Effect of ultrasonic treatment on the surface hydrophobicity of pyrite: Properties and mechanism of ultrasonic products

[Display omitted] •Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.•Fe2+ oxidation to Fe3+ via dissolved oxygen consumption enhances pyrite oxidation.•Suspended substances outcompete pyrite in sodium butyl xanthate adsorption.•The hydrophobicity of pyrite is poor i...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 233; p. 109661
Main Authors Lin, Qiqiang, Sun, Lei, Cao, Yang, Xiang, Meitao, Guo, Yuanhao, Gao, Zhiyong, Xie, Jie, Sun, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2025
Subjects
Online AccessGet full text
ISSN0892-6875
DOI10.1016/j.mineng.2025.109661

Cover

Loading…
Abstract [Display omitted] •Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.•Fe2+ oxidation to Fe3+ via dissolved oxygen consumption enhances pyrite oxidation.•Suspended substances outcompete pyrite in sodium butyl xanthate adsorption.•The hydrophobicity of pyrite is poor in ultrasonic pulp but remains good in clean pulp.•The phenomenon of ultrasonic products of pyrite was first proposed and studied. The conventional depression of pyrite via excessive lime addition in flotation systems leads to persistent mineral residues in tailings, while simultaneously hindering timely reactivation for recovery. These residual pyrite-bearing tailings undergo progressive oxidative dissolution when exposed to meteoric water, inducing acid mine drainage generation through sustained proton release. Ultrasonic treatment and its derived products were found to effectively inhibit pyrite, eliminating the requirement for high lime dosages. In this study, pyrite was selected as the research subject to investigate the effects of ultrasonic products on their hydrophobicity—specifically, whether the removal of dissolved Fe2+ and Fe3+ ions and suspended substances in the turbid pulp after ultrasonic treatment affected the hydrophobicity of the pyrite surface. The experimental results indicated that the ultrasonic pulp contained 6.94 × 10-3 mol/L of Fe2+ and 5.42 × 10-3 mol/L of Fe3+, which facilitated the oxidation of pyrite. This process not only increased the proportion of Fe(III) on the pyrite surface but also led to the formation of hydrophilic precipitation of SOn2-, thereby reducing the hydrophobicity of pyrite. Additionally, the suspended substances in the ultrasonic pulp preferentially interacted with the collector, sodium butyl xanthate, hindering its adsorption on the surface of pyrite and exacerbating the reduction in hydrophobicity. Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.
AbstractList [Display omitted] •Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.•Fe2+ oxidation to Fe3+ via dissolved oxygen consumption enhances pyrite oxidation.•Suspended substances outcompete pyrite in sodium butyl xanthate adsorption.•The hydrophobicity of pyrite is poor in ultrasonic pulp but remains good in clean pulp.•The phenomenon of ultrasonic products of pyrite was first proposed and studied. The conventional depression of pyrite via excessive lime addition in flotation systems leads to persistent mineral residues in tailings, while simultaneously hindering timely reactivation for recovery. These residual pyrite-bearing tailings undergo progressive oxidative dissolution when exposed to meteoric water, inducing acid mine drainage generation through sustained proton release. Ultrasonic treatment and its derived products were found to effectively inhibit pyrite, eliminating the requirement for high lime dosages. In this study, pyrite was selected as the research subject to investigate the effects of ultrasonic products on their hydrophobicity—specifically, whether the removal of dissolved Fe2+ and Fe3+ ions and suspended substances in the turbid pulp after ultrasonic treatment affected the hydrophobicity of the pyrite surface. The experimental results indicated that the ultrasonic pulp contained 6.94 × 10-3 mol/L of Fe2+ and 5.42 × 10-3 mol/L of Fe3+, which facilitated the oxidation of pyrite. This process not only increased the proportion of Fe(III) on the pyrite surface but also led to the formation of hydrophilic precipitation of SOn2-, thereby reducing the hydrophobicity of pyrite. Additionally, the suspended substances in the ultrasonic pulp preferentially interacted with the collector, sodium butyl xanthate, hindering its adsorption on the surface of pyrite and exacerbating the reduction in hydrophobicity. Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.
ArticleNumber 109661
Author Sun, Wei
Xie, Jie
Lin, Qiqiang
Cao, Yang
Gao, Zhiyong
Xiang, Meitao
Sun, Lei
Guo, Yuanhao
Author_xml – sequence: 1
  givenname: Qiqiang
  surname: Lin
  fullname: Lin, Qiqiang
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Lei
  surname: Sun
  fullname: Sun, Lei
  email: sunlei@csu.edu.cn
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Yang
  surname: Cao
  fullname: Cao, Yang
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Meitao
  surname: Xiang
  fullname: Xiang, Meitao
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Yuanhao
  surname: Guo
  fullname: Guo, Yuanhao
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 6
  givenname: Zhiyong
  surname: Gao
  fullname: Gao, Zhiyong
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 7
  givenname: Jie
  surname: Xie
  fullname: Xie, Jie
  organization: Jinchuan Group Co.,Ltd, Jinchang 737100, China
– sequence: 8
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
BookMark eNp9kMtKAzEUhrOoYFt9Axd5gam5zNWFIKVeoKALXYc0OXFSOsmQZJR5e6eMKxeuDnzwfxy-FVo47wChG0o2lNDy9rjprAP3uWGEFRNqypIu0JLUDcvKuiou0SrGIyGkqOpmib53xoBK2Bs8nFKQ0TurcAogUwdu4g6nFnAcgpEKcDvq4PvWH6yyaTyv-jHYBHf4beIQkoWIpdO4A9VKZ2P3x9wHrweV4hW6MPIU4fr3rtHH4-59-5ztX59etg_7TNGKpaxSQPmBskYxxnnNcwm1IQCG10C1ZLppcg01yYuiMQqUBGBcytwwTlipC75G-exVwccYwIg-2E6GUVAizsHEUczBxDmYmINNs_t5BtNvXxaCiMqCU6BtmHIJ7e3_gh_c7X3K
Cites_doi 10.1016/j.mineng.2019.106048
10.1016/j.seppur.2024.128398
10.1016/j.jclepro.2019.06.008
10.1016/j.ultsonch.2012.04.013
10.1016/j.mineng.2022.107828
10.1016/S0013-4686(03)00482-1
10.1016/j.mineng.2013.08.007
10.1016/j.ultsonch.2022.105962
10.1016/j.mineng.2021.106926
10.1016/0039-9140(74)80012-3
10.1016/j.mineng.2019.106170
10.1016/j.surfrep.2008.09.002
10.1016/j.seppur.2024.127815
10.1016/j.mineng.2005.07.016
10.1007/s10967-021-07857-y
10.1007/s11696-023-03203-6
10.1016/j.seppur.2020.116650
10.1007/s11368-017-1774-5
10.1016/j.mineng.2005.09.043
10.1016/j.mineng.2018.01.029
10.1016/j.seppur.2021.119573
10.1016/j.mineng.2016.11.005
10.1021/acs.langmuir.8b02929
10.1016/j.mineng.2014.03.020
10.1016/j.ultsonch.2019.104739
10.1016/j.mineng.2022.107636
10.1016/S1003-6326(22)66053-9
10.1021/acs.langmuir.7b04189
10.1016/j.ultsonch.2023.106551
10.1016/j.apsusc.2019.07.153
10.1016/j.jiec.2013.03.039
10.1111/gbi.12474
10.1016/j.molstruc.2013.06.015
10.1016/S0301-7516(03)00112-1
10.1016/j.jes.2016.01.012
10.1007/s11837-023-06067-z
10.1016/j.jclepro.2021.129666
10.17222/mit.2015.091
10.1016/j.jiec.2016.12.012
10.1016/j.ultsonch.2006.09.016
10.1016/j.apsusc.2023.156687
10.1016/j.hydromet.2020.105359
10.1080/00084433.2018.1535931
10.37190/ppmp/120291
10.1016/j.mineng.2016.11.012
10.1006/jcis.1995.1198
10.1016/j.apsusc.2024.161363
10.1016/j.colsurfa.2018.10.064
10.2116/analsci.24.1487
10.1016/j.electacta.2021.139078
10.1016/S1003-6326(19)65167-8
10.1016/j.ultsonch.2010.11.016
10.1016/j.mineng.2017.03.011
10.1007/s12613-023-2784-5
10.1016/j.jclepro.2020.125235
10.1016/j.mineng.2023.108290
10.1016/j.colsurfa.2023.131469
10.1016/j.minpro.2004.08.014
10.1016/j.coelec.2020.04.011
10.1016/j.ijmst.2023.08.004
10.1016/j.powtec.2017.01.069
10.1021/acs.langmuir.3c00678
10.1016/j.fuel.2011.10.032
10.1016/j.fuproc.2019.106150
10.1007/s11771-012-1196-x
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2025.109661
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_mineng_2025_109661
S0892687525004893
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AAYXX
CITATION
EFLBG
ID FETCH-LOGICAL-c172t-7ce13b129c2233834ae8f0eef38e1da2d994de804559fcecaee23aa4f23026d53
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Wed Sep 03 16:36:41 EDT 2025
Sat Aug 30 17:13:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Phenanthroline spectrophotometry
Pyrite
Hydrophobicity
Dissolved oxygen
Ultrasonic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-7ce13b129c2233834ae8f0eef38e1da2d994de804559fcecaee23aa4f23026d53
ParticipantIDs crossref_primary_10_1016_j_mineng_2025_109661
elsevier_sciencedirect_doi_10_1016_j_mineng_2025_109661
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Minerals engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Mu, Peng (b0300) 2021; 168
Mu, Li, Peng (b0190) 2017; 101
Lu, Wang, Yuan, Zhang, Li, Wang (b0155) 2022; 188
Uzun, Mustafa, Atilgan (b0260) 2016; 50
Bulut, Atak (b0020) 2002; 19
Aleksei, Stanislav, Kirill, Agarwal, Lundström (b0005) 2020; 195
Zhang, Cao, Cao, Sun (b0320) 2013; 1048
Oktavia, Lim, Takeuchi (b0220) 2008; 24
Ashokkumar (b0010) 2011; ESS12) 18
He, Fornasiero, Skinner (b0100) 2005; 18
Zhang, Zhang, Zhang, Chen, Wang, Chen, Chen, Tian, Sun (b0310) 2023; 75
Niu, Chen, Li, Xia, Li, Sun, Ruan (b0210) 2019; 495
Khoso, Hu, Lyu, Liu, Sun (b0115) 2019; 232
Pak, Sun, Xu, Jo (b0235) 2012; 19
Newell, Bradshaw, Harris (b0205) 2006; 19
Feng, Luo (b0085) 2013; 53
Napieralski, Fang, Marcon, Forsythe, Brantley, Xu, Roden (b0200) 2022; 20
Li, Li, Wang, Yang, Chen (b0125) 2023; 33
Murphy, Strongin (b0195) 2009; 64
Ozkan (b0225) 2012; 93
Caldeira, Ciminelli, Dias, Osseo-Asare (b0025) 2003; 72
Qiu, Luo, Chen, Lv, Tan, Liu, Liu (b0240) 2016; 45
Ashokkumar, Lee, Kentish, Grieser (b0015) 2007; 14
Zhou, Tong, Dong, Bu, Ni, Xie, Alheshibri (b0330) 2023; 99
Daehn, Allanore (b0075) 2020; 22
Rooze, Rebrov, Schouten, Keurentjes (b0245) 2013; 20
Tamura, Goto, Yotsuyanagi, Nagayama (b0250) 1974; 21
Liao, Hu, Wen, Zheng, Qiu, Lü, Liu (b0140) 2022; 32
Ozun, Vaziri Hassas, Miller (b0230) 2019; 561
Cao, Zhang, Yan, Li, Liu (b0035) 2024; 78
Cao, Chen, Peng (b0040) 2018; 119
Yianatos, Carrasco, Vinnett, Rojas (b0305) 2014; 66–68
Mashayekh-Salehi, Akbarmojeni, Roudbari, Peter Van Der Hoek, Nabizadeh, Dehghani, Yaghmaeian (b0175) 2021; 291
Vaziri Hassas, Jin, Dang, Wang, Miller (b0265) 2018; 34
Tao, Richardson, Luttrell, Yoon (b0255) 2003; 48
Wu, Liu, Zhou, Hu, Sun (b0295) 2024; 348
Liu, Hu, Chen, Xue, Feng, Ye (b0150) 2021; 393
Miao, Ye, Zhang (b0180) 2024; 31
Moslemi, Gharabaghi (b0185) 2017; 47
Zuo, Li, Shi, Deng, Yin, Guo, Ku (b0335) 2020; 147
Luo, Ding, Shen, Tan, Liu, Qiu (b0165) 2018; 18
Han, Wen, Wang, Feng (b0090) 2021; 278
Luo, Yang, Wen, Lin, Wei, Li, Zhang, Song, Wang (b0160) 2023; 202
Horasan, Tanrıverdi, Ciçek, Polat (b0105) 2020; 56
Chen, Ye, Yao, Hu, Zhang, Huang (b0050) 2021; 329
Li, Peng, Wei, Yang, Gerson (b0135) 2023; 619
Zhang, Wang, Sun, Zhu, Lin, Zhang (b0315) 2023; 39
Han, Wen, Wang, Feng (b0095) 2020; 240
Mao, Xia, Peng, Xie (b0170) 2019; 195
Niu, Ruan, Xia, Li, Sun, Jia, Tan (b0215) 2018; 34
Chen, Truong, Bu, Xie (b0060) 2020; 60
Chandraprabha, Natarajan, Somasundaran (b0045) 2005; 75
Chen, Li, Lan, Guo (b0055) 2014; 20
Kruszelnicki, Hassanzadeh, Legawiec, Polowczyk, Kowalczuk (b0120) 2022; 84
Wang (b0290) 1995; 171
Liu, Yuan, Han, Li (b0145) 2019; 58
Wang, Wei, Wang, Shen, Liu (b0280) 2025; 353
Zhao, Niu, Dong, Jia, Ruan (b0325) 2022; 184
Cao, Cheng, Feng, Wen, Luo (b0030) 2017; 311
Vaziri Hassas, Miller (b0270) 2019; 144
Chimonyo, Wiese, Corin, O’Connor (b0070) 2017; 109
Chen, Zhang, Shi, Yang, Liu, Wang (b0065) 2020; 150
Li, Li, Wu, Wang, Wei (b0130) 2025; 680
Wang, Fang, Yan, Xie, Lv, Li, Wu, Tan, Wang (b0285) 2021; 329
Ejtemaei, Nguyen (b0080) 2017; 100
Khoso, Hu, Lü, Gao, Liu, Sun (b0110) 2019; 29
Wang, Wen, Liu, Han, Feng (b0275) 2023; 668
Cao (10.1016/j.mineng.2025.109661_b0030) 2017; 311
Luo (10.1016/j.mineng.2025.109661_b0160) 2023; 202
Zhang (10.1016/j.mineng.2025.109661_b0315) 2023; 39
Oktavia (10.1016/j.mineng.2025.109661_b0220) 2008; 24
Ozkan (10.1016/j.mineng.2025.109661_b0225) 2012; 93
Mu (10.1016/j.mineng.2025.109661_b0190) 2017; 101
Tao (10.1016/j.mineng.2025.109661_b0255) 2003; 48
Ejtemaei (10.1016/j.mineng.2025.109661_b0080) 2017; 100
Ozun (10.1016/j.mineng.2025.109661_b0230) 2019; 561
Chimonyo (10.1016/j.mineng.2025.109661_b0070) 2017; 109
Daehn (10.1016/j.mineng.2025.109661_b0075) 2020; 22
Wang (10.1016/j.mineng.2025.109661_b0275) 2023; 668
Miao (10.1016/j.mineng.2025.109661_b0180) 2024; 31
Ashokkumar (10.1016/j.mineng.2025.109661_b0015) 2007; 14
Rooze (10.1016/j.mineng.2025.109661_b0245) 2013; 20
Wang (10.1016/j.mineng.2025.109661_b0280) 2025; 353
Ashokkumar (10.1016/j.mineng.2025.109661_b0010) 2011; ESS12) 18
Zhou (10.1016/j.mineng.2025.109661_b0330) 2023; 99
Feng (10.1016/j.mineng.2025.109661_b0085) 2013; 53
Chen (10.1016/j.mineng.2025.109661_b0060) 2020; 60
Wang (10.1016/j.mineng.2025.109661_b0285) 2021; 329
Qiu (10.1016/j.mineng.2025.109661_b0240) 2016; 45
Khoso (10.1016/j.mineng.2025.109661_b0110) 2019; 29
Moslemi (10.1016/j.mineng.2025.109661_b0185) 2017; 47
Niu (10.1016/j.mineng.2025.109661_b0210) 2019; 495
Li (10.1016/j.mineng.2025.109661_b0130) 2025; 680
Zuo (10.1016/j.mineng.2025.109661_b0335) 2020; 147
Napieralski (10.1016/j.mineng.2025.109661_b0200) 2022; 20
Cao (10.1016/j.mineng.2025.109661_b0040) 2018; 119
Caldeira (10.1016/j.mineng.2025.109661_b0025) 2003; 72
Murphy (10.1016/j.mineng.2025.109661_b0195) 2009; 64
Tamura (10.1016/j.mineng.2025.109661_b0250) 1974; 21
He (10.1016/j.mineng.2025.109661_b0100) 2005; 18
Chen (10.1016/j.mineng.2025.109661_b0050) 2021; 329
Bulut (10.1016/j.mineng.2025.109661_b0020) 2002; 19
Chen (10.1016/j.mineng.2025.109661_b0055) 2014; 20
Lu (10.1016/j.mineng.2025.109661_b0155) 2022; 188
Pak (10.1016/j.mineng.2025.109661_b0235) 2012; 19
Mashayekh-Salehi (10.1016/j.mineng.2025.109661_b0175) 2021; 291
Uzun (10.1016/j.mineng.2025.109661_b0260) 2016; 50
Niu (10.1016/j.mineng.2025.109661_b0215) 2018; 34
Khoso (10.1016/j.mineng.2025.109661_b0115) 2019; 232
Yang (10.1016/j.mineng.2025.109661_b0300) 2021; 168
Yianatos (10.1016/j.mineng.2025.109661_b0305) 2014; 66–68
Zhang (10.1016/j.mineng.2025.109661_b0320) 2013; 1048
Chandraprabha (10.1016/j.mineng.2025.109661_b0045) 2005; 75
Aleksei (10.1016/j.mineng.2025.109661_b0005) 2020; 195
Zhao (10.1016/j.mineng.2025.109661_b0325) 2022; 184
Luo (10.1016/j.mineng.2025.109661_b0165) 2018; 18
Cao (10.1016/j.mineng.2025.109661_b0035) 2024; 78
Vaziri Hassas (10.1016/j.mineng.2025.109661_b0270) 2019; 144
Chen (10.1016/j.mineng.2025.109661_b0065) 2020; 150
Liu (10.1016/j.mineng.2025.109661_b0145) 2019; 58
Li (10.1016/j.mineng.2025.109661_b0135) 2023; 619
Mao (10.1016/j.mineng.2025.109661_b0170) 2019; 195
Han (10.1016/j.mineng.2025.109661_b0095) 2020; 240
Liao (10.1016/j.mineng.2025.109661_b0140) 2022; 32
Horasan (10.1016/j.mineng.2025.109661_b0105) 2020; 56
Wang (10.1016/j.mineng.2025.109661_b0290) 1995; 171
Li (10.1016/j.mineng.2025.109661_b0125) 2023; 33
Newell (10.1016/j.mineng.2025.109661_b0205) 2006; 19
Wu (10.1016/j.mineng.2025.109661_b0295) 2024; 348
Kruszelnicki (10.1016/j.mineng.2025.109661_b0120) 2022; 84
Liu (10.1016/j.mineng.2025.109661_b0150) 2021; 393
Zhang (10.1016/j.mineng.2025.109661_b0310) 2023; 75
Han (10.1016/j.mineng.2025.109661_b0090) 2021; 278
Vaziri Hassas (10.1016/j.mineng.2025.109661_b0265) 2018; 34
References_xml – volume: 18
  start-page: 564
  year: 2018
  end-page: 575
  ident: b0165
  article-title: Interaction mechanism and kinetics of ferrous sulfide and manganese oxides in aqueous system
  publication-title: J. Soils Sediments
– volume: 668
  year: 2023
  ident: b0275
  article-title: Surface characteristic and sulfidization-xanthate flotation behaviours of malachite as influenced by ferric ions
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 119
  start-page: 93
  year: 2018
  end-page: 98
  ident: b0040
  article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation
  publication-title: Miner. Eng.
– volume: 348
  year: 2024
  ident: b0295
  article-title: Activation flotation of lime-depressed pyrite with carbon dioxide: Performances, mechanism and pilot-scale application
  publication-title: Sep. Purif. Technol.
– volume: 39
  start-page: 9051
  year: 2023
  end-page: 9059
  ident: b0315
  article-title: Progressive Hydrophilic Processes of the Pyrite Surface in High-Alkaline Lime Systems
  publication-title: Langmuir
– volume: 278
  year: 2021
  ident: b0090
  article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation
  publication-title: Sep. Purif. Technol.
– volume: 168
  year: 2021
  ident: b0300
  article-title: Comparing lead and copper activation on pyrite with different degrees of surface oxidation
  publication-title: Miner. Eng.
– volume: 33
  start-page: 1289
  year: 2023
  end-page: 1300
  ident: b0125
  article-title: Selective flotation of chalcopyrite from pyrite via seawater oxidation pretreatment
  publication-title: Int. J. Min. Sci. Technol.
– volume: 195
  year: 2020
  ident: b0005
  article-title: Hydrothermal pretreatment of chalcopyrite concentrate with copper sulfate solution
  publication-title: Hydrometall.
– volume: 1048
  start-page: 434
  year: 2013
  end-page: 440
  ident: b0320
  article-title: FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces
  publication-title: J. Mol. Struct.
– volume: 311
  start-page: 390
  year: 2017
  end-page: 397
  ident: b0030
  article-title: Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite
  publication-title: Powder Technol.
– volume: 232
  start-page: 888
  year: 2019
  end-page: 897
  ident: b0115
  article-title: Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant
  publication-title: J. Clean. Prod.
– volume: 14
  start-page: 470
  year: 2007
  end-page: 475
  ident: b0015
  article-title: Bubbles in an acoustic field: an overview
  publication-title: Ultrason. Sonochem.
– volume: 93
  start-page: 576
  year: 2012
  end-page: 580
  ident: b0225
  article-title: Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes
  publication-title: Fuel
– volume: 188
  year: 2022
  ident: b0155
  article-title: The effects of ultrasonic wave on heterogeneous coagulation and flotation separation of pentlandite-serpentine
  publication-title: Miner. Eng.
– volume: 19
  start-page: 1702
  year: 2012
  end-page: 1710
  ident: b0235
  article-title: Flotation and surface modification characteristics of galena, sphalerite and pyrite in collecting-depressing-reactivating system
  publication-title: J. Cent. South Univ. Technol.
– volume: 48
  start-page: 3615
  year: 2003
  end-page: 3623
  ident: b0255
  article-title: Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes
  publication-title: Electrochim. Acta
– volume: 329
  year: 2021
  ident: b0050
  article-title: A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage
  publication-title: J. Clean. Prod.
– volume: 45
  start-page: 164
  year: 2016
  end-page: 176
  ident: b0240
  article-title: Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems
  publication-title: J. Environ. Sci.
– volume: 100
  start-page: 223
  year: 2017
  end-page: 232
  ident: b0080
  article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate
  publication-title: Miner. Eng.
– volume: 20
  start-page: 271
  year: 2022
  end-page: 291
  ident: b0200
  article-title: Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms
  publication-title: Geobiology
– volume: 60
  year: 2020
  ident: b0060
  article-title: A review of effects and applications of ultrasound in mineral flotation
  publication-title: Ultrason. Sonochem.
– volume: 99
  year: 2023
  ident: b0330
  article-title: A comparative study on the influence of single and combined ultrasounds assisted flake graphite flotation
  publication-title: Ultrason. Sonochem.
– volume: 78
  start-page: 1761
  year: 2024
  end-page: 1773
  ident: b0035
  article-title: Flotation separation of pyrite and chalcopyrite with potassium permanganate as a depressant
  publication-title: Chem. Pap.
– volume: 53
  start-page: 181
  year: 2013
  end-page: 183
  ident: b0085
  article-title: The solution chemistry of carbonate and implications for pyrite flotation
  publication-title: Miner. Eng.
– volume: ESS12) 18
  start-page: 864
  year: 2011
  end-page: 872
  ident: b0010
  article-title: The characterization of acoustic cavitation bubbles – an overview. Ultrasonics Sonochemistry, European Society of
  publication-title: Sonochemistry
– volume: 19
  start-page: 81
  year: 2002
  end-page: 86
  ident: b0020
  article-title: Role of dixanthogen on pyrite flotation: solubility, adsorption studies and Eh, FTIR measurements
  publication-title: Min. Metall. Explor.
– volume: 66–68
  start-page: 197
  year: 2014
  end-page: 201
  ident: b0305
  article-title: Pyrite recovery mechanisms in rougher flotation circuits
  publication-title: Miner. Eng.
– volume: 24
  start-page: 1487
  year: 2008
  end-page: 1492
  ident: b0220
  article-title: Simultaneous Determination of Fe(III) and Fe(II) Ions via Complexation with Salicylic Acid and 1,10-Phenanthroline in Microcolumn Ion Chromatography
  publication-title: Anal. Sci.
– volume: 21
  start-page: 314
  year: 1974
  end-page: 318
  ident: b0250
  article-title: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III)
  publication-title: Talanta
– volume: 144
  year: 2019
  ident: b0270
  article-title: The effect of carbon dioxide and nitrogen on pyrite surface properties and flotation response
  publication-title: Miner. Eng.
– volume: 195
  year: 2019
  ident: b0170
  article-title: Ultrasonic-assisted flotation of fine coal: a review
  publication-title: Fuel Process. Technol.
– volume: 56
  start-page: 538
  year: 2020
  end-page: 547
  ident: b0105
  article-title: Investigating the effects of ultrasonic energy on the flotation behavior of pyrite and galena minerals
  publication-title: Physicochem. Probl. Miner. Process.
– volume: 291
  year: 2021
  ident: b0175
  article-title: Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment
  publication-title: J. Clean. Prod.
– volume: 32
  start-page: 3731
  year: 2022
  end-page: 3743
  ident: b0140
  article-title: Interaction mechanism of ferrate(VI) with arsenopyrite surface and its effect on flotation separation of chalcopyrite from arsenopyrite
  publication-title: Trans. Nonferrous Met. Soc. Chin.
– volume: 29
  start-page: 2604
  year: 2019
  end-page: 2614
  ident: b0110
  article-title: Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite
  publication-title: Trans. Nonferrous Met. Soc. Chin.
– volume: 18
  start-page: 1208
  year: 2005
  end-page: 1213
  ident: b0100
  article-title: Correlation between copper-activated pyrite flotation and surface species: effect of pulp oxidation potential
  publication-title: Miner. Eng.
– volume: 20
  start-page: 1
  year: 2013
  end-page: 11
  ident: b0245
  article-title: Dissolved gas and ultrasonic cavitation – a review
  publication-title: Ultrason. Sonochem.
– volume: 101
  start-page: 10
  year: 2017
  end-page: 19
  ident: b0190
  article-title: Surface properties of fractured and polished pyrite in relation to flotation
  publication-title: Miner. Eng.
– volume: 393
  year: 2021
  ident: b0150
  article-title: Electrochemical investigation of the oxidation of pyrite in neutral solutions
  publication-title: Electrochim. Acta
– volume: 47
  start-page: 1
  year: 2017
  end-page: 18
  ident: b0185
  article-title: A review on electrochemical behavior of pyrite in the froth flotation process
  publication-title: J. Ind. Eng. Chem.
– volume: 147
  year: 2020
  ident: b0335
  article-title: Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite
  publication-title: Miner. Eng.
– volume: 31
  start-page: 2148
  year: 2024
  end-page: 2158
  ident: b0180
  article-title: Effect of dissolved-oxygen on the flotation behavior of pyrite at high altitude area
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 22
  start-page: 110
  year: 2020
  end-page: 119
  ident: b0075
  article-title: Electrolytic production of copper from chalcopyrite
  publication-title: Curr. Opin. Electrochem.
– volume: 240
  year: 2020
  ident: b0095
  article-title: Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite
  publication-title: Sep. Purif. Technol.
– volume: 84
  year: 2022
  ident: b0120
  article-title: Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation
  publication-title: Ultrason. Sonochem.
– volume: 561
  start-page: 349
  year: 2019
  end-page: 356
  ident: b0230
  article-title: Collectorless flotation of oxidized pyrite
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 75
  start-page: 113
  year: 2005
  end-page: 122
  ident: b0045
  article-title: Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans
  publication-title: Int. J. Miner. Process.
– volume: 34
  start-page: 2716
  year: 2018
  end-page: 2724
  ident: b0215
  article-title: Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems
  publication-title: Langmuir
– volume: 150
  year: 2020
  ident: b0065
  article-title: Utilization of trisodium phosphate to eliminate the adverse effect of Mg2+ on the flotation of pyrite
  publication-title: Miner. Eng.
– volume: 50
  start-page: 395
  year: 2016
  end-page: 401
  ident: b0260
  article-title: Improvement of selective copper extraction from a heat-treated chalcopyrite concentrate with atmospheric sulphuric-acid leaching
  publication-title: Mater. Tehnol.
– volume: 202
  year: 2023
  ident: b0160
  article-title: Effect of regulating dissolved oxygen concentration in pulp with aerated gas on pyrite flotation
  publication-title: Miner. Eng.
– volume: 19
  start-page: 675
  year: 2006
  end-page: 686
  ident: b0205
  article-title: The effect of heavy oxidation upon flotation and potential remedies for Merensky type sulfides
  publication-title: Miner. Eng.
– volume: 619
  year: 2023
  ident: b0135
  article-title: Crystal face-dependent pyrite oxidation: an electrochemical study
  publication-title: Appl. Surf. Sci.
– volume: 64
  start-page: 1
  year: 2009
  end-page: 45
  ident: b0195
  article-title: Surface reactivity of pyrite and related sulfides
  publication-title: Surf. Sci. Rep.
– volume: 34
  start-page: 14317
  year: 2018
  end-page: 14327
  ident: b0265
  article-title: Attachment, Coalescence, and Spreading of Carbon Dioxide Nanobubbles at Pyrite Surfaces
  publication-title: Langmuir
– volume: 72
  start-page: 373
  year: 2003
  end-page: 386
  ident: b0025
  article-title: Pyrite oxidation in alkaline solutions: nature of the product layer
  publication-title: Int. J. Miner. Process.
– volume: 680
  year: 2025
  ident: b0130
  article-title: Pyrite activation in seawater flotation by copper and lead ions: XPS and in-situ electrochemical investigation
  publication-title: Appl. Surf. Sci.
– volume: 58
  start-page: 132
  year: 2019
  end-page: 139
  ident: b0145
  article-title: The effects of various activators on flotation performance of lime-depressed pyrrhotite
  publication-title: Can. Metall. Q.
– volume: 20
  start-page: 268
  year: 2014
  end-page: 273
  ident: b0055
  article-title: Interactions of xanthate with pyrite and galena surfaces in the presence and absence of oxygen
  publication-title: J. Ind. Eng. Chem.
– volume: 171
  start-page: 413
  year: 1995
  end-page: 428
  ident: b0290
  article-title: Interfacial Electrochemistry of Pyrite Oxidation and Flotation: II. FTIR Studies of Xanthate Adsorption on Pyrite Surfaces in Neutral pH Solutions
  publication-title: J. Colloid Interface Sci.
– volume: 184
  year: 2022
  ident: b0325
  article-title: Investigation on the correlation between ferrous ion and the floatability of pyrite with different oxidation degrees
  publication-title: Miner. Eng.
– volume: 495
  year: 2019
  ident: b0210
  article-title: Correlation of surface oxidation with xanthate adsorption and pyrite flotation
  publication-title: Appl. Surf. Sci.
– volume: 75
  start-page: 4435
  year: 2023
  end-page: 4445
  ident: b0310
  article-title: Selective Adsorption Mechanism of Ferric Ions on the Surfaces of Chalcopyrite and Pyrite in Flotation
  publication-title: JOM
– volume: 109
  start-page: 135
  year: 2017
  end-page: 143
  ident: b0070
  article-title: The use of oxidising agents for control of electrochemical potential in flotation
  publication-title: Miner. Eng.
– volume: 353
  year: 2025
  ident: b0280
  article-title: Effect of lead ions treatment on the flotation behavior of lime-depressed pyrite in a butyl xanthate system
  publication-title: Sep. Purif. Technol.
– volume: 329
  start-page: 839
  year: 2021
  end-page: 848
  ident: b0285
  article-title: Effect of natural pyrite oxidation on the U(VI) adsorption under the acidic and neutral conditions
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 144
  year: 2019
  ident: 10.1016/j.mineng.2025.109661_b0270
  article-title: The effect of carbon dioxide and nitrogen on pyrite surface properties and flotation response
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.106048
– volume: 353
  year: 2025
  ident: 10.1016/j.mineng.2025.109661_b0280
  article-title: Effect of lead ions treatment on the flotation behavior of lime-depressed pyrite in a butyl xanthate system
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.128398
– volume: 232
  start-page: 888
  year: 2019
  ident: 10.1016/j.mineng.2025.109661_b0115
  article-title: Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.06.008
– volume: 20
  start-page: 1
  year: 2013
  ident: 10.1016/j.mineng.2025.109661_b0245
  article-title: Dissolved gas and ultrasonic cavitation – a review
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.04.013
– volume: 188
  year: 2022
  ident: 10.1016/j.mineng.2025.109661_b0155
  article-title: The effects of ultrasonic wave on heterogeneous coagulation and flotation separation of pentlandite-serpentine
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2022.107828
– volume: 48
  start-page: 3615
  year: 2003
  ident: 10.1016/j.mineng.2025.109661_b0255
  article-title: Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(03)00482-1
– volume: 53
  start-page: 181
  year: 2013
  ident: 10.1016/j.mineng.2025.109661_b0085
  article-title: The solution chemistry of carbonate and implications for pyrite flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.08.007
– volume: 84
  year: 2022
  ident: 10.1016/j.mineng.2025.109661_b0120
  article-title: Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2022.105962
– volume: 168
  year: 2021
  ident: 10.1016/j.mineng.2025.109661_b0300
  article-title: Comparing lead and copper activation on pyrite with different degrees of surface oxidation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106926
– volume: 21
  start-page: 314
  year: 1974
  ident: 10.1016/j.mineng.2025.109661_b0250
  article-title: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III)
  publication-title: Talanta
  doi: 10.1016/0039-9140(74)80012-3
– volume: 147
  year: 2020
  ident: 10.1016/j.mineng.2025.109661_b0335
  article-title: Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.106170
– volume: 64
  start-page: 1
  year: 2009
  ident: 10.1016/j.mineng.2025.109661_b0195
  article-title: Surface reactivity of pyrite and related sulfides
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2008.09.002
– volume: 348
  year: 2024
  ident: 10.1016/j.mineng.2025.109661_b0295
  article-title: Activation flotation of lime-depressed pyrite with carbon dioxide: Performances, mechanism and pilot-scale application
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.127815
– volume: 18
  start-page: 1208
  year: 2005
  ident: 10.1016/j.mineng.2025.109661_b0100
  article-title: Correlation between copper-activated pyrite flotation and surface species: effect of pulp oxidation potential
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2005.07.016
– volume: 329
  start-page: 839
  year: 2021
  ident: 10.1016/j.mineng.2025.109661_b0285
  article-title: Effect of natural pyrite oxidation on the U(VI) adsorption under the acidic and neutral conditions
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-021-07857-y
– volume: 78
  start-page: 1761
  year: 2024
  ident: 10.1016/j.mineng.2025.109661_b0035
  article-title: Flotation separation of pyrite and chalcopyrite with potassium permanganate as a depressant
  publication-title: Chem. Pap.
  doi: 10.1007/s11696-023-03203-6
– volume: 240
  year: 2020
  ident: 10.1016/j.mineng.2025.109661_b0095
  article-title: Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116650
– volume: 18
  start-page: 564
  year: 2018
  ident: 10.1016/j.mineng.2025.109661_b0165
  article-title: Interaction mechanism and kinetics of ferrous sulfide and manganese oxides in aqueous system
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1774-5
– volume: 19
  start-page: 675
  year: 2006
  ident: 10.1016/j.mineng.2025.109661_b0205
  article-title: The effect of heavy oxidation upon flotation and potential remedies for Merensky type sulfides
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2005.09.043
– volume: 119
  start-page: 93
  year: 2018
  ident: 10.1016/j.mineng.2025.109661_b0040
  article-title: The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.01.029
– volume: 278
  year: 2021
  ident: 10.1016/j.mineng.2025.109661_b0090
  article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119573
– volume: 100
  start-page: 223
  year: 2017
  ident: 10.1016/j.mineng.2025.109661_b0080
  article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.11.005
– volume: 34
  start-page: 14317
  year: 2018
  ident: 10.1016/j.mineng.2025.109661_b0265
  article-title: Attachment, Coalescence, and Spreading of Carbon Dioxide Nanobubbles at Pyrite Surfaces
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02929
– volume: 19
  start-page: 81
  year: 2002
  ident: 10.1016/j.mineng.2025.109661_b0020
  article-title: Role of dixanthogen on pyrite flotation: solubility, adsorption studies and Eh, FTIR measurements
  publication-title: Min. Metall. Explor.
– volume: 66–68
  start-page: 197
  year: 2014
  ident: 10.1016/j.mineng.2025.109661_b0305
  article-title: Pyrite recovery mechanisms in rougher flotation circuits
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.03.020
– volume: 60
  year: 2020
  ident: 10.1016/j.mineng.2025.109661_b0060
  article-title: A review of effects and applications of ultrasound in mineral flotation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.104739
– volume: 184
  year: 2022
  ident: 10.1016/j.mineng.2025.109661_b0325
  article-title: Investigation on the correlation between ferrous ion and the floatability of pyrite with different oxidation degrees
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2022.107636
– volume: 32
  start-page: 3731
  year: 2022
  ident: 10.1016/j.mineng.2025.109661_b0140
  article-title: Interaction mechanism of ferrate(VI) with arsenopyrite surface and its effect on flotation separation of chalcopyrite from arsenopyrite
  publication-title: Trans. Nonferrous Met. Soc. Chin.
  doi: 10.1016/S1003-6326(22)66053-9
– volume: 34
  start-page: 2716
  year: 2018
  ident: 10.1016/j.mineng.2025.109661_b0215
  article-title: Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b04189
– volume: 99
  year: 2023
  ident: 10.1016/j.mineng.2025.109661_b0330
  article-title: A comparative study on the influence of single and combined ultrasounds assisted flake graphite flotation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2023.106551
– volume: 495
  year: 2019
  ident: 10.1016/j.mineng.2025.109661_b0210
  article-title: Correlation of surface oxidation with xanthate adsorption and pyrite flotation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.153
– volume: 20
  start-page: 268
  year: 2014
  ident: 10.1016/j.mineng.2025.109661_b0055
  article-title: Interactions of xanthate with pyrite and galena surfaces in the presence and absence of oxygen
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.03.039
– volume: 20
  start-page: 271
  year: 2022
  ident: 10.1016/j.mineng.2025.109661_b0200
  article-title: Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms
  publication-title: Geobiology
  doi: 10.1111/gbi.12474
– volume: 1048
  start-page: 434
  year: 2013
  ident: 10.1016/j.mineng.2025.109661_b0320
  article-title: FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2013.06.015
– volume: 72
  start-page: 373
  year: 2003
  ident: 10.1016/j.mineng.2025.109661_b0025
  article-title: Pyrite oxidation in alkaline solutions: nature of the product layer
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(03)00112-1
– volume: 45
  start-page: 164
  year: 2016
  ident: 10.1016/j.mineng.2025.109661_b0240
  article-title: Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2016.01.012
– volume: 75
  start-page: 4435
  year: 2023
  ident: 10.1016/j.mineng.2025.109661_b0310
  article-title: Selective Adsorption Mechanism of Ferric Ions on the Surfaces of Chalcopyrite and Pyrite in Flotation
  publication-title: JOM
  doi: 10.1007/s11837-023-06067-z
– volume: 329
  year: 2021
  ident: 10.1016/j.mineng.2025.109661_b0050
  article-title: A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.129666
– volume: 150
  year: 2020
  ident: 10.1016/j.mineng.2025.109661_b0065
  article-title: Utilization of trisodium phosphate to eliminate the adverse effect of Mg2+ on the flotation of pyrite
  publication-title: Miner. Eng.
– volume: 50
  start-page: 395
  year: 2016
  ident: 10.1016/j.mineng.2025.109661_b0260
  article-title: Improvement of selective copper extraction from a heat-treated chalcopyrite concentrate with atmospheric sulphuric-acid leaching
  publication-title: Mater. Tehnol.
  doi: 10.17222/mit.2015.091
– volume: 47
  start-page: 1
  year: 2017
  ident: 10.1016/j.mineng.2025.109661_b0185
  article-title: A review on electrochemical behavior of pyrite in the froth flotation process
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.12.012
– volume: 14
  start-page: 470
  year: 2007
  ident: 10.1016/j.mineng.2025.109661_b0015
  article-title: Bubbles in an acoustic field: an overview
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2006.09.016
– volume: 619
  year: 2023
  ident: 10.1016/j.mineng.2025.109661_b0135
  article-title: Crystal face-dependent pyrite oxidation: an electrochemical study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.156687
– volume: 195
  year: 2020
  ident: 10.1016/j.mineng.2025.109661_b0005
  article-title: Hydrothermal pretreatment of chalcopyrite concentrate with copper sulfate solution
  publication-title: Hydrometall.
  doi: 10.1016/j.hydromet.2020.105359
– volume: 58
  start-page: 132
  year: 2019
  ident: 10.1016/j.mineng.2025.109661_b0145
  article-title: The effects of various activators on flotation performance of lime-depressed pyrrhotite
  publication-title: Can. Metall. Q.
  doi: 10.1080/00084433.2018.1535931
– volume: 56
  start-page: 538
  year: 2020
  ident: 10.1016/j.mineng.2025.109661_b0105
  article-title: Investigating the effects of ultrasonic energy on the flotation behavior of pyrite and galena minerals
  publication-title: Physicochem. Probl. Miner. Process.
  doi: 10.37190/ppmp/120291
– volume: 101
  start-page: 10
  year: 2017
  ident: 10.1016/j.mineng.2025.109661_b0190
  article-title: Surface properties of fractured and polished pyrite in relation to flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.11.012
– volume: 171
  start-page: 413
  year: 1995
  ident: 10.1016/j.mineng.2025.109661_b0290
  article-title: Interfacial Electrochemistry of Pyrite Oxidation and Flotation: II. FTIR Studies of Xanthate Adsorption on Pyrite Surfaces in Neutral pH Solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1198
– volume: 680
  year: 2025
  ident: 10.1016/j.mineng.2025.109661_b0130
  article-title: Pyrite activation in seawater flotation by copper and lead ions: XPS and in-situ electrochemical investigation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2024.161363
– volume: 561
  start-page: 349
  year: 2019
  ident: 10.1016/j.mineng.2025.109661_b0230
  article-title: Collectorless flotation of oxidized pyrite
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2018.10.064
– volume: 24
  start-page: 1487
  year: 2008
  ident: 10.1016/j.mineng.2025.109661_b0220
  article-title: Simultaneous Determination of Fe(III) and Fe(II) Ions via Complexation with Salicylic Acid and 1,10-Phenanthroline in Microcolumn Ion Chromatography
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.24.1487
– volume: 393
  year: 2021
  ident: 10.1016/j.mineng.2025.109661_b0150
  article-title: Electrochemical investigation of the oxidation of pyrite in neutral solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.139078
– volume: 29
  start-page: 2604
  year: 2019
  ident: 10.1016/j.mineng.2025.109661_b0110
  article-title: Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite
  publication-title: Trans. Nonferrous Met. Soc. Chin.
  doi: 10.1016/S1003-6326(19)65167-8
– volume: ESS12) 18
  start-page: 864
  year: 2011
  ident: 10.1016/j.mineng.2025.109661_b0010
  article-title: The characterization of acoustic cavitation bubbles – an overview. Ultrasonics Sonochemistry, European Society of
  publication-title: Sonochemistry
  doi: 10.1016/j.ultsonch.2010.11.016
– volume: 109
  start-page: 135
  year: 2017
  ident: 10.1016/j.mineng.2025.109661_b0070
  article-title: The use of oxidising agents for control of electrochemical potential in flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.03.011
– volume: 31
  start-page: 2148
  year: 2024
  ident: 10.1016/j.mineng.2025.109661_b0180
  article-title: Effect of dissolved-oxygen on the flotation behavior of pyrite at high altitude area
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-023-2784-5
– volume: 291
  year: 2021
  ident: 10.1016/j.mineng.2025.109661_b0175
  article-title: Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125235
– volume: 202
  year: 2023
  ident: 10.1016/j.mineng.2025.109661_b0160
  article-title: Effect of regulating dissolved oxygen concentration in pulp with aerated gas on pyrite flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2023.108290
– volume: 668
  year: 2023
  ident: 10.1016/j.mineng.2025.109661_b0275
  article-title: Surface characteristic and sulfidization-xanthate flotation behaviours of malachite as influenced by ferric ions
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2023.131469
– volume: 75
  start-page: 113
  year: 2005
  ident: 10.1016/j.mineng.2025.109661_b0045
  article-title: Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2004.08.014
– volume: 22
  start-page: 110
  year: 2020
  ident: 10.1016/j.mineng.2025.109661_b0075
  article-title: Electrolytic production of copper from chalcopyrite
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2020.04.011
– volume: 33
  start-page: 1289
  year: 2023
  ident: 10.1016/j.mineng.2025.109661_b0125
  article-title: Selective flotation of chalcopyrite from pyrite via seawater oxidation pretreatment
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2023.08.004
– volume: 311
  start-page: 390
  year: 2017
  ident: 10.1016/j.mineng.2025.109661_b0030
  article-title: Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.01.069
– volume: 39
  start-page: 9051
  year: 2023
  ident: 10.1016/j.mineng.2025.109661_b0315
  article-title: Progressive Hydrophilic Processes of the Pyrite Surface in High-Alkaline Lime Systems
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.3c00678
– volume: 93
  start-page: 576
  year: 2012
  ident: 10.1016/j.mineng.2025.109661_b0225
  article-title: Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.10.032
– volume: 195
  year: 2019
  ident: 10.1016/j.mineng.2025.109661_b0170
  article-title: Ultrasonic-assisted flotation of fine coal: a review
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2019.106150
– volume: 19
  start-page: 1702
  year: 2012
  ident: 10.1016/j.mineng.2025.109661_b0235
  article-title: Flotation and surface modification characteristics of galena, sphalerite and pyrite in collecting-depressing-reactivating system
  publication-title: J. Cent. South Univ. Technol.
  doi: 10.1007/s11771-012-1196-x
SSID ssj0005789
Score 2.43674
Snippet [Display omitted] •Ultrasonic-generated Fe ions and suspended substances reduce pyrite hydrophobicity.•Fe2+ oxidation to Fe3+ via dissolved oxygen consumption...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109661
SubjectTerms Dissolved oxygen
Hydrophobicity
Phenanthroline spectrophotometry
Pyrite
Ultrasonic
Title Effect of ultrasonic treatment on the surface hydrophobicity of pyrite: Properties and mechanism of ultrasonic products
URI https://dx.doi.org/10.1016/j.mineng.2025.109661
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jWuT9CPexnBMxSHoYLeSNi9u4trSbcgu_u0maytTxIPHhrxQfgnv_V547xeELk0QcSgwl4AKY8JjmhDhUZ_QmIFVe9E0thf6D0N_MOJ3Y2_cQL26F8aWVVa-v_Tpa29djXQqNDv5dNp5ckJBfUO3TRB3rISK7WDngT3lVx8bZR7B-hk8O5nY2XX73LrGa2aYXPpiskTqWV0l33d_D08bIae_h3Yrroi75e_sowakB2hnQ0HwEL2X6sM403j5tijk3Crd4q_qcZyl2DA8PF8WWiaAJytVZPkki6eJYd_WKl8VhnRe40d7KV9YdVUsU4VnYDuCp_PZj5XzUiB2foRG_Zvn3oBUbymQxFCUBQkScFlsgnti-IDJSrmEUDsAmoXgKkmVEFxBaAieJ3QCiQSgTEquTYpCfeWxY9RMsxROEJaBdAQLlYRYcslBKKl1wARwxbgWbguRGsIoLyUzorqW7DUqIY8s5FEJeQsFNc7Rt62PjFf_0_L035ZnaNt-lU2F56i5KJZwYdjFIm6vj08bbXVv7wfDT2dP0q0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvc_Aatk3SR7yJKOtrEVTwVtJmoituW7q7iP_eZNv6Qjx4bTulfCnzfRNmvgAcWhLxGHKfoo5TKlKWURmwkLKUo3N7MSx1G_rX_bB3Ly4egocZOGlnYVxbZZP765w-zdbNlW6DZrccDLq3XixZaOW2JXHPWajMwpxzpwo6MHd8ftnrf3Z6RNOT8Nzz1AW0E3TTNq-hFXP5oy0UWeCslcLQ_52hvrDO2TIsNXKRHNdftAIzmK_C4hcTwTV4rQ2ISWHI5GVcqZEzuyUfDeSkyIkVeWQ0qYzKkDy96aoon4p0kFkB7qLKt8rqziNy4_blK2ewSlSuyRDdUPBgNPzx5rL2iB2tw_3Z6d1JjzbHKdDMqpQxjTL0eWr5PbOSwBamQmFsPETDY_S1YlpKoTG2Gi-QJsNMITKulDC2SmGhDvgGdPIix00gKlKe5LFWmCqhBEqtjIm4RKG5MNLfAtpCmJS1a0bStpM9JzXkiYM8qSHfgqjFOfm2-olN7H9Gbv878gDme3fXV8nVef9yBxbcnXrGcBc642qCe1ZsjNP95md6B6VJ1V4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+ultrasonic+treatment+on+the+surface+hydrophobicity+of+pyrite%3A+Properties+and+mechanism+of+ultrasonic+products&rft.jtitle=Minerals+engineering&rft.au=Lin%2C+Qiqiang&rft.au=Sun%2C+Lei&rft.au=Cao%2C+Yang&rft.au=Xiang%2C+Meitao&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.volume=233&rft_id=info:doi/10.1016%2Fj.mineng.2025.109661&rft.externalDocID=S0892687525004893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon