (ML) to help classify and forecast SG stability, aiming to improve reliability and systems’ operational efficiency. Six algorithms, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Categorical Boosting (CatBoost), were tested using such robust metrics as accuracy, precision, recall, F1-score, ROC AUC, Log Loss, Cohen Kappa, and Matthews Correlation Coefficient. Performance of the models was increased by using GridSearchCV and Bayesian Optimization (BO) techniques. The finding is that BO-SVM achieved the highest accuracy, precision, recall, F1-score (all by 96.00 %) as well as greatest balanced accuracy and surpassed all the other methods investigated. Moreover, CatBoost and XGBoost had also steady and effective results when used with both optimization techniques. On the other hand, KNN exhibited overfitting and LR failed to capture stability patterns. These results prove that optimized SVM models are very useful for real-time monitoring of superconductor stability. Such models help make wise and prompt decisions which leads to stronger resilience in the smart grid and efficient energy use. Deploying these models under real-time, noisy, and dynamic grid environments for broader applicability would be more beneficial. •Utilization of ML-based techniques to develop predictive models to identify the stability state of smart grids.•Conducting the training and testing of the predictive model using the UCI smart grid stability dataset.•Performing the hyperparameter tuning through GridSearchCV technique.•Achieving the great efficiency of the CatBoost with the numerous accuracy and precision values of 0.944333, and 0.924905.•Providing competitive performance of XGBoost, due to their ability to understand complex relationships in the data.
ArticleNumber 101175
Author Wang, Xuan
Zhou, Feng
Zhang, XiaoFeng
Xu, Xiang
Author_xml – sequence: 1
  givenname: Xuan
  surname: Wang
  fullname: Wang, Xuan
  organization: Jiaxing Key Laboratory of Intelligent Manufacturing and Operation & Maintenance of Automotive Parts, College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing, China
– sequence: 2
  givenname: XiaoFeng
  surname: Zhang
  fullname: Zhang, XiaoFeng
  email: karen6886@163.com
  organization: Beijing Institute of Technology,, Zhuhai, Guangdong 519088, China
– sequence: 3
  givenname: Feng
  surname: Zhou
  fullname: Zhou, Feng
  organization: College of Information Engineering, Jiaxing Nanhu University, Jiaxing, Zhejiang 314000, China
– sequence: 4
  givenname: Xiang
  surname: Xu
  fullname: Xu, Xiang
  organization: College of Information Engineering, Jiaxing Nanhu University, Jiaxing, Zhejiang 314000, China
BookMark eNp9kM1qwzAQhHVIoWmaN-hBL-BUki3Z7qEQQv8g0EObs5CldbrBsYOkFPL2lXGPpXtZWGaG2e-GzPqhB0LuOFtxxtX9YRXOwQ7HlWBCjideyhmZC8FZJvOyvibLEA4sjVS8zos5iR9H4yPde3Q0RNNgh_FCTx4c2ohDT88B-z1NGmzRouko9hG6DvfQW3ig6-Q6uwttTABHkz5-Ad1t3mj4K9eZmHTxlly1pguw_N0Lsnt--ty8Ztv3l7fNeptZXoqYVbmRBnjVKFE5xQ0w1TSsBNdIUXHOwdSqLXlZFA7ygpnacKuUkKyqZeMKlS9IMeVaP4TgodUnj6nXRXOmR2D6oCdgegSmJ2DJ9jjZIHX7RvA6WBzfdejBRu0G_D_gB5WTe1A
Cites_doi 10.1080/23311916.2016.1167990
10.1016/j.aej.2023.05.063
10.1007/s11356-021-17671-4
10.54216/MOR.030205
10.1016/j.egyr.2024.06.034
10.1002/2050-7038.12706
10.1109/ACCESS.2022.3166146
10.1186/s41601-023-00319-5
10.1016/j.rineng.2024.103261
10.1109/ACCESS.2023.3326724
10.52783/jes.1463
10.1016/j.epsr.2023.109792
10.54216/JAIM.090102
10.70470/KHWARIZMIA/2023/011
10.3390/ma15217432
10.3390/su15075949
10.1016/j.rser.2016.03.039
10.1016/j.cosrev.2024.100617
10.1007/s42979-021-00463-5
10.1140/epjst/e2015-50136-y
10.1007/s13042-023-01796-8
10.1016/j.egyr.2024.04.059
10.1109/ACCESS.2022.3187839
10.11591/ijece.v10i2.pp1179-1186
10.1016/j.joule.2023.01.001
10.1016/j.neucom.2017.08.017
10.1016/j.apenergy.2020.115733
10.1016/j.est.2023.108926
10.1109/ACCESS.2020.2991067
10.21833/ijaas.2024.05.025
10.1016/j.egyr.2024.09.056
10.1111/exsy.12832
10.51594/estj.v4i6.636
10.1016/j.est.2021.102811
10.3390/s21238087
10.1016/j.engappai.2023.107368
10.1016/j.rser.2022.112128
10.1016/j.rser.2023.114023
10.1016/j.eswa.2023.122147
10.1371/journal.pone.0278491
10.1016/j.ijcip.2022.100547
10.1109/NPSC49263.2020.9331859
10.1002/er.6679
10.1109/ACCESS.2021.3111408
10.1186/s13705-021-00304-6
10.70470/SHIFRA/2024/006
10.1016/j.egyr.2024.08.069
10.1007/s43937-022-00013-x
10.1186/s42162-023-00262-7
10.1016/j.rser.2018.05.013
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.suscom.2025.101175
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_suscom_2025_101175
S2210537925000964
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SES
SPC
SPCBC
SSR
SSV
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c172t-83a5ae18b628d61ae06bb07edb528111ea96f71744de340a9a1c66250895bd463
IEDL.DBID .~1
ISSN 2210-5379
IngestDate Wed Sep 03 16:37:35 EDT 2025
Sat Sep 06 17:17:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords UCI smart grid stability dataset
Support vector machine
Stability prediction
Bayesian optimization
Smart grid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-83a5ae18b628d61ae06bb07edb528111ea96f71744de340a9a1c66250895bd463
ParticipantIDs crossref_primary_10_1016_j_suscom_2025_101175
elsevier_sciencedirect_doi_10_1016_j_suscom_2025_101175
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wazirali, Yaghoubi, Abujazar, Ahmad, Vakili (bib59) 2023; 225
M. El-kenawy, Ibrahim, Mirjalili, Zhang, Elnazer, M. Zaki (bib32) 2022; 71
Bingi, Prusty (bib53) 2021; 2021
Hussein, Abouessaouab (bib55) 2023; 2023
Wu, Chen, Zhang, Xiong, Lei, Deng (bib66) 2019; 17
Chandratreya (bib31) 2024; 20
Boopathy, Liyanage, Deepa, Velavali, Reddy, Maddikunta, Khare, Gadekallu, Hwang, Pham (bib46) 2024; 51
Ghasempour, Martínez-Ramón (bib47) 2023; 2023
Tiwari, Jain, Ahmed, Charu, Alkwai, Dafhalla, Hamad (bib52) 2022; 39
Alazab, Khan, Krishnan, Pham, Reddy, Gadekallu (bib69) 2020; 8
El-kenawy, Khodadadi, Mirjalili, Abdelhamid, Eid, Ibrahim (bib41) 2024; 238
Alsirhani, Alshahrani, Abukwaik, Taloba, Abd El-Aziz, Salem (bib54) 2023; 74
Al-Selwi, Hassan, Abdulkadir, Ragab, Alqushaibi, Sumiea (bib61) 2024; 24
Alhakeem, Jebur, Henedy, Imran, Bernardo, Hussein (bib63) 2022; 15
Raza, Rind, Javed, Zubair, Mehmood, Massoud (bib43) 2023
Abdullah, Hassan (bib24) 2022; 2
Biswas, Rashid, Biswas, Nasim, Gupta, George (bib44) 2024; 2406
Bashir, Khan, Prabadevi, Deepa, Alnumay, Gadekallu, Maddikunta (bib50) 2021; 31
Breviglieri, Erdem, Eken (bib51) 2021; 2
Mahmoud (bib3) 2025; 3
P.U. Rao, B. Sodhi, R. SodhiCyber security enhancement of smart grids via machine learning-a review, In: Proceedings of the 2020 21st National Power Systems Conference (NPSC), IEEE, 2020: pp. 1–6..
Abdalla, Nazir, Tao, Cao, Ji, Jiang, Yao (bib40) 2021; 40
Devaraj, Madurai Elavarasan, Shafiullah, Jamal, Khan (bib33) 2021; 45
Sarker, Shanmugam, Azam, Thennadil (bib58) 2024; 23
Naderi, Hosseini, Zadeh, Mohammadi-Ivatloo, Vasquez, Guerrero (bib16) 2018; 93
Muralitharan, Sakthivel, Vishnuvarthan (bib45) 2018; 273
Salkuti (bib23) 2020; 10
Yanmei, Mingsheng, Yangyang, Yaping, Jingyun, Yifeng, Chunyang (bib49) 2024; 15
S.S. Sarma, M.R.P. ReddyAssimilation of sustainable energy resources into the smart grid: current advancements in the realm of information and communication technologies, 2024..
Lepolesa, Achari, Cheng (bib65) 2022; 10
Padmini, Omran, Chatterjee, Khaparde (bib29) 2017; 2017
A. GéronHands-on machine learning with Scikit-Learn, Keras, and TensorFlow, “ O’Reilly Media, Inc.,” 2022..
Völker, Reinhardt, Faustine, Pereira (bib42) 2021; 14
Janjua, Ahmad, Abbas, Mohammed, Khan, Daud, Abbas, Khan (bib48) 2024; 11
El-kenawy, Mirjalili, Khodadadi, Abdelhamid, Eid, El-Said, Ibrahim (bib4) 2023; 18
Aderibigbe, Ani, Ohenhen, Ohalete, Daraojimba (bib34) 2023; 4
Gupta, Chaturvedi (bib20) 2023; 16
Abdullah, Periyasamy, Kamaludeen, Towfek, Marappan, Kidambi Raju, Alharbi, Khafaga (bib67) 2023; 15
H. Ritchie, P. Rosado, M. RoserElectricity mix, Our world in data 2024..
Zheng, Zhang, Huang, Liu, Cai, Bian, Chang, Du (bib39) 2023; 73
Moretti, Djomo, Azadi, May, De Vos, Van Passel, Witters (bib28) 2017; 68
Ahmad, Ghadi, Adnan, Ali (bib15) 2022; 10
Ahmad, Madonski, Zhang, Huang, Mujeeb (bib30) 2022; 160
Akagic, Džafić (bib36) 2024; 127
Abrahamsen, Ai, Cheffena (bib22) 2021; 21
Ibrahim, Mirjalili, El-Said, Ghoneim, Al-Harthi, Ibrahim, El-Kenawy (bib9) 2021; 9
Wang, Hausfather, Davis, Lloyd, Olson, Liebermann, Núñez-Mujica, McBride (bib10) 2023; 7
Stanelyte, Radziukynas (bib12) 2019; 13
Ahsan, Dana, Sarker, Li, Muyeen, Ali, Tasneem, Hasan, Abhi, Islam (bib25) 2023; 8
Owusu, Asumadu-Sarkodie (bib6) 2016; 3
Yang, Wang, Qin, Wang, Ma, Zhong (bib27) 2024; 12
Mohebbi, Sobhani (bib5) 2024; 003
Ye, Xie, Yu, Lu, Yan, Su, Wang, Jiang (bib26) 2024; 11
Alkanhel, El-Kenawy, Eid, Abualigah, Saeed (bib62) 2024; 12
Chen, Tackie, Ahakwa, Musah, Salakpi, Alfred, Atingabili (bib2) 2022; 29
Binbusayyis, Sha (bib60) 2025; 142
Nayyef, Abdulrahman, Al (bib56) 2024; 2024
Y. Naderi, S.H. Hosseini, S. Ghassemzadeh, B. Mohammadi-Ivatloo, M. Savaghebi, J.C. Vasquez, J.M. GuerreroPower quality issues of smart grids: applied methods and techniques, ResearchGate:[Сайт].–2019.–Сентябрь.–URL: Https://Www. Researchgate. Net/Publication/336124457_Power_Quality_Issues_of_Smart_Grids_Applied_Methods_and_Techniques2019.
Zheng, Shafique, Luo, Wang (bib17) 2024; 189
Gholizadeh, Abedi, Nafisi, Marzband (bib19) 2019; 51
Vo, Vo (bib1) 2021; 11
Berghout, Benbouzid, Muyeen (bib37) 2022; 38
Bakare, Abdulkarim, Zeeshan, Shuaibu (bib11) 2023; 6
Khaled, Singla (bib8) 2025; 09
Kiasari, Ghaffari, Aly (bib21) 2024; 17
Biswal, Deb, Datta, Ustun, Cali (bib57) 2024; 12
Schäfer, Grabow, Auer, Kurths, Witthaut, Timme (bib68) 2016; 225
McDonald, Wojszczyk, Flynn, Voloh (bib13) 2012
Shi, Yao, Li, Zeng, Zhao, Zhang, Tang, Wen (bib35) 2020; 278
Biswal (10.1016/j.suscom.2025.101175_bib57) 2024; 12
Salkuti (10.1016/j.suscom.2025.101175_bib23) 2020; 10
Nayyef (10.1016/j.suscom.2025.101175_bib56) 2024; 2024
Schäfer (10.1016/j.suscom.2025.101175_bib68) 2016; 225
Wang (10.1016/j.suscom.2025.101175_bib10) 2023; 7
Abdullah (10.1016/j.suscom.2025.101175_bib24) 2022; 2
Yanmei (10.1016/j.suscom.2025.101175_bib49) 2024; 15
Lepolesa (10.1016/j.suscom.2025.101175_bib65) 2022; 10
Vo (10.1016/j.suscom.2025.101175_bib1) 2021; 11
Zheng (10.1016/j.suscom.2025.101175_bib17) 2024; 189
Berghout (10.1016/j.suscom.2025.101175_bib37) 2022; 38
Ye (10.1016/j.suscom.2025.101175_bib26) 2024; 11
Zheng (10.1016/j.suscom.2025.101175_bib39) 2023; 73
Khaled (10.1016/j.suscom.2025.101175_bib8) 2025; 09
Muralitharan (10.1016/j.suscom.2025.101175_bib45) 2018; 273
Shi (10.1016/j.suscom.2025.101175_bib35) 2020; 278
Völker (10.1016/j.suscom.2025.101175_bib42) 2021; 14
Abdullah (10.1016/j.suscom.2025.101175_bib67) 2023; 15
Bingi (10.1016/j.suscom.2025.101175_bib53) 2021; 2021
Ghasempour (10.1016/j.suscom.2025.101175_bib47) 2023; 2023
Akagic (10.1016/j.suscom.2025.101175_bib36) 2024; 127
Alsirhani (10.1016/j.suscom.2025.101175_bib54) 2023; 74
Janjua (10.1016/j.suscom.2025.101175_bib48) 2024; 11
Hussein (10.1016/j.suscom.2025.101175_bib55) 2023; 2023
Wu (10.1016/j.suscom.2025.101175_bib66) 2019; 17
Tiwari (10.1016/j.suscom.2025.101175_bib52) 2022; 39
Moretti (10.1016/j.suscom.2025.101175_bib28) 2017; 68
Naderi (10.1016/j.suscom.2025.101175_bib16) 2018; 93
10.1016/j.suscom.2025.101175_bib7
Padmini (10.1016/j.suscom.2025.101175_bib29) 2017; 2017
Bakare (10.1016/j.suscom.2025.101175_bib11) 2023; 6
10.1016/j.suscom.2025.101175_bib38
Al-Selwi (10.1016/j.suscom.2025.101175_bib61) 2024; 24
Owusu (10.1016/j.suscom.2025.101175_bib6) 2016; 3
Kiasari (10.1016/j.suscom.2025.101175_bib21) 2024; 17
Ahmad (10.1016/j.suscom.2025.101175_bib15) 2022; 10
Bashir (10.1016/j.suscom.2025.101175_bib50) 2021; 31
M. El-kenawy (10.1016/j.suscom.2025.101175_bib32) 2022; 71
Raza (10.1016/j.suscom.2025.101175_bib43) 2023
El-kenawy (10.1016/j.suscom.2025.101175_bib4) 2023; 18
McDonald (10.1016/j.suscom.2025.101175_bib13) 2012
Biswas (10.1016/j.suscom.2025.101175_bib44) 2024; 2406
Alkanhel (10.1016/j.suscom.2025.101175_bib62) 2024; 12
Alhakeem (10.1016/j.suscom.2025.101175_bib63) 2022; 15
Ibrahim (10.1016/j.suscom.2025.101175_bib9) 2021; 9
Chandratreya (10.1016/j.suscom.2025.101175_bib31) 2024; 20
10.1016/j.suscom.2025.101175_bib64
Alazab (10.1016/j.suscom.2025.101175_bib69) 2020; 8
Gupta (10.1016/j.suscom.2025.101175_bib20) 2023; 16
Mahmoud (10.1016/j.suscom.2025.101175_bib3) 2025; 3
Aderibigbe (10.1016/j.suscom.2025.101175_bib34) 2023; 4
Sarker (10.1016/j.suscom.2025.101175_bib58) 2024; 23
Ahmad (10.1016/j.suscom.2025.101175_bib30) 2022; 160
Devaraj (10.1016/j.suscom.2025.101175_bib33) 2021; 45
Breviglieri (10.1016/j.suscom.2025.101175_bib51) 2021; 2
Abrahamsen (10.1016/j.suscom.2025.101175_bib22) 2021; 21
Abdalla (10.1016/j.suscom.2025.101175_bib40) 2021; 40
Yang (10.1016/j.suscom.2025.101175_bib27) 2024; 12
Boopathy (10.1016/j.suscom.2025.101175_bib46) 2024; 51
Chen (10.1016/j.suscom.2025.101175_bib2) 2022; 29
Binbusayyis (10.1016/j.suscom.2025.101175_bib60) 2025; 142
Ahsan (10.1016/j.suscom.2025.101175_bib25) 2023; 8
El-kenawy (10.1016/j.suscom.2025.101175_bib41) 2024; 238
Mohebbi (10.1016/j.suscom.2025.101175_bib5) 2024; 003
10.1016/j.suscom.2025.101175_bib18
Gholizadeh (10.1016/j.suscom.2025.101175_bib19) 2019; 51
Wazirali (10.1016/j.suscom.2025.101175_bib59) 2023; 225
Stanelyte (10.1016/j.suscom.2025.101175_bib12) 2019; 13
10.1016/j.suscom.2025.101175_bib14
References_xml – reference: Y. Naderi, S.H. Hosseini, S. Ghassemzadeh, B. Mohammadi-Ivatloo, M. Savaghebi, J.C. Vasquez, J.M. GuerreroPower quality issues of smart grids: applied methods and techniques, ResearchGate:[Сайт].–2019.–Сентябрь.–URL: Https://Www. Researchgate. Net/Publication/336124457_Power_Quality_Issues_of_Smart_Grids_Applied_Methods_and_Techniques2019.
– volume: 17
  start-page: 4128
  year: 2024
  ident: bib21
  article-title: A comprehensive review of the current status of smart grid technologies for renewable energies integration and future trends: the role of machine learning and energy storage systems
  publication-title: Energy
– volume: 2
  start-page: 8
  year: 2022
  ident: bib24
  article-title: Smart grid (SG) properties and challenges: an overview
  publication-title: Discov. Energy
– volume: 68
  start-page: 888
  year: 2017
  end-page: 898
  ident: bib28
  article-title: A systematic review of environmental and economic impacts of smart grids
  publication-title: Renew. Sustain. Energy Rev.
– volume: 2024
  start-page: 46
  year: 2024
  end-page: 54
  ident: bib56
  article-title: Kurdi, Optimizing energy efficiency in smart grids using machine learning algorithms: a case study in electrical engineering
  publication-title: SHIFRA
– volume: 29
  start-page: 37598
  year: 2022
  end-page: 37616
  ident: bib2
  article-title: RETRACTED ARTICLE: does energy consumption, economic growth, urbanization, and population growth influence carbon emissions in the BRICS? Evidence from panel models robust to cross-sectional dependence and slope heterogeneity
  publication-title: Environ. Sci. Pollut. Res.
– reference: P.U. Rao, B. Sodhi, R. SodhiCyber security enhancement of smart grids via machine learning-a review, In: Proceedings of the 2020 21st National Power Systems Conference (NPSC), IEEE, 2020: pp. 1–6..
– volume: 11
  start-page: 30
  year: 2021
  ident: bib1
  article-title: Renewable energy and population growth for sustainable development in the Southeast Asian countries
  publication-title: Energy Sustain. Soc.
– volume: 39
  year: 2022
  ident: bib52
  article-title: Machine learning-based model for prediction of power consumption in smart grid-smart way towards smart city
  publication-title: Expert Syst.
– volume: 189
  year: 2024
  ident: bib17
  article-title: A systematic review towards integrative energy management of smart grids and urban energy systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 8
  start-page: 85454
  year: 2020
  end-page: 85463
  ident: bib69
  article-title: A multidirectional LSTM model for predicting the stability of a smart grid
  publication-title: IEEE Access
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 6
  ident: bib53
  article-title: Neural network-based models for prediction of smart grid stability
  publication-title: Innovations in Power and Advanced Computing Technologies (i-PACT)
– reference: S.S. Sarma, M.R.P. ReddyAssimilation of sustainable energy resources into the smart grid: current advancements in the realm of information and communication technologies, 2024..
– reference: A. GéronHands-on machine learning with Scikit-Learn, Keras, and TensorFlow, “ O’Reilly Media, Inc.,” 2022..
– volume: 6
  start-page: 4
  year: 2023
  ident: bib11
  article-title: A comprehensive overview on demand side energy management towards smart grids: challenges, solutions, and future direction
  publication-title: Energy Inform.
– volume: 160
  year: 2022
  ident: bib30
  article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm
  publication-title: Renew. Sustain. Energy Rev.
– volume: 7
  start-page: 309
  year: 2023
  end-page: 332
  ident: bib10
  article-title: Future demand for electricity generation materials under different climate mitigation scenarios
  publication-title: Joule
– volume: 23
  year: 2024
  ident: bib58
  article-title: Enhancing smart grid load forecasting: An attention-based deep learning model integrated with federated learning and XAI for security and interpretability
  publication-title: Intell. Syst. Appl.
– volume: 2
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib51
  article-title: Predicting smart grid stability with optimized deep models
  publication-title: SN Comput. Sci.
– start-page: 7
  year: 2012
  end-page: 68
  ident: bib13
  article-title: Distribution systems, substations, and integration of distributed generation
  publication-title: Electrical Transmission Systems and Smart Grids: Selected Entries from the Encyclopedia of Sustainability Science and Technology
– volume: 10
  start-page: 1179
  year: 2020
  end-page: 1186
  ident: bib23
  article-title: Challenges, issues and opportunities for the development of smart grid
  publication-title: Int. J. Electr. Comput. Eng. (IJECE)
– volume: 09
  start-page: 11
  year: 2025
  end-page: 19
  ident: bib8
  article-title: Predictive analysis of groundwater resources using random forest regression
  publication-title: J. Artif. Intell. Metaheuristics
– volume: 2023
  start-page: 113
  year: 2023
  end-page: 120
  ident: bib55
  article-title: Optimizing energy efficiency in smart grids using machine learning algorithms: a case study in electrical engineering
  publication-title: KHWARIZMIA
– volume: 12
  start-page: 305
  year: 2024
  end-page: 320
  ident: bib62
  article-title: Optimizing IoT-driven smart grid stability prediction with dipper throated optimization algorithm for gradient boosting hyperparameters
  publication-title: Energy Rep.
– volume: 15
  start-page: 129
  year: 2024
  end-page: 148
  ident: bib49
  article-title: Enhanced neighborhood node graph neural networks for load forecasting in smart grid
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 31
  year: 2021
  ident: bib50
  article-title: Comparative analysis of machine learning algorithms for prediction of smart grid stability
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 3
  start-page: 47
  year: 2025
  end-page: 58
  ident: bib3
  article-title: A review on waste management techniques for sustainable energy production
  publication-title: Metaheuristic Optim. Rev.
– volume: 278
  year: 2020
  ident: bib35
  article-title: Artificial intelligence techniques for stability analysis and control in smart grids: methodologies, applications, challenges and future directions
  publication-title: Appl. Energy
– volume: 15
  start-page: 5949
  year: 2023
  ident: bib67
  article-title: Optimizing traffic flow in smart cities: soft GRU-based recurrent neural networks for enhanced congestion prediction using deep learning
  publication-title: Sustainability
– volume: 93
  start-page: 201
  year: 2018
  end-page: 214
  ident: bib16
  article-title: An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks
  publication-title: Renew. Sustain. Energy Rev.
– volume: 10
  start-page: 39638
  year: 2022
  end-page: 39655
  ident: bib65
  article-title: Electricity theft detection in smart grids based on deep neural network
  publication-title: IEEE Access
– volume: 10
  start-page: 71054
  year: 2022
  end-page: 71090
  ident: bib15
  article-title: Load forecasting techniques for power system: research challenges and survey
  publication-title: IEEE Access
– volume: 11
  start-page: 230
  year: 2024
  end-page: 248
  ident: bib48
  article-title: Enhancing smart grid electricity prediction with the fusion of intelligent modeling and XAI integration
  publication-title: Int. J. Adv. Appl. Sci.
– volume: 20
  start-page: 1580
  year: 2024
  end-page: 1587
  ident: bib31
  article-title: AI-powered innovations in electrical engineering: enhancing efficiency, reliability, and sustainability
  publication-title: J. Electr. Syst.
– volume: 40
  year: 2021
  ident: bib40
  article-title: Integration of energy storage system and renewable energy sources based on artificial intelligence: an overview
  publication-title: J. Energy Storage
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 6
  ident: bib47
  article-title: Short-term electric load prediction in smart grid using multi-output gaussian processes regression
  publication-title: IEEE Kansas Power and Energy Conference (KPEC)
– volume: 21
  start-page: 8087
  year: 2021
  ident: bib22
  article-title: Communication technologies for smart grid: a comprehensive survey
  publication-title: Sensors
– volume: 12
  start-page: 3654
  year: 2024
  end-page: 3670
  ident: bib57
  article-title: Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques
  publication-title: Energy Rep.
– volume: 225
  year: 2023
  ident: bib59
  article-title: State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques
  publication-title: Electr. Power Syst. Res.
– volume: 51
  year: 2024
  ident: bib46
  article-title: Deep learning for intelligent demand response and smart grids: a comprehensive survey
  publication-title: Comput. Sci. Rev.
– volume: 273
  start-page: 199
  year: 2018
  end-page: 208
  ident: bib45
  article-title: Neural network based optimization approach for energy demand prediction in smart grid
  publication-title: Neurocomputing
– volume: 73
  year: 2023
  ident: bib39
  article-title: Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage
  publication-title: J. Energy Storage
– volume: 16
  start-page: 6016
  year: 2023
  ident: bib20
  article-title: Adaptive energy management of big data analytics in smart grids
  publication-title: Energy
– volume: 11
  start-page: 5069
  year: 2024
  end-page: 5082
  ident: bib26
  article-title: Technical and economic study of renewable-energy-powered system for a newly constructed city in China
  publication-title: Energy Rep.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib29
  article-title: Cost benefit analysis of smart grid: A case study from India
  publication-title: North American Power Symposium (NAPS)
– volume: 45
  start-page: 13489
  year: 2021
  end-page: 13530
  ident: bib33
  article-title: A holistic review on energy forecasting using big data and deep learning models
  publication-title: Int. J. Energy Res.
– volume: 38
  year: 2022
  ident: bib37
  article-title: Machine learning for cybersecurity in smart grids: a comprehensive review-based study on methods, solutions, and prospects
  publication-title: Int. J. Crit. Infrastruct. Prot.
– reference: H. Ritchie, P. Rosado, M. RoserElectricity mix, Our world in data 2024..
– volume: 3
  start-page: 1167990
  year: 2016
  ident: bib6
  article-title: A review of renewable energy sources, sustainability issues and climate change mitigation
  publication-title: Cogent Eng.
– volume: 4
  start-page: 341
  year: 2023
  end-page: 356
  ident: bib34
  article-title: Enhancing energy efficiency with ai: a review of machine learning models in electricity demand forecasting
  publication-title: Eng. Sci. Technol. J.
– volume: 15
  start-page: 7432
  year: 2022
  ident: bib63
  article-title: Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with GridSearchCV hyperparameter-optimization techniques
  publication-title: Materials
– volume: 8
  start-page: 1
  year: 2023
  end-page: 42
  ident: bib25
  article-title: Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review
  publication-title: Prot. Control Mod. Power Syst.
– volume: 2406
  year: 2024
  ident: bib44
  article-title: AI-driven approaches for optimizing power consumption: a comprehensive survey
  publication-title: ArXiv Prepr. ArXiv
– volume: 18
  year: 2023
  ident: bib4
  article-title: Feature selection in wind speed forecasting systems based on meta-heuristic optimization
  publication-title: PLOS One
– volume: 13
  start-page: 58
  year: 2019
  ident: bib12
  article-title: Review of voltage and reactive power control algorithms in electrical distribution networks
  publication-title: Energy
– volume: 24
  year: 2024
  ident: bib61
  article-title: Smart grid stability prediction using adaptive aquila optimizer and ensemble stacked BiLSTM
  publication-title: Results Eng.
– year: 2023
  ident: bib43
  article-title: Smart meters for smart energy: a review of business intelligence applications
  publication-title: IEEE Access
– volume: 142
  year: 2025
  ident: bib60
  article-title: Stability prediction in smart grid using PSO optimized XGBoost algorithm with dynamic inertia weight updation
  publication-title: CMESComput. Model. Eng. Sci.
– volume: 12
  start-page: 2786
  year: 2024
  end-page: 2800
  ident: bib27
  article-title: Review of vehicle to grid integration to support power grid security
  publication-title: Energy Rep.
– volume: 9
  start-page: 125787
  year: 2021
  end-page: 125804
  ident: bib9
  article-title: Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm
  publication-title: IEEE Access
– volume: 74
  start-page: 495
  year: 2023
  end-page: 508
  ident: bib54
  article-title: A novel approach to predicting the stability of the smart grid utilizing MLP-ELM technique
  publication-title: Alex. Eng. J.
– volume: 14
  start-page: 719
  year: 2021
  ident: bib42
  article-title: Watt’s up at home? Smart meter data analytics from a consumer-centric perspective
  publication-title: Energy
– volume: 127
  year: 2024
  ident: bib36
  article-title: Enhancing smart grid resilience with deep learning anomaly detection prior to state estimation
  publication-title: Eng. Appl. Artif. Intell.
– volume: 238
  year: 2024
  ident: bib41
  article-title: Greylag Goose Optimization: Nature-inspired optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 225
  start-page: 569
  year: 2016
  end-page: 582
  ident: bib68
  article-title: Taming instabilities in power grid networks by decentralized control
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 71
  start-page: 4989
  year: 2022
  end-page: 5003
  ident: bib32
  article-title: Optimized ensemble algorithm for predicting metamaterial antenna parameters
  publication-title: Comput. Mater. Contin.
– volume: 51
  start-page: 211
  year: 2019
  end-page: 218
  ident: bib19
  article-title: Learning-based energy management system for scheduling of appliances inside smart homes
  publication-title: AUT J. Electr. Eng.
– volume: 17
  start-page: 26
  year: 2019
  end-page: 40
  ident: bib66
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization
  publication-title: J. Electron. Sci. Technol.
– volume: 003
  start-page: 143
  year: 2024
  end-page: 175
  ident: bib5
  article-title: Enhancing residential electricity consumption forecasting with meta-heuristic algorithms
  publication-title: Adv. Eng. Intell. Syst.
– volume: 3
  start-page: 1167990
  year: 2016
  ident: 10.1016/j.suscom.2025.101175_bib6
  article-title: A review of renewable energy sources, sustainability issues and climate change mitigation
  publication-title: Cogent Eng.
  doi: 10.1080/23311916.2016.1167990
– ident: 10.1016/j.suscom.2025.101175_bib7
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib47
  article-title: Short-term electric load prediction in smart grid using multi-output gaussian processes regression
– volume: 74
  start-page: 495
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib54
  article-title: A novel approach to predicting the stability of the smart grid utilizing MLP-ELM technique
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.05.063
– volume: 29
  start-page: 37598
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib2
  article-title: RETRACTED ARTICLE: does energy consumption, economic growth, urbanization, and population growth influence carbon emissions in the BRICS? Evidence from panel models robust to cross-sectional dependence and slope heterogeneity
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-17671-4
– volume: 3
  start-page: 47
  year: 2025
  ident: 10.1016/j.suscom.2025.101175_bib3
  article-title: A review on waste management techniques for sustainable energy production
  publication-title: Metaheuristic Optim. Rev.
  doi: 10.54216/MOR.030205
– volume: 12
  start-page: 305
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib62
  article-title: Optimizing IoT-driven smart grid stability prediction with dipper throated optimization algorithm for gradient boosting hyperparameters
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.06.034
– volume: 31
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib50
  article-title: Comparative analysis of machine learning algorithms for prediction of smart grid stability
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12706
– volume: 10
  start-page: 39638
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib65
  article-title: Electricity theft detection in smart grids based on deep neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166146
– volume: 8
  start-page: 1
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib25
  article-title: Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review
  publication-title: Prot. Control Mod. Power Syst.
  doi: 10.1186/s41601-023-00319-5
– volume: 2406
  issue: 15732
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib44
  article-title: AI-driven approaches for optimizing power consumption: a comprehensive survey
  publication-title: ArXiv Prepr. ArXiv
– ident: 10.1016/j.suscom.2025.101175_bib18
– volume: 24
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib61
  article-title: Smart grid stability prediction using adaptive aquila optimizer and ensemble stacked BiLSTM
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.103261
– volume: 17
  start-page: 26
  year: 2019
  ident: 10.1016/j.suscom.2025.101175_bib66
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization
  publication-title: J. Electron. Sci. Technol.
– year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib43
  article-title: Smart meters for smart energy: a review of business intelligence applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3326724
– volume: 20
  start-page: 1580
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib31
  article-title: AI-powered innovations in electrical engineering: enhancing efficiency, reliability, and sustainability
  publication-title: J. Electr. Syst.
  doi: 10.52783/jes.1463
– volume: 225
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib59
  article-title: State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109792
– volume: 09
  start-page: 11
  year: 2025
  ident: 10.1016/j.suscom.2025.101175_bib8
  article-title: Predictive analysis of groundwater resources using random forest regression
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.090102
– volume: 13
  start-page: 58
  year: 2019
  ident: 10.1016/j.suscom.2025.101175_bib12
  article-title: Review of voltage and reactive power control algorithms in electrical distribution networks
  publication-title: Energy
– volume: 142
  year: 2025
  ident: 10.1016/j.suscom.2025.101175_bib60
  article-title: Stability prediction in smart grid using PSO optimized XGBoost algorithm with dynamic inertia weight updation
  publication-title: CMESComput. Model. Eng. Sci.
– volume: 16
  start-page: 6016
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib20
  article-title: Adaptive energy management of big data analytics in smart grids
  publication-title: Energy
– ident: 10.1016/j.suscom.2025.101175_bib64
– volume: 2023
  start-page: 113
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib55
  article-title: Optimizing energy efficiency in smart grids using machine learning algorithms: a case study in electrical engineering
  publication-title: KHWARIZMIA
  doi: 10.70470/KHWARIZMIA/2023/011
– volume: 15
  start-page: 7432
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib63
  article-title: Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with GridSearchCV hyperparameter-optimization techniques
  publication-title: Materials
  doi: 10.3390/ma15217432
– volume: 15
  start-page: 5949
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib67
  article-title: Optimizing traffic flow in smart cities: soft GRU-based recurrent neural networks for enhanced congestion prediction using deep learning
  publication-title: Sustainability
  doi: 10.3390/su15075949
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib53
  article-title: Neural network-based models for prediction of smart grid stability
– volume: 68
  start-page: 888
  year: 2017
  ident: 10.1016/j.suscom.2025.101175_bib28
  article-title: A systematic review of environmental and economic impacts of smart grids
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.03.039
– volume: 51
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib46
  article-title: Deep learning for intelligent demand response and smart grids: a comprehensive survey
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2024.100617
– volume: 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib51
  article-title: Predicting smart grid stability with optimized deep models
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00463-5
– volume: 225
  start-page: 569
  year: 2016
  ident: 10.1016/j.suscom.2025.101175_bib68
  article-title: Taming instabilities in power grid networks by decentralized control
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2015-50136-y
– volume: 15
  start-page: 129
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib49
  article-title: Enhanced neighborhood node graph neural networks for load forecasting in smart grid
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-023-01796-8
– volume: 11
  start-page: 5069
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib26
  article-title: Technical and economic study of renewable-energy-powered system for a newly constructed city in China
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.04.059
– volume: 10
  start-page: 71054
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib15
  article-title: Load forecasting techniques for power system: research challenges and survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3187839
– volume: 10
  start-page: 1179
  year: 2020
  ident: 10.1016/j.suscom.2025.101175_bib23
  article-title: Challenges, issues and opportunities for the development of smart grid
  publication-title: Int. J. Electr. Comput. Eng. (IJECE)
  doi: 10.11591/ijece.v10i2.pp1179-1186
– volume: 7
  start-page: 309
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib10
  article-title: Future demand for electricity generation materials under different climate mitigation scenarios
  publication-title: Joule
  doi: 10.1016/j.joule.2023.01.001
– volume: 273
  start-page: 199
  year: 2018
  ident: 10.1016/j.suscom.2025.101175_bib45
  article-title: Neural network based optimization approach for energy demand prediction in smart grid
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.017
– volume: 278
  year: 2020
  ident: 10.1016/j.suscom.2025.101175_bib35
  article-title: Artificial intelligence techniques for stability analysis and control in smart grids: methodologies, applications, challenges and future directions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115733
– volume: 73
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib39
  article-title: Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108926
– volume: 003
  start-page: 143
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib5
  article-title: Enhancing residential electricity consumption forecasting with meta-heuristic algorithms
  publication-title: Adv. Eng. Intell. Syst.
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.suscom.2025.101175_bib29
  article-title: Cost benefit analysis of smart grid: A case study from India
– volume: 8
  start-page: 85454
  year: 2020
  ident: 10.1016/j.suscom.2025.101175_bib69
  article-title: A multidirectional LSTM model for predicting the stability of a smart grid
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991067
– volume: 11
  start-page: 230
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib48
  article-title: Enhancing smart grid electricity prediction with the fusion of intelligent modeling and XAI integration
  publication-title: Int. J. Adv. Appl. Sci.
  doi: 10.21833/ijaas.2024.05.025
– volume: 12
  start-page: 3654
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib57
  article-title: Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.09.056
– volume: 39
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib52
  article-title: Machine learning-based model for prediction of power consumption in smart grid-smart way towards smart city
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12832
– volume: 4
  start-page: 341
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib34
  article-title: Enhancing energy efficiency with ai: a review of machine learning models in electricity demand forecasting
  publication-title: Eng. Sci. Technol. J.
  doi: 10.51594/estj.v4i6.636
– volume: 51
  start-page: 211
  year: 2019
  ident: 10.1016/j.suscom.2025.101175_bib19
  article-title: Learning-based energy management system for scheduling of appliances inside smart homes
  publication-title: AUT J. Electr. Eng.
– ident: 10.1016/j.suscom.2025.101175_bib14
– volume: 40
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib40
  article-title: Integration of energy storage system and renewable energy sources based on artificial intelligence: an overview
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102811
– volume: 21
  start-page: 8087
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib22
  article-title: Communication technologies for smart grid: a comprehensive survey
  publication-title: Sensors
  doi: 10.3390/s21238087
– volume: 71
  start-page: 4989
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib32
  article-title: Optimized ensemble algorithm for predicting metamaterial antenna parameters
  publication-title: Comput. Mater. Contin.
– volume: 127
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib36
  article-title: Enhancing smart grid resilience with deep learning anomaly detection prior to state estimation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107368
– start-page: 7
  year: 2012
  ident: 10.1016/j.suscom.2025.101175_bib13
  article-title: Distribution systems, substations, and integration of distributed generation
– volume: 160
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib30
  article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112128
– volume: 189
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib17
  article-title: A systematic review towards integrative energy management of smart grids and urban energy systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.114023
– volume: 238
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib41
  article-title: Greylag Goose Optimization: Nature-inspired optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122147
– volume: 18
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib4
  article-title: Feature selection in wind speed forecasting systems based on meta-heuristic optimization
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0278491
– volume: 38
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib37
  article-title: Machine learning for cybersecurity in smart grids: a comprehensive review-based study on methods, solutions, and prospects
  publication-title: Int. J. Crit. Infrastruct. Prot.
  doi: 10.1016/j.ijcip.2022.100547
– volume: 17
  start-page: 4128
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib21
  article-title: A comprehensive review of the current status of smart grid technologies for renewable energies integration and future trends: the role of machine learning and energy storage systems
  publication-title: Energy
– ident: 10.1016/j.suscom.2025.101175_bib38
  doi: 10.1109/NPSC49263.2020.9331859
– volume: 45
  start-page: 13489
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib33
  article-title: A holistic review on energy forecasting using big data and deep learning models
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6679
– volume: 23
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib58
  article-title: Enhancing smart grid load forecasting: An attention-based deep learning model integrated with federated learning and XAI for security and interpretability
  publication-title: Intell. Syst. Appl.
– volume: 9
  start-page: 125787
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib9
  article-title: Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111408
– volume: 11
  start-page: 30
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib1
  article-title: Renewable energy and population growth for sustainable development in the Southeast Asian countries
  publication-title: Energy Sustain. Soc.
  doi: 10.1186/s13705-021-00304-6
– volume: 14
  start-page: 719
  year: 2021
  ident: 10.1016/j.suscom.2025.101175_bib42
  article-title: Watt’s up at home? Smart meter data analytics from a consumer-centric perspective
  publication-title: Energy
– volume: 2024
  start-page: 46
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib56
  article-title: Kurdi, Optimizing energy efficiency in smart grids using machine learning algorithms: a case study in electrical engineering
  publication-title: SHIFRA
  doi: 10.70470/SHIFRA/2024/006
– volume: 12
  start-page: 2786
  year: 2024
  ident: 10.1016/j.suscom.2025.101175_bib27
  article-title: Review of vehicle to grid integration to support power grid security
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.08.069
– volume: 2
  start-page: 8
  year: 2022
  ident: 10.1016/j.suscom.2025.101175_bib24
  article-title: Smart grid (SG) properties and challenges: an overview
  publication-title: Discov. Energy
  doi: 10.1007/s43937-022-00013-x
– volume: 6
  start-page: 4
  year: 2023
  ident: 10.1016/j.suscom.2025.101175_bib11
  article-title: A comprehensive overview on demand side energy management towards smart grids: challenges, solutions, and future direction
  publication-title: Energy Inform.
  doi: 10.1186/s42162-023-00262-7
– volume: 93
  start-page: 201
  year: 2018
  ident: 10.1016/j.suscom.2025.101175_bib16
  article-title: An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.05.013
SSID ssj0000561934
Score 2.3309438
Snippet Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101175
SubjectTerms Bayesian optimization
Smart grid
Stability prediction
Support vector machine
UCI smart grid stability dataset
Title Smart grid stability prediction using artificial intelligence: A study based on the UCI smart grid stability dataset
URI https://dx.doi.org/10.1016/j.suscom.2025.101175
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqsrDwRpRH5YE1NHFsx2GrKqoWpC6lUrfIjp0qSJSqTQcWvp1780BFqhgYMsTyjZyT5D7i42NC7lOICuDkhJdGBgoUCBmeElx7qXRK-o4znpVqnxM5mvHnuZi3yKBZC4O0ytr3Vz699NZ1S69Gs7fK896UQbUiwihmpaa_RE1QziPUz3_4Cn7-s2CGHJeTy9jfQ4NmBV1J89psN0gbYRD7sSlAwuG-CLUTdYYn5KhOF2m_GtEpabnlGTlutmKg9Zd5TorpO4yaLta5pZDvlYzXT7pa4zQMQk-R376geGeVZATNd7Q4H2mfljqzFIOapdAf8kI6G4zpZt91kVa6ccUFmQ2fXgcjr95QwUshTyk8FWqhXaCMZMrKQDtfGuNHzhrBFDg9p2OZQX3HuXUh93Wsg1RCgeSrWBjLZXhJ2suPpbsiNEqt8YWwoc0YV8wq5nTINBx-amQWdojXgJisKt2MpCGUvSUV6AmCnlSgd0jUIJ38ev4JuPY_La__bXlDDvGsYozdknax3ro7SDEK0y3foS456I9fRpNvAaTROg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27bsIwFLUoDO3Sd1X69NA1InFsx-mGUFEolAWQ2CI7dhCVShEJQ_--13lUVEIdOmRxciPnyLkP-_gYoacEogI4OeYkgYICBUKGIxiVTsKN4K6hhKaF2ueYRzP6OmfzBurVe2EsrbLy_aVPL7x11dKp0Oysl8vOhEC1wvwgJIWmP6cHqGXVqWCwt7qDYTT-mWqxSXJYrC9bE8fa1JvoCqZXts0sc4RA-LdNnuUc7gtSO4Gnf4qOq4wRd8tOnaGGWZ2jk_o0Blz9nBcon3xAx_Fis9QYUr6C9PqF1xu7EmPRx5bivsD240rVCLzckeN8xl1cSM1iG9c0huchNcSz3gBn-95rmaWZyS_RrP8y7UVOdaaCk0CqkjvCl0waTyhOhOaeNC5Xyg2MVowI8HtGhjyFEo9SbXzqylB6CYcayRUhU5py_wo1V58rc41wkGjlMqZ9nRIqiBbESJ9IuNxE8dRvI6cGMV6X0hlxzSl7j0vQYwt6XILeRkGNdPxrCMTg3f-0vPm35SM6jKZvo3g0GA9v0ZG9UxLI7lAz32zNPWQcuXqoRtQ3OVzT6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+grid+stability+prediction+using+artificial+intelligence%3A+A+study+based+on+the+UCI+smart+grid+stability+dataset&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Wang%2C+Xuan&rft.au=Zhang%2C+XiaoFeng&rft.au=Zhou%2C+Feng&rft.au=Xu%2C+Xiang&rft.date=2025-09-01&rft.issn=2210-5379&rft.volume=47&rft.spage=101175&rft_id=info:doi/10.1016%2Fj.suscom.2025.101175&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2025_101175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon