Effect of ultrasonic treatment on the surface hydrophobicity of pyrite: Properties and mechanism of ultrasonic products
[Display omitted] •Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.•Fe2+ oxidation to Fe3+ via dissolved oxygen consumption enhances pyrite oxidation.•Suspended substances outcompete pyrite in sodium butyl xanthate adsorption.•The hydrophobicity of pyrite is poor i...
Saved in:
Published in | Minerals engineering Vol. 233; p. 109661 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0892-6875 |
DOI | 10.1016/j.mineng.2025.109661 |
Cover
Loading…
Abstract | [Display omitted]
•Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.•Fe2+ oxidation to Fe3+ via dissolved oxygen consumption enhances pyrite oxidation.•Suspended substances outcompete pyrite in sodium butyl xanthate adsorption.•The hydrophobicity of pyrite is poor in ultrasonic pulp but remains good in clean pulp.•The phenomenon of ultrasonic products of pyrite was first proposed and studied.
The conventional depression of pyrite via excessive lime addition in flotation systems leads to persistent mineral residues in tailings, while simultaneously hindering timely reactivation for recovery. These residual pyrite-bearing tailings undergo progressive oxidative dissolution when exposed to meteoric water, inducing acid mine drainage generation through sustained proton release. Ultrasonic treatment and its derived products were found to effectively inhibit pyrite, eliminating the requirement for high lime dosages. In this study, pyrite was selected as the research subject to investigate the effects of ultrasonic products on their hydrophobicity—specifically, whether the removal of dissolved Fe2+ and Fe3+ ions and suspended substances in the turbid pulp after ultrasonic treatment affected the hydrophobicity of the pyrite surface. The experimental results indicated that the ultrasonic pulp contained 6.94 × 10-3 mol/L of Fe2+ and 5.42 × 10-3 mol/L of Fe3+, which facilitated the oxidation of pyrite. This process not only increased the proportion of Fe(III) on the pyrite surface but also led to the formation of hydrophilic precipitation of SOn2-, thereby reducing the hydrophobicity of pyrite. Additionally, the suspended substances in the ultrasonic pulp preferentially interacted with the collector, sodium butyl xanthate, hindering its adsorption on the surface of pyrite and exacerbating the reduction in hydrophobicity. Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity. |
---|---|
AbstractList | [Display omitted]
•Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.•Fe2+ oxidation to Fe3+ via dissolved oxygen consumption enhances pyrite oxidation.•Suspended substances outcompete pyrite in sodium butyl xanthate adsorption.•The hydrophobicity of pyrite is poor in ultrasonic pulp but remains good in clean pulp.•The phenomenon of ultrasonic products of pyrite was first proposed and studied.
The conventional depression of pyrite via excessive lime addition in flotation systems leads to persistent mineral residues in tailings, while simultaneously hindering timely reactivation for recovery. These residual pyrite-bearing tailings undergo progressive oxidative dissolution when exposed to meteoric water, inducing acid mine drainage generation through sustained proton release. Ultrasonic treatment and its derived products were found to effectively inhibit pyrite, eliminating the requirement for high lime dosages. In this study, pyrite was selected as the research subject to investigate the effects of ultrasonic products on their hydrophobicity—specifically, whether the removal of dissolved Fe2+ and Fe3+ ions and suspended substances in the turbid pulp after ultrasonic treatment affected the hydrophobicity of the pyrite surface. The experimental results indicated that the ultrasonic pulp contained 6.94 × 10-3 mol/L of Fe2+ and 5.42 × 10-3 mol/L of Fe3+, which facilitated the oxidation of pyrite. This process not only increased the proportion of Fe(III) on the pyrite surface but also led to the formation of hydrophilic precipitation of SOn2-, thereby reducing the hydrophobicity of pyrite. Additionally, the suspended substances in the ultrasonic pulp preferentially interacted with the collector, sodium butyl xanthate, hindering its adsorption on the surface of pyrite and exacerbating the reduction in hydrophobicity. Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity. |
ArticleNumber | 109661 |
Author | Sun, Wei Xie, Jie Lin, Qiqiang Cao, Yang Gao, Zhiyong Xiang, Meitao Sun, Lei Guo, Yuanhao |
Author_xml | – sequence: 1 givenname: Qiqiang surname: Lin fullname: Lin, Qiqiang organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 2 givenname: Lei surname: Sun fullname: Sun, Lei email: sunlei@csu.edu.cn organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 3 givenname: Yang surname: Cao fullname: Cao, Yang organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 4 givenname: Meitao surname: Xiang fullname: Xiang, Meitao organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 5 givenname: Yuanhao surname: Guo fullname: Guo, Yuanhao organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 6 givenname: Zhiyong surname: Gao fullname: Gao, Zhiyong organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 7 givenname: Jie surname: Xie fullname: Xie, Jie organization: Jinchuan Group Co.,Ltd, Jinchang 737100, China – sequence: 8 givenname: Wei surname: Sun fullname: Sun, Wei organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China |
BookMark | eNp9kMtKAzEUhrOoYFt9Axd5gam5zNWFIKVeoKALXYc0OXFSOsmQZJR5e6eMKxeuDnzwfxy-FVo47wChG0o2lNDy9rjprAP3uWGEFRNqypIu0JLUDcvKuiou0SrGIyGkqOpmib53xoBK2Bs8nFKQ0TurcAogUwdu4g6nFnAcgpEKcDvq4PvWH6yyaTyv-jHYBHf4beIQkoWIpdO4A9VKZ2P3x9wHrweV4hW6MPIU4fr3rtHH4-59-5ztX59etg_7TNGKpaxSQPmBskYxxnnNcwm1IQCG10C1ZLppcg01yYuiMQqUBGBcytwwTlipC75G-exVwccYwIg-2E6GUVAizsHEUczBxDmYmINNs_t5BtNvXxaCiMqCU6BtmHIJ7e3_gh_c7X3K |
Cites_doi | 10.1016/j.mineng.2019.106048 10.1016/j.seppur.2024.128398 10.1016/j.jclepro.2019.06.008 10.1016/j.ultsonch.2012.04.013 10.1016/j.mineng.2022.107828 10.1016/S0013-4686(03)00482-1 10.1016/j.mineng.2013.08.007 10.1016/j.ultsonch.2022.105962 10.1016/j.mineng.2021.106926 10.1016/0039-9140(74)80012-3 10.1016/j.mineng.2019.106170 10.1016/j.surfrep.2008.09.002 10.1016/j.seppur.2024.127815 10.1016/j.mineng.2005.07.016 10.1007/s10967-021-07857-y 10.1007/s11696-023-03203-6 10.1016/j.seppur.2020.116650 10.1007/s11368-017-1774-5 10.1016/j.mineng.2005.09.043 10.1016/j.mineng.2018.01.029 10.1016/j.seppur.2021.119573 10.1016/j.mineng.2016.11.005 10.1021/acs.langmuir.8b02929 10.1016/j.mineng.2014.03.020 10.1016/j.ultsonch.2019.104739 10.1016/j.mineng.2022.107636 10.1016/S1003-6326(22)66053-9 10.1021/acs.langmuir.7b04189 10.1016/j.ultsonch.2023.106551 10.1016/j.apsusc.2019.07.153 10.1016/j.jiec.2013.03.039 10.1111/gbi.12474 10.1016/j.molstruc.2013.06.015 10.1016/S0301-7516(03)00112-1 10.1016/j.jes.2016.01.012 10.1007/s11837-023-06067-z 10.1016/j.jclepro.2021.129666 10.17222/mit.2015.091 10.1016/j.jiec.2016.12.012 10.1016/j.ultsonch.2006.09.016 10.1016/j.apsusc.2023.156687 10.1016/j.hydromet.2020.105359 10.1080/00084433.2018.1535931 10.37190/ppmp/120291 10.1016/j.mineng.2016.11.012 10.1006/jcis.1995.1198 10.1016/j.apsusc.2024.161363 10.1016/j.colsurfa.2018.10.064 10.2116/analsci.24.1487 10.1016/j.electacta.2021.139078 10.1016/S1003-6326(19)65167-8 10.1016/j.ultsonch.2010.11.016 10.1016/j.mineng.2017.03.011 10.1007/s12613-023-2784-5 10.1016/j.jclepro.2020.125235 10.1016/j.mineng.2023.108290 10.1016/j.colsurfa.2023.131469 10.1016/j.minpro.2004.08.014 10.1016/j.coelec.2020.04.011 10.1016/j.ijmst.2023.08.004 10.1016/j.powtec.2017.01.069 10.1021/acs.langmuir.3c00678 10.1016/j.fuel.2011.10.032 10.1016/j.fuproc.2019.106150 10.1007/s11771-012-1196-x |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2025.109661 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_mineng_2025_109661 S0892687525004893 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SSG SSZ T5K WUQ XPP ZMT ~02 ~G- AAYXX CITATION EFLBG |
ID | FETCH-LOGICAL-c172t-7ce13b129c2233834ae8f0eef38e1da2d994de804559fcecaee23aa4f23026d53 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Wed Sep 03 16:36:41 EDT 2025 Sat Aug 30 17:13:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phenanthroline spectrophotometry Pyrite Hydrophobicity Dissolved oxygen Ultrasonic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-7ce13b129c2233834ae8f0eef38e1da2d994de804559fcecaee23aa4f23026d53 |
ParticipantIDs | crossref_primary_10_1016_j_mineng_2025_109661 elsevier_sciencedirect_doi_10_1016_j_mineng_2025_109661 |
PublicationCentury | 2000 |
PublicationDate | November 2025 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
PublicationDecade | 2020 |
PublicationTitle | Minerals engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yang, Mu, Peng (b0300) 2021; 168 Mu, Li, Peng (b0190) 2017; 101 Lu, Wang, Yuan, Zhang, Li, Wang (b0155) 2022; 188 Uzun, Mustafa, Atilgan (b0260) 2016; 50 Bulut, Atak (b0020) 2002; 19 Aleksei, Stanislav, Kirill, Agarwal, Lundström (b0005) 2020; 195 Zhang, Cao, Cao, Sun (b0320) 2013; 1048 Oktavia, Lim, Takeuchi (b0220) 2008; 24 Ashokkumar (b0010) 2011; ESS12) 18 He, Fornasiero, Skinner (b0100) 2005; 18 Zhang, Zhang, Zhang, Chen, Wang, Chen, Chen, Tian, Sun (b0310) 2023; 75 Niu, Chen, Li, Xia, Li, Sun, Ruan (b0210) 2019; 495 Khoso, Hu, Lyu, Liu, Sun (b0115) 2019; 232 Pak, Sun, Xu, Jo (b0235) 2012; 19 Newell, Bradshaw, Harris (b0205) 2006; 19 Feng, Luo (b0085) 2013; 53 Napieralski, Fang, Marcon, Forsythe, Brantley, Xu, Roden (b0200) 2022; 20 Li, Li, Wang, Yang, Chen (b0125) 2023; 33 Murphy, Strongin (b0195) 2009; 64 Ozkan (b0225) 2012; 93 Caldeira, Ciminelli, Dias, Osseo-Asare (b0025) 2003; 72 Qiu, Luo, Chen, Lv, Tan, Liu, Liu (b0240) 2016; 45 Ashokkumar, Lee, Kentish, Grieser (b0015) 2007; 14 Zhou, Tong, Dong, Bu, Ni, Xie, Alheshibri (b0330) 2023; 99 Daehn, Allanore (b0075) 2020; 22 Rooze, Rebrov, Schouten, Keurentjes (b0245) 2013; 20 Tamura, Goto, Yotsuyanagi, Nagayama (b0250) 1974; 21 Liao, Hu, Wen, Zheng, Qiu, Lü, Liu (b0140) 2022; 32 Ozun, Vaziri Hassas, Miller (b0230) 2019; 561 Cao, Zhang, Yan, Li, Liu (b0035) 2024; 78 Cao, Chen, Peng (b0040) 2018; 119 Yianatos, Carrasco, Vinnett, Rojas (b0305) 2014; 66–68 Mashayekh-Salehi, Akbarmojeni, Roudbari, Peter Van Der Hoek, Nabizadeh, Dehghani, Yaghmaeian (b0175) 2021; 291 Vaziri Hassas, Jin, Dang, Wang, Miller (b0265) 2018; 34 Tao, Richardson, Luttrell, Yoon (b0255) 2003; 48 Wu, Liu, Zhou, Hu, Sun (b0295) 2024; 348 Liu, Hu, Chen, Xue, Feng, Ye (b0150) 2021; 393 Miao, Ye, Zhang (b0180) 2024; 31 Moslemi, Gharabaghi (b0185) 2017; 47 Zuo, Li, Shi, Deng, Yin, Guo, Ku (b0335) 2020; 147 Luo, Ding, Shen, Tan, Liu, Qiu (b0165) 2018; 18 Han, Wen, Wang, Feng (b0090) 2021; 278 Luo, Yang, Wen, Lin, Wei, Li, Zhang, Song, Wang (b0160) 2023; 202 Horasan, Tanrıverdi, Ciçek, Polat (b0105) 2020; 56 Chen, Ye, Yao, Hu, Zhang, Huang (b0050) 2021; 329 Li, Peng, Wei, Yang, Gerson (b0135) 2023; 619 Zhang, Wang, Sun, Zhu, Lin, Zhang (b0315) 2023; 39 Han, Wen, Wang, Feng (b0095) 2020; 240 Mao, Xia, Peng, Xie (b0170) 2019; 195 Niu, Ruan, Xia, Li, Sun, Jia, Tan (b0215) 2018; 34 Chen, Truong, Bu, Xie (b0060) 2020; 60 Chandraprabha, Natarajan, Somasundaran (b0045) 2005; 75 Chen, Li, Lan, Guo (b0055) 2014; 20 Kruszelnicki, Hassanzadeh, Legawiec, Polowczyk, Kowalczuk (b0120) 2022; 84 Wang (b0290) 1995; 171 Liu, Yuan, Han, Li (b0145) 2019; 58 Wang, Wei, Wang, Shen, Liu (b0280) 2025; 353 Zhao, Niu, Dong, Jia, Ruan (b0325) 2022; 184 Cao, Cheng, Feng, Wen, Luo (b0030) 2017; 311 Vaziri Hassas, Miller (b0270) 2019; 144 Chimonyo, Wiese, Corin, O’Connor (b0070) 2017; 109 Chen, Zhang, Shi, Yang, Liu, Wang (b0065) 2020; 150 Li, Li, Wu, Wang, Wei (b0130) 2025; 680 Wang, Fang, Yan, Xie, Lv, Li, Wu, Tan, Wang (b0285) 2021; 329 Ejtemaei, Nguyen (b0080) 2017; 100 Khoso, Hu, Lü, Gao, Liu, Sun (b0110) 2019; 29 Wang, Wen, Liu, Han, Feng (b0275) 2023; 668 Cao (10.1016/j.mineng.2025.109661_b0030) 2017; 311 Luo (10.1016/j.mineng.2025.109661_b0160) 2023; 202 Zhang (10.1016/j.mineng.2025.109661_b0315) 2023; 39 Oktavia (10.1016/j.mineng.2025.109661_b0220) 2008; 24 Ozkan (10.1016/j.mineng.2025.109661_b0225) 2012; 93 Mu (10.1016/j.mineng.2025.109661_b0190) 2017; 101 Tao (10.1016/j.mineng.2025.109661_b0255) 2003; 48 Ejtemaei (10.1016/j.mineng.2025.109661_b0080) 2017; 100 Ozun (10.1016/j.mineng.2025.109661_b0230) 2019; 561 Chimonyo (10.1016/j.mineng.2025.109661_b0070) 2017; 109 Daehn (10.1016/j.mineng.2025.109661_b0075) 2020; 22 Wang (10.1016/j.mineng.2025.109661_b0275) 2023; 668 Miao (10.1016/j.mineng.2025.109661_b0180) 2024; 31 Ashokkumar (10.1016/j.mineng.2025.109661_b0015) 2007; 14 Rooze (10.1016/j.mineng.2025.109661_b0245) 2013; 20 Wang (10.1016/j.mineng.2025.109661_b0280) 2025; 353 Ashokkumar (10.1016/j.mineng.2025.109661_b0010) 2011; ESS12) 18 Zhou (10.1016/j.mineng.2025.109661_b0330) 2023; 99 Feng (10.1016/j.mineng.2025.109661_b0085) 2013; 53 Chen (10.1016/j.mineng.2025.109661_b0060) 2020; 60 Wang (10.1016/j.mineng.2025.109661_b0285) 2021; 329 Qiu (10.1016/j.mineng.2025.109661_b0240) 2016; 45 Khoso (10.1016/j.mineng.2025.109661_b0110) 2019; 29 Moslemi (10.1016/j.mineng.2025.109661_b0185) 2017; 47 Niu (10.1016/j.mineng.2025.109661_b0210) 2019; 495 Li (10.1016/j.mineng.2025.109661_b0130) 2025; 680 Zuo (10.1016/j.mineng.2025.109661_b0335) 2020; 147 Napieralski (10.1016/j.mineng.2025.109661_b0200) 2022; 20 Cao (10.1016/j.mineng.2025.109661_b0040) 2018; 119 Caldeira (10.1016/j.mineng.2025.109661_b0025) 2003; 72 Murphy (10.1016/j.mineng.2025.109661_b0195) 2009; 64 Tamura (10.1016/j.mineng.2025.109661_b0250) 1974; 21 He (10.1016/j.mineng.2025.109661_b0100) 2005; 18 Chen (10.1016/j.mineng.2025.109661_b0050) 2021; 329 Bulut (10.1016/j.mineng.2025.109661_b0020) 2002; 19 Chen (10.1016/j.mineng.2025.109661_b0055) 2014; 20 Lu (10.1016/j.mineng.2025.109661_b0155) 2022; 188 Pak (10.1016/j.mineng.2025.109661_b0235) 2012; 19 Mashayekh-Salehi (10.1016/j.mineng.2025.109661_b0175) 2021; 291 Uzun (10.1016/j.mineng.2025.109661_b0260) 2016; 50 Niu (10.1016/j.mineng.2025.109661_b0215) 2018; 34 Khoso (10.1016/j.mineng.2025.109661_b0115) 2019; 232 Yang (10.1016/j.mineng.2025.109661_b0300) 2021; 168 Yianatos (10.1016/j.mineng.2025.109661_b0305) 2014; 66–68 Zhang (10.1016/j.mineng.2025.109661_b0320) 2013; 1048 Chandraprabha (10.1016/j.mineng.2025.109661_b0045) 2005; 75 Aleksei (10.1016/j.mineng.2025.109661_b0005) 2020; 195 Zhao (10.1016/j.mineng.2025.109661_b0325) 2022; 184 Luo (10.1016/j.mineng.2025.109661_b0165) 2018; 18 Cao (10.1016/j.mineng.2025.109661_b0035) 2024; 78 Vaziri Hassas (10.1016/j.mineng.2025.109661_b0270) 2019; 144 Chen (10.1016/j.mineng.2025.109661_b0065) 2020; 150 Liu (10.1016/j.mineng.2025.109661_b0145) 2019; 58 Li (10.1016/j.mineng.2025.109661_b0135) 2023; 619 Mao (10.1016/j.mineng.2025.109661_b0170) 2019; 195 Han (10.1016/j.mineng.2025.109661_b0095) 2020; 240 Liao (10.1016/j.mineng.2025.109661_b0140) 2022; 32 Horasan (10.1016/j.mineng.2025.109661_b0105) 2020; 56 Wang (10.1016/j.mineng.2025.109661_b0290) 1995; 171 Li (10.1016/j.mineng.2025.109661_b0125) 2023; 33 Newell (10.1016/j.mineng.2025.109661_b0205) 2006; 19 Wu (10.1016/j.mineng.2025.109661_b0295) 2024; 348 Kruszelnicki (10.1016/j.mineng.2025.109661_b0120) 2022; 84 Liu (10.1016/j.mineng.2025.109661_b0150) 2021; 393 Zhang (10.1016/j.mineng.2025.109661_b0310) 2023; 75 Han (10.1016/j.mineng.2025.109661_b0090) 2021; 278 Vaziri Hassas (10.1016/j.mineng.2025.109661_b0265) 2018; 34 |
References_xml | – volume: 18 start-page: 564 year: 2018 end-page: 575 ident: b0165 article-title: Interaction mechanism and kinetics of ferrous sulfide and manganese oxides in aqueous system publication-title: J. Soils Sediments – volume: 668 year: 2023 ident: b0275 article-title: Surface characteristic and sulfidization-xanthate flotation behaviours of malachite as influenced by ferric ions publication-title: Colloids Surf A Physicochem Eng Asp – volume: 119 start-page: 93 year: 2018 end-page: 98 ident: b0040 article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation publication-title: Miner. Eng. – volume: 348 year: 2024 ident: b0295 article-title: Activation flotation of lime-depressed pyrite with carbon dioxide: Performances, mechanism and pilot-scale application publication-title: Sep. Purif. Technol. – volume: 39 start-page: 9051 year: 2023 end-page: 9059 ident: b0315 article-title: Progressive Hydrophilic Processes of the Pyrite Surface in High-Alkaline Lime Systems publication-title: Langmuir – volume: 278 year: 2021 ident: b0090 article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation publication-title: Sep. Purif. Technol. – volume: 168 year: 2021 ident: b0300 article-title: Comparing lead and copper activation on pyrite with different degrees of surface oxidation publication-title: Miner. Eng. – volume: 33 start-page: 1289 year: 2023 end-page: 1300 ident: b0125 article-title: Selective flotation of chalcopyrite from pyrite via seawater oxidation pretreatment publication-title: Int. J. Min. Sci. Technol. – volume: 195 year: 2020 ident: b0005 article-title: Hydrothermal pretreatment of chalcopyrite concentrate with copper sulfate solution publication-title: Hydrometall. – volume: 1048 start-page: 434 year: 2013 end-page: 440 ident: b0320 article-title: FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces publication-title: J. Mol. Struct. – volume: 311 start-page: 390 year: 2017 end-page: 397 ident: b0030 article-title: Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite publication-title: Powder Technol. – volume: 232 start-page: 888 year: 2019 end-page: 897 ident: b0115 article-title: Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant publication-title: J. Clean. Prod. – volume: 14 start-page: 470 year: 2007 end-page: 475 ident: b0015 article-title: Bubbles in an acoustic field: an overview publication-title: Ultrason. Sonochem. – volume: 93 start-page: 576 year: 2012 end-page: 580 ident: b0225 article-title: Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes publication-title: Fuel – volume: 188 year: 2022 ident: b0155 article-title: The effects of ultrasonic wave on heterogeneous coagulation and flotation separation of pentlandite-serpentine publication-title: Miner. Eng. – volume: 19 start-page: 1702 year: 2012 end-page: 1710 ident: b0235 article-title: Flotation and surface modification characteristics of galena, sphalerite and pyrite in collecting-depressing-reactivating system publication-title: J. Cent. South Univ. Technol. – volume: 48 start-page: 3615 year: 2003 end-page: 3623 ident: b0255 article-title: Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes publication-title: Electrochim. Acta – volume: 329 year: 2021 ident: b0050 article-title: A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage publication-title: J. Clean. Prod. – volume: 45 start-page: 164 year: 2016 end-page: 176 ident: b0240 article-title: Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems publication-title: J. Environ. Sci. – volume: 100 start-page: 223 year: 2017 end-page: 232 ident: b0080 article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate publication-title: Miner. Eng. – volume: 20 start-page: 271 year: 2022 end-page: 291 ident: b0200 article-title: Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms publication-title: Geobiology – volume: 60 year: 2020 ident: b0060 article-title: A review of effects and applications of ultrasound in mineral flotation publication-title: Ultrason. Sonochem. – volume: 99 year: 2023 ident: b0330 article-title: A comparative study on the influence of single and combined ultrasounds assisted flake graphite flotation publication-title: Ultrason. Sonochem. – volume: 78 start-page: 1761 year: 2024 end-page: 1773 ident: b0035 article-title: Flotation separation of pyrite and chalcopyrite with potassium permanganate as a depressant publication-title: Chem. Pap. – volume: 53 start-page: 181 year: 2013 end-page: 183 ident: b0085 article-title: The solution chemistry of carbonate and implications for pyrite flotation publication-title: Miner. Eng. – volume: ESS12) 18 start-page: 864 year: 2011 end-page: 872 ident: b0010 article-title: The characterization of acoustic cavitation bubbles – an overview. Ultrasonics Sonochemistry, European Society of publication-title: Sonochemistry – volume: 19 start-page: 81 year: 2002 end-page: 86 ident: b0020 article-title: Role of dixanthogen on pyrite flotation: solubility, adsorption studies and Eh, FTIR measurements publication-title: Min. Metall. Explor. – volume: 66–68 start-page: 197 year: 2014 end-page: 201 ident: b0305 article-title: Pyrite recovery mechanisms in rougher flotation circuits publication-title: Miner. Eng. – volume: 24 start-page: 1487 year: 2008 end-page: 1492 ident: b0220 article-title: Simultaneous Determination of Fe(III) and Fe(II) Ions via Complexation with Salicylic Acid and 1,10-Phenanthroline in Microcolumn Ion Chromatography publication-title: Anal. Sci. – volume: 21 start-page: 314 year: 1974 end-page: 318 ident: b0250 article-title: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III) publication-title: Talanta – volume: 144 year: 2019 ident: b0270 article-title: The effect of carbon dioxide and nitrogen on pyrite surface properties and flotation response publication-title: Miner. Eng. – volume: 195 year: 2019 ident: b0170 article-title: Ultrasonic-assisted flotation of fine coal: a review publication-title: Fuel Process. Technol. – volume: 56 start-page: 538 year: 2020 end-page: 547 ident: b0105 article-title: Investigating the effects of ultrasonic energy on the flotation behavior of pyrite and galena minerals publication-title: Physicochem. Probl. Miner. Process. – volume: 291 year: 2021 ident: b0175 article-title: Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment publication-title: J. Clean. Prod. – volume: 32 start-page: 3731 year: 2022 end-page: 3743 ident: b0140 article-title: Interaction mechanism of ferrate(VI) with arsenopyrite surface and its effect on flotation separation of chalcopyrite from arsenopyrite publication-title: Trans. Nonferrous Met. Soc. Chin. – volume: 29 start-page: 2604 year: 2019 end-page: 2614 ident: b0110 article-title: Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite publication-title: Trans. Nonferrous Met. Soc. Chin. – volume: 18 start-page: 1208 year: 2005 end-page: 1213 ident: b0100 article-title: Correlation between copper-activated pyrite flotation and surface species: effect of pulp oxidation potential publication-title: Miner. Eng. – volume: 20 start-page: 1 year: 2013 end-page: 11 ident: b0245 article-title: Dissolved gas and ultrasonic cavitation – a review publication-title: Ultrason. Sonochem. – volume: 101 start-page: 10 year: 2017 end-page: 19 ident: b0190 article-title: Surface properties of fractured and polished pyrite in relation to flotation publication-title: Miner. Eng. – volume: 393 year: 2021 ident: b0150 article-title: Electrochemical investigation of the oxidation of pyrite in neutral solutions publication-title: Electrochim. Acta – volume: 47 start-page: 1 year: 2017 end-page: 18 ident: b0185 article-title: A review on electrochemical behavior of pyrite in the froth flotation process publication-title: J. Ind. Eng. Chem. – volume: 147 year: 2020 ident: b0335 article-title: Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite publication-title: Miner. Eng. – volume: 31 start-page: 2148 year: 2024 end-page: 2158 ident: b0180 article-title: Effect of dissolved-oxygen on the flotation behavior of pyrite at high altitude area publication-title: Int. J. Miner. Metall. Mater. – volume: 22 start-page: 110 year: 2020 end-page: 119 ident: b0075 article-title: Electrolytic production of copper from chalcopyrite publication-title: Curr. Opin. Electrochem. – volume: 240 year: 2020 ident: b0095 article-title: Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite publication-title: Sep. Purif. Technol. – volume: 84 year: 2022 ident: b0120 article-title: Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation publication-title: Ultrason. Sonochem. – volume: 561 start-page: 349 year: 2019 end-page: 356 ident: b0230 article-title: Collectorless flotation of oxidized pyrite publication-title: Colloids Surf A Physicochem Eng Asp – volume: 75 start-page: 113 year: 2005 end-page: 122 ident: b0045 article-title: Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans publication-title: Int. J. Miner. Process. – volume: 34 start-page: 2716 year: 2018 end-page: 2724 ident: b0215 article-title: Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems publication-title: Langmuir – volume: 150 year: 2020 ident: b0065 article-title: Utilization of trisodium phosphate to eliminate the adverse effect of Mg2+ on the flotation of pyrite publication-title: Miner. Eng. – volume: 50 start-page: 395 year: 2016 end-page: 401 ident: b0260 article-title: Improvement of selective copper extraction from a heat-treated chalcopyrite concentrate with atmospheric sulphuric-acid leaching publication-title: Mater. Tehnol. – volume: 202 year: 2023 ident: b0160 article-title: Effect of regulating dissolved oxygen concentration in pulp with aerated gas on pyrite flotation publication-title: Miner. Eng. – volume: 19 start-page: 675 year: 2006 end-page: 686 ident: b0205 article-title: The effect of heavy oxidation upon flotation and potential remedies for Merensky type sulfides publication-title: Miner. Eng. – volume: 619 year: 2023 ident: b0135 article-title: Crystal face-dependent pyrite oxidation: an electrochemical study publication-title: Appl. Surf. Sci. – volume: 64 start-page: 1 year: 2009 end-page: 45 ident: b0195 article-title: Surface reactivity of pyrite and related sulfides publication-title: Surf. Sci. Rep. – volume: 34 start-page: 14317 year: 2018 end-page: 14327 ident: b0265 article-title: Attachment, Coalescence, and Spreading of Carbon Dioxide Nanobubbles at Pyrite Surfaces publication-title: Langmuir – volume: 72 start-page: 373 year: 2003 end-page: 386 ident: b0025 article-title: Pyrite oxidation in alkaline solutions: nature of the product layer publication-title: Int. J. Miner. Process. – volume: 680 year: 2025 ident: b0130 article-title: Pyrite activation in seawater flotation by copper and lead ions: XPS and in-situ electrochemical investigation publication-title: Appl. Surf. Sci. – volume: 58 start-page: 132 year: 2019 end-page: 139 ident: b0145 article-title: The effects of various activators on flotation performance of lime-depressed pyrrhotite publication-title: Can. Metall. Q. – volume: 20 start-page: 268 year: 2014 end-page: 273 ident: b0055 article-title: Interactions of xanthate with pyrite and galena surfaces in the presence and absence of oxygen publication-title: J. Ind. Eng. Chem. – volume: 171 start-page: 413 year: 1995 end-page: 428 ident: b0290 article-title: Interfacial Electrochemistry of Pyrite Oxidation and Flotation: II. FTIR Studies of Xanthate Adsorption on Pyrite Surfaces in Neutral pH Solutions publication-title: J. Colloid Interface Sci. – volume: 184 year: 2022 ident: b0325 article-title: Investigation on the correlation between ferrous ion and the floatability of pyrite with different oxidation degrees publication-title: Miner. Eng. – volume: 495 year: 2019 ident: b0210 article-title: Correlation of surface oxidation with xanthate adsorption and pyrite flotation publication-title: Appl. Surf. Sci. – volume: 75 start-page: 4435 year: 2023 end-page: 4445 ident: b0310 article-title: Selective Adsorption Mechanism of Ferric Ions on the Surfaces of Chalcopyrite and Pyrite in Flotation publication-title: JOM – volume: 109 start-page: 135 year: 2017 end-page: 143 ident: b0070 article-title: The use of oxidising agents for control of electrochemical potential in flotation publication-title: Miner. Eng. – volume: 353 year: 2025 ident: b0280 article-title: Effect of lead ions treatment on the flotation behavior of lime-depressed pyrite in a butyl xanthate system publication-title: Sep. Purif. Technol. – volume: 329 start-page: 839 year: 2021 end-page: 848 ident: b0285 article-title: Effect of natural pyrite oxidation on the U(VI) adsorption under the acidic and neutral conditions publication-title: J. Radioanal. Nucl. Chem. – volume: 144 year: 2019 ident: 10.1016/j.mineng.2025.109661_b0270 article-title: The effect of carbon dioxide and nitrogen on pyrite surface properties and flotation response publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.106048 – volume: 353 year: 2025 ident: 10.1016/j.mineng.2025.109661_b0280 article-title: Effect of lead ions treatment on the flotation behavior of lime-depressed pyrite in a butyl xanthate system publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.128398 – volume: 232 start-page: 888 year: 2019 ident: 10.1016/j.mineng.2025.109661_b0115 article-title: Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.06.008 – volume: 20 start-page: 1 year: 2013 ident: 10.1016/j.mineng.2025.109661_b0245 article-title: Dissolved gas and ultrasonic cavitation – a review publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.04.013 – volume: 188 year: 2022 ident: 10.1016/j.mineng.2025.109661_b0155 article-title: The effects of ultrasonic wave on heterogeneous coagulation and flotation separation of pentlandite-serpentine publication-title: Miner. Eng. doi: 10.1016/j.mineng.2022.107828 – volume: 48 start-page: 3615 year: 2003 ident: 10.1016/j.mineng.2025.109661_b0255 article-title: Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(03)00482-1 – volume: 53 start-page: 181 year: 2013 ident: 10.1016/j.mineng.2025.109661_b0085 article-title: The solution chemistry of carbonate and implications for pyrite flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.08.007 – volume: 84 year: 2022 ident: 10.1016/j.mineng.2025.109661_b0120 article-title: Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2022.105962 – volume: 168 year: 2021 ident: 10.1016/j.mineng.2025.109661_b0300 article-title: Comparing lead and copper activation on pyrite with different degrees of surface oxidation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106926 – volume: 21 start-page: 314 year: 1974 ident: 10.1016/j.mineng.2025.109661_b0250 article-title: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III) publication-title: Talanta doi: 10.1016/0039-9140(74)80012-3 – volume: 147 year: 2020 ident: 10.1016/j.mineng.2025.109661_b0335 article-title: Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.106170 – volume: 64 start-page: 1 year: 2009 ident: 10.1016/j.mineng.2025.109661_b0195 article-title: Surface reactivity of pyrite and related sulfides publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2008.09.002 – volume: 348 year: 2024 ident: 10.1016/j.mineng.2025.109661_b0295 article-title: Activation flotation of lime-depressed pyrite with carbon dioxide: Performances, mechanism and pilot-scale application publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.127815 – volume: 18 start-page: 1208 year: 2005 ident: 10.1016/j.mineng.2025.109661_b0100 article-title: Correlation between copper-activated pyrite flotation and surface species: effect of pulp oxidation potential publication-title: Miner. Eng. doi: 10.1016/j.mineng.2005.07.016 – volume: 329 start-page: 839 year: 2021 ident: 10.1016/j.mineng.2025.109661_b0285 article-title: Effect of natural pyrite oxidation on the U(VI) adsorption under the acidic and neutral conditions publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-021-07857-y – volume: 78 start-page: 1761 year: 2024 ident: 10.1016/j.mineng.2025.109661_b0035 article-title: Flotation separation of pyrite and chalcopyrite with potassium permanganate as a depressant publication-title: Chem. Pap. doi: 10.1007/s11696-023-03203-6 – volume: 240 year: 2020 ident: 10.1016/j.mineng.2025.109661_b0095 article-title: Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116650 – volume: 18 start-page: 564 year: 2018 ident: 10.1016/j.mineng.2025.109661_b0165 article-title: Interaction mechanism and kinetics of ferrous sulfide and manganese oxides in aqueous system publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1774-5 – volume: 19 start-page: 675 year: 2006 ident: 10.1016/j.mineng.2025.109661_b0205 article-title: The effect of heavy oxidation upon flotation and potential remedies for Merensky type sulfides publication-title: Miner. Eng. doi: 10.1016/j.mineng.2005.09.043 – volume: 119 start-page: 93 year: 2018 ident: 10.1016/j.mineng.2025.109661_b0040 article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.01.029 – volume: 278 year: 2021 ident: 10.1016/j.mineng.2025.109661_b0090 article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119573 – volume: 100 start-page: 223 year: 2017 ident: 10.1016/j.mineng.2025.109661_b0080 article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.11.005 – volume: 34 start-page: 14317 year: 2018 ident: 10.1016/j.mineng.2025.109661_b0265 article-title: Attachment, Coalescence, and Spreading of Carbon Dioxide Nanobubbles at Pyrite Surfaces publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02929 – volume: 19 start-page: 81 year: 2002 ident: 10.1016/j.mineng.2025.109661_b0020 article-title: Role of dixanthogen on pyrite flotation: solubility, adsorption studies and Eh, FTIR measurements publication-title: Min. Metall. Explor. – volume: 66–68 start-page: 197 year: 2014 ident: 10.1016/j.mineng.2025.109661_b0305 article-title: Pyrite recovery mechanisms in rougher flotation circuits publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.03.020 – volume: 60 year: 2020 ident: 10.1016/j.mineng.2025.109661_b0060 article-title: A review of effects and applications of ultrasound in mineral flotation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104739 – volume: 184 year: 2022 ident: 10.1016/j.mineng.2025.109661_b0325 article-title: Investigation on the correlation between ferrous ion and the floatability of pyrite with different oxidation degrees publication-title: Miner. Eng. doi: 10.1016/j.mineng.2022.107636 – volume: 32 start-page: 3731 year: 2022 ident: 10.1016/j.mineng.2025.109661_b0140 article-title: Interaction mechanism of ferrate(VI) with arsenopyrite surface and its effect on flotation separation of chalcopyrite from arsenopyrite publication-title: Trans. Nonferrous Met. Soc. Chin. doi: 10.1016/S1003-6326(22)66053-9 – volume: 34 start-page: 2716 year: 2018 ident: 10.1016/j.mineng.2025.109661_b0215 article-title: Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems publication-title: Langmuir doi: 10.1021/acs.langmuir.7b04189 – volume: 99 year: 2023 ident: 10.1016/j.mineng.2025.109661_b0330 article-title: A comparative study on the influence of single and combined ultrasounds assisted flake graphite flotation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2023.106551 – volume: 495 year: 2019 ident: 10.1016/j.mineng.2025.109661_b0210 article-title: Correlation of surface oxidation with xanthate adsorption and pyrite flotation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.153 – volume: 20 start-page: 268 year: 2014 ident: 10.1016/j.mineng.2025.109661_b0055 article-title: Interactions of xanthate with pyrite and galena surfaces in the presence and absence of oxygen publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.03.039 – volume: 20 start-page: 271 year: 2022 ident: 10.1016/j.mineng.2025.109661_b0200 article-title: Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms publication-title: Geobiology doi: 10.1111/gbi.12474 – volume: 1048 start-page: 434 year: 2013 ident: 10.1016/j.mineng.2025.109661_b0320 article-title: FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2013.06.015 – volume: 72 start-page: 373 year: 2003 ident: 10.1016/j.mineng.2025.109661_b0025 article-title: Pyrite oxidation in alkaline solutions: nature of the product layer publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(03)00112-1 – volume: 45 start-page: 164 year: 2016 ident: 10.1016/j.mineng.2025.109661_b0240 article-title: Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2016.01.012 – volume: 75 start-page: 4435 year: 2023 ident: 10.1016/j.mineng.2025.109661_b0310 article-title: Selective Adsorption Mechanism of Ferric Ions on the Surfaces of Chalcopyrite and Pyrite in Flotation publication-title: JOM doi: 10.1007/s11837-023-06067-z – volume: 329 year: 2021 ident: 10.1016/j.mineng.2025.109661_b0050 article-title: A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129666 – volume: 150 year: 2020 ident: 10.1016/j.mineng.2025.109661_b0065 article-title: Utilization of trisodium phosphate to eliminate the adverse effect of Mg2+ on the flotation of pyrite publication-title: Miner. Eng. – volume: 50 start-page: 395 year: 2016 ident: 10.1016/j.mineng.2025.109661_b0260 article-title: Improvement of selective copper extraction from a heat-treated chalcopyrite concentrate with atmospheric sulphuric-acid leaching publication-title: Mater. Tehnol. doi: 10.17222/mit.2015.091 – volume: 47 start-page: 1 year: 2017 ident: 10.1016/j.mineng.2025.109661_b0185 article-title: A review on electrochemical behavior of pyrite in the froth flotation process publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.12.012 – volume: 14 start-page: 470 year: 2007 ident: 10.1016/j.mineng.2025.109661_b0015 article-title: Bubbles in an acoustic field: an overview publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2006.09.016 – volume: 619 year: 2023 ident: 10.1016/j.mineng.2025.109661_b0135 article-title: Crystal face-dependent pyrite oxidation: an electrochemical study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.156687 – volume: 195 year: 2020 ident: 10.1016/j.mineng.2025.109661_b0005 article-title: Hydrothermal pretreatment of chalcopyrite concentrate with copper sulfate solution publication-title: Hydrometall. doi: 10.1016/j.hydromet.2020.105359 – volume: 58 start-page: 132 year: 2019 ident: 10.1016/j.mineng.2025.109661_b0145 article-title: The effects of various activators on flotation performance of lime-depressed pyrrhotite publication-title: Can. Metall. Q. doi: 10.1080/00084433.2018.1535931 – volume: 56 start-page: 538 year: 2020 ident: 10.1016/j.mineng.2025.109661_b0105 article-title: Investigating the effects of ultrasonic energy on the flotation behavior of pyrite and galena minerals publication-title: Physicochem. Probl. Miner. Process. doi: 10.37190/ppmp/120291 – volume: 101 start-page: 10 year: 2017 ident: 10.1016/j.mineng.2025.109661_b0190 article-title: Surface properties of fractured and polished pyrite in relation to flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.11.012 – volume: 171 start-page: 413 year: 1995 ident: 10.1016/j.mineng.2025.109661_b0290 article-title: Interfacial Electrochemistry of Pyrite Oxidation and Flotation: II. FTIR Studies of Xanthate Adsorption on Pyrite Surfaces in Neutral pH Solutions publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1995.1198 – volume: 680 year: 2025 ident: 10.1016/j.mineng.2025.109661_b0130 article-title: Pyrite activation in seawater flotation by copper and lead ions: XPS and in-situ electrochemical investigation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2024.161363 – volume: 561 start-page: 349 year: 2019 ident: 10.1016/j.mineng.2025.109661_b0230 article-title: Collectorless flotation of oxidized pyrite publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2018.10.064 – volume: 24 start-page: 1487 year: 2008 ident: 10.1016/j.mineng.2025.109661_b0220 article-title: Simultaneous Determination of Fe(III) and Fe(II) Ions via Complexation with Salicylic Acid and 1,10-Phenanthroline in Microcolumn Ion Chromatography publication-title: Anal. Sci. doi: 10.2116/analsci.24.1487 – volume: 393 year: 2021 ident: 10.1016/j.mineng.2025.109661_b0150 article-title: Electrochemical investigation of the oxidation of pyrite in neutral solutions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.139078 – volume: 29 start-page: 2604 year: 2019 ident: 10.1016/j.mineng.2025.109661_b0110 article-title: Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite publication-title: Trans. Nonferrous Met. Soc. Chin. doi: 10.1016/S1003-6326(19)65167-8 – volume: ESS12) 18 start-page: 864 year: 2011 ident: 10.1016/j.mineng.2025.109661_b0010 article-title: The characterization of acoustic cavitation bubbles – an overview. Ultrasonics Sonochemistry, European Society of publication-title: Sonochemistry doi: 10.1016/j.ultsonch.2010.11.016 – volume: 109 start-page: 135 year: 2017 ident: 10.1016/j.mineng.2025.109661_b0070 article-title: The use of oxidising agents for control of electrochemical potential in flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.03.011 – volume: 31 start-page: 2148 year: 2024 ident: 10.1016/j.mineng.2025.109661_b0180 article-title: Effect of dissolved-oxygen on the flotation behavior of pyrite at high altitude area publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-023-2784-5 – volume: 291 year: 2021 ident: 10.1016/j.mineng.2025.109661_b0175 article-title: Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125235 – volume: 202 year: 2023 ident: 10.1016/j.mineng.2025.109661_b0160 article-title: Effect of regulating dissolved oxygen concentration in pulp with aerated gas on pyrite flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2023.108290 – volume: 668 year: 2023 ident: 10.1016/j.mineng.2025.109661_b0275 article-title: Surface characteristic and sulfidization-xanthate flotation behaviours of malachite as influenced by ferric ions publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2023.131469 – volume: 75 start-page: 113 year: 2005 ident: 10.1016/j.mineng.2025.109661_b0045 article-title: Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2004.08.014 – volume: 22 start-page: 110 year: 2020 ident: 10.1016/j.mineng.2025.109661_b0075 article-title: Electrolytic production of copper from chalcopyrite publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.04.011 – volume: 33 start-page: 1289 year: 2023 ident: 10.1016/j.mineng.2025.109661_b0125 article-title: Selective flotation of chalcopyrite from pyrite via seawater oxidation pretreatment publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2023.08.004 – volume: 311 start-page: 390 year: 2017 ident: 10.1016/j.mineng.2025.109661_b0030 article-title: Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.01.069 – volume: 39 start-page: 9051 year: 2023 ident: 10.1016/j.mineng.2025.109661_b0315 article-title: Progressive Hydrophilic Processes of the Pyrite Surface in High-Alkaline Lime Systems publication-title: Langmuir doi: 10.1021/acs.langmuir.3c00678 – volume: 93 start-page: 576 year: 2012 ident: 10.1016/j.mineng.2025.109661_b0225 article-title: Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes publication-title: Fuel doi: 10.1016/j.fuel.2011.10.032 – volume: 195 year: 2019 ident: 10.1016/j.mineng.2025.109661_b0170 article-title: Ultrasonic-assisted flotation of fine coal: a review publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.106150 – volume: 19 start-page: 1702 year: 2012 ident: 10.1016/j.mineng.2025.109661_b0235 article-title: Flotation and surface modification characteristics of galena, sphalerite and pyrite in collecting-depressing-reactivating system publication-title: J. Cent. South Univ. Technol. doi: 10.1007/s11771-012-1196-x |
SSID | ssj0005789 |
Score | 2.43674 |
Snippet | [Display omitted]
•Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.•Fe2+ oxidation to Fe3+ via dissolved oxygen consumption... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 109661 |
SubjectTerms | Dissolved oxygen Hydrophobicity Phenanthroline spectrophotometry Pyrite Ultrasonic |
Title | Effect of ultrasonic treatment on the surface hydrophobicity of pyrite: Properties and mechanism of ultrasonic products |
URI | https://dx.doi.org/10.1016/j.mineng.2025.109661 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jWuT9CPexnBMxSHoYLeSNi9u4trSbcgu_u0maytTxIPHhrxQfgnv_V547xeELk0QcSgwl4AKY8JjmhDhUZ_QmIFVe9E0thf6D0N_MOJ3Y2_cQL26F8aWVVa-v_Tpa29djXQqNDv5dNp5ckJBfUO3TRB3rISK7WDngT3lVx8bZR7B-hk8O5nY2XX73LrGa2aYXPpiskTqWV0l33d_D08bIae_h3Yrroi75e_sowakB2hnQ0HwEL2X6sM403j5tijk3Crd4q_qcZyl2DA8PF8WWiaAJytVZPkki6eJYd_WKl8VhnRe40d7KV9YdVUsU4VnYDuCp_PZj5XzUiB2foRG_Zvn3oBUbymQxFCUBQkScFlsgnti-IDJSrmEUDsAmoXgKkmVEFxBaAieJ3QCiQSgTEquTYpCfeWxY9RMsxROEJaBdAQLlYRYcslBKKl1wARwxbgWbguRGsIoLyUzorqW7DUqIY8s5FEJeQsFNc7Rt62PjFf_0_L035ZnaNt-lU2F56i5KJZwYdjFIm6vj08bbXVv7wfDT2dP0q0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvc_Aatk3SR7yJKOtrEVTwVtJmoituW7q7iP_eZNv6Qjx4bTulfCnzfRNmvgAcWhLxGHKfoo5TKlKWURmwkLKUo3N7MSx1G_rX_bB3Ly4egocZOGlnYVxbZZP765w-zdbNlW6DZrccDLq3XixZaOW2JXHPWajMwpxzpwo6MHd8ftnrf3Z6RNOT8Nzz1AW0E3TTNq-hFXP5oy0UWeCslcLQ_52hvrDO2TIsNXKRHNdftAIzmK_C4hcTwTV4rQ2ISWHI5GVcqZEzuyUfDeSkyIkVeWQ0qYzKkDy96aoon4p0kFkB7qLKt8rqziNy4_blK2ewSlSuyRDdUPBgNPzx5rL2iB2tw_3Z6d1JjzbHKdDMqpQxjTL0eWr5PbOSwBamQmFsPETDY_S1YlpKoTG2Gi-QJsNMITKulDC2SmGhDvgGdPIix00gKlKe5LFWmCqhBEqtjIm4RKG5MNLfAtpCmJS1a0bStpM9JzXkiYM8qSHfgqjFOfm2-olN7H9Gbv878gDme3fXV8nVef9yBxbcnXrGcBc642qCe1ZsjNP95md6B6VJ1V4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+ultrasonic+treatment+on+the+surface+hydrophobicity+of+pyrite%3A+Properties+and+mechanism+of+ultrasonic+products&rft.jtitle=Minerals+engineering&rft.au=Lin%2C+Qiqiang&rft.au=Sun%2C+Lei&rft.au=Cao%2C+Yang&rft.au=Xiang%2C+Meitao&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.volume=233&rft_id=info:doi/10.1016%2Fj.mineng.2025.109661&rft.externalDocID=S0892687525004893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |