Deep learning-based workload prediction and resource provisioning for mobile edge-cloud computing in healthcare applications

Edge computing has been greatly assisted by the quick development of cloud computing and mobile communications. Even though there has been a lot of interest in edge computing technologies, the majority of research has been application-specific and did not consider cloud providers' control persp...

Full description

Saved in:
Bibliographic Details
Published inSustainable computing informatics and systems Vol. 47; p. 101176
Main Authors S, Durga, Daniel, Esther, S, Deepakanmani, V.K, Reshma
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2025
Subjects
Online AccessGet full text
ISSN2210-5379
DOI10.1016/j.suscom.2025.101176

Cover

Loading…
Abstract Edge computing has been greatly assisted by the quick development of cloud computing and mobile communications. Even though there has been a lot of interest in edge computing technologies, the majority of research has been application-specific and did not consider cloud providers' control perspective, which offers general-purpose edge services. Thus, a new model called Parallel Convolutional MobileNet (PConvM-Net) is presented for resource provisioning and workload prediction. First, Multi-Access Edge Computing (MEC) for resource provision is considered, and here resource provisioning manager includes two main components, like workload estimation and monitoring. In the prediction module, the workload prediction is performed by employing a Gated Recurrent Unit (GRU). In the decision module, the threshold scale-up process is executed. Moreover, in order to choose the number of resources in the scale-down and scale-up process, a Parallel Convolutional MobileNet (PConvM-Net) is utilized. Further, the decision is considered based on parameters such as bandwidth, Central Processing Unit (CPU), memory usage, energy, and execution time. Here, PConvM-Net is formulated by the amalgamation of MobileNet and Parallel Convolutional Neural Network (PCNN). The simulation outcomes of PConvM-Net calculated a minimum execution time, energy consumption, CPU utilization, Task Response Time, SLA Violation, and Availability of 8.616 sec, 39.876 J, 83.877 %, 7.644 sec, 2.877 %, and 91.876 %. •At first, Multi-Access Edge Computing (MEC) for resource provision is considered.•Resource provisioning has two components, like workload estimation and monitoring.•The workload prediction is performed by employing a Gated Recurrent Unit (GRU).
AbstractList Edge computing has been greatly assisted by the quick development of cloud computing and mobile communications. Even though there has been a lot of interest in edge computing technologies, the majority of research has been application-specific and did not consider cloud providers' control perspective, which offers general-purpose edge services. Thus, a new model called Parallel Convolutional MobileNet (PConvM-Net) is presented for resource provisioning and workload prediction. First, Multi-Access Edge Computing (MEC) for resource provision is considered, and here resource provisioning manager includes two main components, like workload estimation and monitoring. In the prediction module, the workload prediction is performed by employing a Gated Recurrent Unit (GRU). In the decision module, the threshold scale-up process is executed. Moreover, in order to choose the number of resources in the scale-down and scale-up process, a Parallel Convolutional MobileNet (PConvM-Net) is utilized. Further, the decision is considered based on parameters such as bandwidth, Central Processing Unit (CPU), memory usage, energy, and execution time. Here, PConvM-Net is formulated by the amalgamation of MobileNet and Parallel Convolutional Neural Network (PCNN). The simulation outcomes of PConvM-Net calculated a minimum execution time, energy consumption, CPU utilization, Task Response Time, SLA Violation, and Availability of 8.616 sec, 39.876 J, 83.877 %, 7.644 sec, 2.877 %, and 91.876 %. •At first, Multi-Access Edge Computing (MEC) for resource provision is considered.•Resource provisioning has two components, like workload estimation and monitoring.•The workload prediction is performed by employing a Gated Recurrent Unit (GRU).
ArticleNumber 101176
Author S, Deepakanmani
V.K, Reshma
Daniel, Esther
S, Durga
Author_xml – sequence: 1
  givenname: Durga
  surname: S
  fullname: S, Durga
  email: durga.sivan@gmail.com
  organization: TIFAC CORE in Cyber Security, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu 641112, India
– sequence: 2
  givenname: Esther
  surname: Daniel
  fullname: Daniel, Esther
  email: estherdaniell@gmail.com
  organization: Division of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
– sequence: 3
  givenname: Deepakanmani
  surname: S
  fullname: S, Deepakanmani
  email: deepakanmanisampath@gmail.com
  organization: Department of Information Technology, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu 641008, India
– sequence: 4
  givenname: Reshma
  surname: V.K
  fullname: V.K, Reshma
  email: vkreshmaphd@gmail.com
  organization: Department of Computer Science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu 641008, India
BookMark eNp9kM1qwzAQhHVIoWmaN-hBL-BUki05vhRK-guBXtqzkKVVotSRjGSnFPrwlUnP3cvCDDMM3xWa-eABoRtKVpRQcXtYpTHpcFwxwvgk0VrM0JwxSgpe1s0lWqZ0IPm4oE1ZzdHPA0CPO1DRO78rWpXA4K8QP7ugDO4jGKcHFzxW3uAIKYxRQ9bDyaUs5wy2IeJjaF0HGMwOCt2F0eC8oh-HyXce70F1w16rCFj1fee0mjrTNbqwqkuw_PsL9PH0-L55KbZvz6-b-22hac2GQnDOmzURSpeMGd1obcAAJcRWggCxrapppazi2jRVXVkmGCe2Zq1dUxBGlAtUnXt1DClFsLKP7qjit6RETuDkQZ7ByQmcPIPLsbtzDPK2k4Mok3bgdWYSQQ_SBPd_wS-uuoBP
Cites_doi 10.1109/TII.2022.3165085
10.1007/s00521-022-07260-y
10.1109/ACCESS.2022.3190857
10.1109/TGCN.2021.3067309
10.3390/drones7050303
10.1007/s00521-019-04119-7
10.3390/fi16010019
10.1109/OJCOMS.2023.3329420
10.1016/j.heliyon.2023.e23651
10.21203/rs.3.rs-2578054/v1
10.1016/j.future.2016.06.021
10.1016/j.comcom.2024.05.023
10.1109/ACCESS.2023.3249153
10.1049/wss2.12085
10.1016/j.jksuci.2023.01.001
10.1016/j.future.2023.05.017
10.1109/TCCN.2023.3298926
10.1186/s13634-023-01018-x
10.1016/j.future.2017.07.048
10.1109/ACCESS.2018.2790963
10.1109/JIOT.2021.3058953
10.1186/s13638-025-02450-3
10.1186/s13677-021-00237-7
10.3390/s20216125
10.1002/spe.2888
10.1109/ACCESS.2023.3257342
10.1109/TGCN.2021.3121961
10.1109/COMST.2022.3199544
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.suscom.2025.101176
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_suscom_2025_101176
S2210537925000976
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SES
SPC
SPCBC
SSR
SSV
SSZ
T5K
~G-
AAYXX
CITATION
EFLBG
ID FETCH-LOGICAL-c172t-65559806ac322dc9ccdede100f460e0fba714afa5cd9474f26250f72bf81e6d63
IEDL.DBID .~1
ISSN 2210-5379
IngestDate Wed Sep 03 16:45:00 EDT 2025
Sat Aug 30 17:13:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords Cloud computing
Gated recurrent unit
MobileNet
Mobile edge
Parallel convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-65559806ac322dc9ccdede100f460e0fba714afa5cd9474f26250f72bf81e6d63
ParticipantIDs crossref_primary_10_1016_j_suscom_2025_101176
elsevier_sciencedirect_doi_10_1016_j_suscom_2025_101176
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kim (bib30) 2022; 10
Yu, Gu, Wang, Zhou, Xue, Yang (bib7) July 2023
Yuan, Zhang, Li, Li, Zhang (bib28) 2023; 11
Sharif, Jung, Ayaz, Yahya, Pitafi (bib18) 2023; 35
Wang, Irwin, Shenoy, Towsley (bib33) 2024
Qadeer, Lee (bib5) 2023; 11
Awoyemi, Hlophe, Maharaj (bib31) 2025; 2025
Shahidinejad, Ghobaei-Arani (bib26) 2020; 50
Chouliaras, Sotiriadis (bib42) 2023; 148
Ssemakula, Gorricho, Kibalya, Serrat-Fernandez (bib32) 2024; 224
Do, Tran, Yoo (bib2) 2023
Zhou, Li, Zhu, Xie, Abawajy, Chowdhury (bib9) 2020; 32
Pusti, Sankaran (bib21) 2022
Sharan, Shridhar, Abirami (bib4) July 2023
Tan, Zhao, Wang, Wang, Wang, Liu, Ghobaei-Arani (bib15) 2024; 10
Djigal, Xu, Liu, Zhang (bib25) 2022; 24
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H., Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861, 2017.
E. Nikougoftar, M. Ghobaei-Arani, 2023, A Fuzzy Q-learning-based Approach for Auto-scaling and Computation Offloading in Edge/Cloud Computing.
Fang, Hu, Wei, Liu, Wang (bib19) 2020; 20
Abbas, Cho, Nauman, Khan, Khan, Kondepu (bib27) 2023
Kumar, Spandana, Srisurya, Priyadharshini, Krithika, Sai, Venkatraman (bib17) 2024
Zhu, Peng, Gu, Li, Liu, Zhou, Liu (bib24) 2018; 6
Pillai (bib23) 2022
Durga, Daniel, Leelipushpam (bib22) 2022
Gabi, Dankolo, Muslim, Abraham, Joda, Zainal, Zakaria (bib11) 2022; 34
Ahmad, Zhang, Khan, Khan, Hayat (bib8) 2023; 7
Arun Kumar, Kalaga, Kumar, Kawaji, Brenza (bib37) 2021; 146
He, Yang, He, Guizani (bib16) 2023
Zhou, Shojafar, Abawajy, Yin, Lu (bib36) 2021; 6
Zhang, Wu, Lin, Lin, Liu (bib12) 2024; 16
Bhaladhare, Jinwala (bib40) 2014; 2014
Nehra, Kesswani (bib41) 2024; 11
Zhou, Shojafar, Alazab, Abawajy, Li (bib14) 2021; 5
Wu, Cai, Bi, Xia, Gao, Tang, Lai (bib29) 2023
Zhou, Shojafar, Alazab, Li (bib35) 2022; 18
Tärneberg, Mehta, Wadbro, Tordsson, Eker, Kihl, Elmroth (bib10) 2017; 70
Nguyen, Pathirana, Ding, Seneviratne (bib34) 2021; 8
Durga, Daniel, Andrew, Bhat (bib6) 2024
Zhou, Abawajy, Chowdhury, Hu, Li, Cheng, Alelaiwi, Li (bib13) 2018; 86
Durga, Daniel, Onesimu, Sei (bib1) 2022
Chen, Du, Xiao (bib20) 2021; 10
Lee, Jha, Agrawal, Choudhary, Liao (bib38) 2017
Abbas (10.1016/j.suscom.2025.101176_bib27) 2023
Bhaladhare (10.1016/j.suscom.2025.101176_bib40) 2014; 2014
Do (10.1016/j.suscom.2025.101176_bib2) 2023
Zhu (10.1016/j.suscom.2025.101176_bib24) 2018; 6
Djigal (10.1016/j.suscom.2025.101176_bib25) 2022; 24
Durga (10.1016/j.suscom.2025.101176_bib22) 2022
Wu (10.1016/j.suscom.2025.101176_bib29) 2023
Durga (10.1016/j.suscom.2025.101176_bib6) 2024
Ahmad (10.1016/j.suscom.2025.101176_bib8) 2023; 7
Kim (10.1016/j.suscom.2025.101176_bib30) 2022; 10
Nguyen (10.1016/j.suscom.2025.101176_bib34) 2021; 8
Sharan (10.1016/j.suscom.2025.101176_bib4) 2023
10.1016/j.suscom.2025.101176_bib39
Fang (10.1016/j.suscom.2025.101176_bib19) 2020; 20
Qadeer (10.1016/j.suscom.2025.101176_bib5) 2023; 11
Zhou (10.1016/j.suscom.2025.101176_bib14) 2021; 5
Chen (10.1016/j.suscom.2025.101176_bib20) 2021; 10
10.1016/j.suscom.2025.101176_bib3
Chouliaras (10.1016/j.suscom.2025.101176_bib42) 2023; 148
Tärneberg (10.1016/j.suscom.2025.101176_bib10) 2017; 70
Zhang (10.1016/j.suscom.2025.101176_bib12) 2024; 16
Shahidinejad (10.1016/j.suscom.2025.101176_bib26) 2020; 50
Pusti (10.1016/j.suscom.2025.101176_bib21) 2022
Yu (10.1016/j.suscom.2025.101176_bib7) 2023
Gabi (10.1016/j.suscom.2025.101176_bib11) 2022; 34
Kumar (10.1016/j.suscom.2025.101176_bib17) 2024
Sharif (10.1016/j.suscom.2025.101176_bib18) 2023; 35
Yuan (10.1016/j.suscom.2025.101176_bib28) 2023; 11
He (10.1016/j.suscom.2025.101176_bib16) 2023
Ssemakula (10.1016/j.suscom.2025.101176_bib32) 2024; 224
Zhou (10.1016/j.suscom.2025.101176_bib9) 2020; 32
Awoyemi (10.1016/j.suscom.2025.101176_bib31) 2025; 2025
Durga (10.1016/j.suscom.2025.101176_bib1) 2022
Tan (10.1016/j.suscom.2025.101176_bib15) 2024; 10
Zhou (10.1016/j.suscom.2025.101176_bib35) 2022; 18
Arun Kumar (10.1016/j.suscom.2025.101176_bib37) 2021; 146
Lee (10.1016/j.suscom.2025.101176_bib38) 2017
Nehra (10.1016/j.suscom.2025.101176_bib41) 2024; 11
Zhou (10.1016/j.suscom.2025.101176_bib13) 2018; 86
Pillai (10.1016/j.suscom.2025.101176_bib23) 2022
Wang (10.1016/j.suscom.2025.101176_bib33) 2024
Zhou (10.1016/j.suscom.2025.101176_bib36) 2021; 6
References_xml – reference: E. Nikougoftar, M. Ghobaei-Arani, 2023, A Fuzzy Q-learning-based Approach for Auto-scaling and Computation Offloading in Edge/Cloud Computing.
– start-page: 1
  year: July 2023
  end-page: 10
  ident: bib7
  article-title: EA-Market: Empowering Real-Time Big Data Applications with Short-Term Edge SLA Leases
  publication-title: Proceedings of 32nd International Conference on Computer Communications and Networks (ICCCN)
– volume: 70
  start-page: 163
  year: 2017
  end-page: 177
  ident: bib10
  article-title: Dynamic application placement in the mobile cloud network
  publication-title: Future Gener. Comput. Syst.
– volume: 16
  start-page: 19
  year: 2024
  ident: bib12
  article-title: Proximal policy optimization for efficient D2D-assisted computation offloading and resource allocation in multi-access edge computing
  publication-title: Future Internet
– volume: 86
  start-page: 836
  year: 2018
  end-page: 850
  ident: bib13
  article-title: Minimizing SLA violation and power consumption in Cloud data centers using adaptive energy-aware algorithms
  publication-title: Future Gener. Comput. Syst.
– volume: 18
  start-page: 8967
  year: 2022
  end-page: 8976
  ident: bib35
  article-title: IECL: an intelligent energy consumption model for cloud manufacturing
  publication-title: IEEE Trans. Ind. Inform.
– reference: Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H., Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861, 2017.
– volume: 10
  start-page: 1
  year: 2021
  end-page: 17
  ident: bib20
  article-title: A multi-objective optimization for resource allocation of emergent demands in cloud computing
  publication-title: J. Cloud Comput.
– volume: 146
  year: 2021
  ident: bib37
  article-title: Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells
  publication-title: Chaos Solitons Fractals
– volume: 7
  start-page: 303
  year: 2023
  ident: bib8
  article-title: JO-TADP: learning-based cooperative dynamic resource allocation for MEC–UAV-enabled wireless network
  publication-title: Drones
– year: 2023
  ident: bib16
  article-title: Computation offloading and resource allocation based on DT-MEC-assisted federated learning framework
  publication-title: IEEE Trans. Cogn. Commun. Netw.
– year: 2024
  ident: bib6
  article-title: SmartCardio: advancing cardiac risk prediction through Internet of things and edge cloud intelligence
  publication-title: IET Wirel. Sens. Syst.
– start-page: 183
  year: 2017
  end-page: 192
  ident: bib38
  article-title: Parallel deep convolutional neural network training by exploiting the overlapping of computation and communication
  publication-title: proceedings of 2017 IEEE 24th international conference on high performance computing (HiPC)
– volume: 2025
  year: 2025
  ident: bib31
  article-title: Dynamic resource provisioning in containerized edge systems with reconfigurable edge servers
  publication-title: EURASIP J. Wirel. Commun. Netw.
– start-page: 1
  year: 2022
  end-page: 14
  ident: bib22
  article-title: A novel request state aware resource provisioning and intelligent resource capacity prediction in hybrid mobile cloud
  publication-title: J. Ambient Intell. Humaniz. Comput.
– start-page: 56
  year: 2023
  ident: bib29
  article-title: Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 6
  start-page: 238
  year: 2021
  end-page: 247
  ident: bib36
  article-title: ECMS: an edge intelligent energy efficient model in mobile edge computing
  publication-title: IEEE Trans. Green. Commun. Netw.
– volume: 5
  start-page: 658
  year: 2021
  end-page: 669
  ident: bib14
  article-title: AFED-EF: An energy-efficient VM allocation algorithm for IoT applications in a cloud data center
  publication-title: IEEE Trans. Green. Commun. Netw.
– volume: 2014
  year: 2014
  ident: bib40
  article-title: A clustering approach for the l-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm
  publication-title: Adv. Comput. Eng.
– volume: 24
  start-page: 2449
  year: 2022
  end-page: 2494
  ident: bib25
  article-title: Machine and deep learning for resource allocation in multi-access edge computing: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 10
  year: 2024
  ident: bib15
  article-title: A decision-making mechanism for task offloading using learning automata and deep learning in mobile edge networks
  publication-title: Heliyon
– volume: 8
  start-page: 11743
  year: 2021
  end-page: 11757
  ident: bib34
  article-title: BEdgeHealth: a decentralized architecture for edge-based IoMT networks using blockchain
  publication-title: IEEE Internet Things J.
– volume: 6
  start-page: 5332
  year: 2018
  end-page: 5340
  ident: bib24
  article-title: Fair resource allocation for system throughput maximization in mobile edge computing
  publication-title: IEEE Access
– volume: 224
  start-page: 42
  year: 2024
  end-page: 59
  ident: bib32
  article-title: Optimized provisioning technique of future services with different QoS requirements in multi-access edge computing
  publication-title: Comput. Commun.
– volume: 34
  start-page: 14085
  year: 2022
  end-page: 14105
  ident: bib11
  article-title: Dynamic scheduling of heterogeneous resources across mobile edge-cloud continuum using fruit fly-based simulated annealing optimization scheme
  publication-title: Neural Comput. Appl.
– year: 2022
  ident: bib1
  article-title: Resource provisioning techniques in multi-access edge computing environments: outlook, expression, and beyond
  publication-title: Mob. Inf. Syst.
– volume: 11
  year: 2024
  ident: bib41
  article-title: A workload prediction model for reducing service level agreement violations in cloud data centers
  publication-title: Decis. Anal. J.
– volume: 11
  start-page: 20381
  year: 2023
  end-page: 20398
  ident: bib5
  article-title: Deep-deterministic policy gradient based multi-resource allocation in edge-cloud system: a distributed approach
  publication-title: IEEE Access
– start-page: 1
  year: July 2023
  end-page: 5
  ident: bib4
  article-title: Enhancing Quality of Service (QoS) In Cloud Computing
  publication-title: In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT
– volume: 32
  start-page: 1531
  year: 2020
  end-page: 1541
  ident: bib9
  article-title: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments
  publication-title: Neural Comput. Appl.
– year: 2023
  ident: bib27
  article-title: Convergence of AI and MEC for autonomous IoT service provisioning and assurance in B5G
  publication-title: IEEE Open J. Commun. Soc.
– volume: 35
  start-page: 544
  year: 2023
  end-page: 559
  ident: bib18
  article-title: Priority-based task scheduling and resource allocation in edge computing for health monitoring system
  publication-title: J. King Saud. Univ. Comput. Inf. Sci.
– year: 2023
  ident: bib2
  article-title: Deep reinforcement learning-based task offloading and resource allocation for industrial iot in MEC federation system
  publication-title: IEEE Access
– volume: 50
  start-page: 2212
  year: 2020
  end-page: 2230
  ident: bib26
  article-title: Joint computation offloading and resource provisioning for edge-cloud computing environment: A machine learning-based approach
  publication-title: Softw. Pract. Exp.
– year: 2024
  ident: bib33
  article-title: INVAR: Inversion Aware Resource Provisioning and Workload Scheduling for Edge Computing
  publication-title: proceedings of IEEE INFOCOM 2024
– volume: 148
  start-page: 173
  year: 2023
  end-page: 183
  ident: bib42
  article-title: An adaptive auto-scaling framework for cloud resource provisioning
  publication-title: Future Gener. Comput. Syst.
– volume: 11
  start-page: 27099
  year: 2023
  end-page: 27110
  ident: bib28
  article-title: Joint optimization of dnn partition and continuous task scheduling for digital twin-aided mec network with deep reinforcement learning
  publication-title: IEEE Access
– volume: 20
  start-page: 6125
  year: 2020
  ident: bib19
  article-title: An efficient resource allocation strategy for edge-computing based environmental monitoring system
  publication-title: Sensors
– start-page: 1231
  year: 2022
  end-page: 1236
  ident: bib23
  article-title: Enhancing Energy Efficiency of Intensive Computing Applications using Approximate Computing
  publication-title: In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC
– start-page: 293
  year: 2022
  end-page: 296
  ident: bib21
  article-title: Security and Energy-Aware Resource Allocation in Mobile Edge Computing (MEC)
  publication-title: 2022 IEEE International Symposium on Smart Electronic Systems (iSES)
– start-page: 1
  year: 2024
  end-page: 8
  ident: bib17
  article-title: Enhancing Computation Offloading in Wireless-Powered Mobile-Edge Computing Networks with Deep Reinforcement Learning for Online Optimization
  publication-title: 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT
– volume: 10
  start-page: 74523
  year: 2022
  end-page: 74532
  ident: bib30
  article-title: Collaborative Resource Sharing Game Based Cloud-Edge Offload Computing Orchestration Scheme
  publication-title: IEEE Access
– start-page: 1231
  year: 2022
  ident: 10.1016/j.suscom.2025.101176_bib23
  article-title: Enhancing Energy Efficiency of Intensive Computing Applications using Approximate Computing
– volume: 18
  start-page: 8967
  issue: 12
  year: 2022
  ident: 10.1016/j.suscom.2025.101176_bib35
  article-title: IECL: an intelligent energy consumption model for cloud manufacturing
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3165085
– start-page: 1
  year: 2024
  ident: 10.1016/j.suscom.2025.101176_bib17
  article-title: Enhancing Computation Offloading in Wireless-Powered Mobile-Edge Computing Networks with Deep Reinforcement Learning for Online Optimization
– volume: 34
  start-page: 14085
  issue: 16
  year: 2022
  ident: 10.1016/j.suscom.2025.101176_bib11
  article-title: Dynamic scheduling of heterogeneous resources across mobile edge-cloud continuum using fruit fly-based simulated annealing optimization scheme
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07260-y
– volume: 10
  start-page: 74523
  year: 2022
  ident: 10.1016/j.suscom.2025.101176_bib30
  article-title: Collaborative Resource Sharing Game Based Cloud-Edge Offload Computing Orchestration Scheme
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190857
– start-page: 183
  year: 2017
  ident: 10.1016/j.suscom.2025.101176_bib38
  article-title: Parallel deep convolutional neural network training by exploiting the overlapping of computation and communication
– volume: 5
  start-page: 658
  issue: 2
  year: 2021
  ident: 10.1016/j.suscom.2025.101176_bib14
  article-title: AFED-EF: An energy-efficient VM allocation algorithm for IoT applications in a cloud data center
  publication-title: IEEE Trans. Green. Commun. Netw.
  doi: 10.1109/TGCN.2021.3067309
– year: 2022
  ident: 10.1016/j.suscom.2025.101176_bib1
  article-title: Resource provisioning techniques in multi-access edge computing environments: outlook, expression, and beyond
  publication-title: Mob. Inf. Syst.
– volume: 7
  start-page: 303
  issue: 5
  year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib8
  article-title: JO-TADP: learning-based cooperative dynamic resource allocation for MEC–UAV-enabled wireless network
  publication-title: Drones
  doi: 10.3390/drones7050303
– volume: 32
  start-page: 1531
  year: 2020
  ident: 10.1016/j.suscom.2025.101176_bib9
  article-title: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04119-7
– volume: 16
  start-page: 19
  issue: 1
  year: 2024
  ident: 10.1016/j.suscom.2025.101176_bib12
  article-title: Proximal policy optimization for efficient D2D-assisted computation offloading and resource allocation in multi-access edge computing
  publication-title: Future Internet
  doi: 10.3390/fi16010019
– year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib27
  article-title: Convergence of AI and MEC for autonomous IoT service provisioning and assurance in B5G
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2023.3329420
– volume: 10
  issue: 1
  year: 2024
  ident: 10.1016/j.suscom.2025.101176_bib15
  article-title: A decision-making mechanism for task offloading using learning automata and deep learning in mobile edge networks
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e23651
– ident: 10.1016/j.suscom.2025.101176_bib3
  doi: 10.21203/rs.3.rs-2578054/v1
– volume: 70
  start-page: 163
  year: 2017
  ident: 10.1016/j.suscom.2025.101176_bib10
  article-title: Dynamic application placement in the mobile cloud network
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.06.021
– start-page: 1
  year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib7
  article-title: EA-Market: Empowering Real-Time Big Data Applications with Short-Term Edge SLA Leases
– volume: 2014
  issue: 1
  year: 2014
  ident: 10.1016/j.suscom.2025.101176_bib40
  article-title: A clustering approach for the l-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm
  publication-title: Adv. Comput. Eng.
– start-page: 293
  year: 2022
  ident: 10.1016/j.suscom.2025.101176_bib21
  article-title: Security and Energy-Aware Resource Allocation in Mobile Edge Computing (MEC)
– year: 2024
  ident: 10.1016/j.suscom.2025.101176_bib33
  article-title: INVAR: Inversion Aware Resource Provisioning and Workload Scheduling for Edge Computing
– volume: 224
  start-page: 42
  year: 2024
  ident: 10.1016/j.suscom.2025.101176_bib32
  article-title: Optimized provisioning technique of future services with different QoS requirements in multi-access edge computing
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2024.05.023
– start-page: 1
  year: 2022
  ident: 10.1016/j.suscom.2025.101176_bib22
  article-title: A novel request state aware resource provisioning and intelligent resource capacity prediction in hybrid mobile cloud
  publication-title: J. Ambient Intell. Humaniz. Comput.
– year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib2
  article-title: Deep reinforcement learning-based task offloading and resource allocation for industrial iot in MEC federation system
  publication-title: IEEE Access
– start-page: 1
  year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib4
  article-title: Enhancing Quality of Service (QoS) In Cloud Computing
– volume: 11
  start-page: 20381
  year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib5
  article-title: Deep-deterministic policy gradient based multi-resource allocation in edge-cloud system: a distributed approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3249153
– year: 2024
  ident: 10.1016/j.suscom.2025.101176_bib6
  article-title: SmartCardio: advancing cardiac risk prediction through Internet of things and edge cloud intelligence
  publication-title: IET Wirel. Sens. Syst.
  doi: 10.1049/wss2.12085
– volume: 35
  start-page: 544
  issue: 2
  year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib18
  article-title: Priority-based task scheduling and resource allocation in edge computing for health monitoring system
  publication-title: J. King Saud. Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2023.01.001
– volume: 148
  start-page: 173
  year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib42
  article-title: An adaptive auto-scaling framework for cloud resource provisioning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2023.05.017
– year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib16
  article-title: Computation offloading and resource allocation based on DT-MEC-assisted federated learning framework
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2023.3298926
– start-page: 56
  issue: 1
  year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib29
  article-title: Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-023-01018-x
– volume: 86
  start-page: 836
  year: 2018
  ident: 10.1016/j.suscom.2025.101176_bib13
  article-title: Minimizing SLA violation and power consumption in Cloud data centers using adaptive energy-aware algorithms
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.07.048
– volume: 6
  start-page: 5332
  year: 2018
  ident: 10.1016/j.suscom.2025.101176_bib24
  article-title: Fair resource allocation for system throughput maximization in mobile edge computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2790963
– volume: 8
  start-page: 11743
  issue: 14
  year: 2021
  ident: 10.1016/j.suscom.2025.101176_bib34
  article-title: BEdgeHealth: a decentralized architecture for edge-based IoMT networks using blockchain
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3058953
– ident: 10.1016/j.suscom.2025.101176_bib39
– volume: 2025
  year: 2025
  ident: 10.1016/j.suscom.2025.101176_bib31
  article-title: Dynamic resource provisioning in containerized edge systems with reconfigurable edge servers
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-025-02450-3
– volume: 11
  year: 2024
  ident: 10.1016/j.suscom.2025.101176_bib41
  article-title: A workload prediction model for reducing service level agreement violations in cloud data centers
  publication-title: Decis. Anal. J.
– volume: 10
  start-page: 1
  year: 2021
  ident: 10.1016/j.suscom.2025.101176_bib20
  article-title: A multi-objective optimization for resource allocation of emergent demands in cloud computing
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-021-00237-7
– volume: 20
  start-page: 6125
  issue: 21
  year: 2020
  ident: 10.1016/j.suscom.2025.101176_bib19
  article-title: An efficient resource allocation strategy for edge-computing based environmental monitoring system
  publication-title: Sensors
  doi: 10.3390/s20216125
– volume: 50
  start-page: 2212
  issue: 12
  year: 2020
  ident: 10.1016/j.suscom.2025.101176_bib26
  article-title: Joint computation offloading and resource provisioning for edge-cloud computing environment: A machine learning-based approach
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.2888
– volume: 146
  year: 2021
  ident: 10.1016/j.suscom.2025.101176_bib37
  article-title: Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells
  publication-title: Chaos Solitons Fractals
– volume: 11
  start-page: 27099
  year: 2023
  ident: 10.1016/j.suscom.2025.101176_bib28
  article-title: Joint optimization of dnn partition and continuous task scheduling for digital twin-aided mec network with deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3257342
– volume: 6
  start-page: 238
  issue: 1
  year: 2021
  ident: 10.1016/j.suscom.2025.101176_bib36
  article-title: ECMS: an edge intelligent energy efficient model in mobile edge computing
  publication-title: IEEE Trans. Green. Commun. Netw.
  doi: 10.1109/TGCN.2021.3121961
– volume: 24
  start-page: 2449
  issue: 4
  year: 2022
  ident: 10.1016/j.suscom.2025.101176_bib25
  article-title: Machine and deep learning for resource allocation in multi-access edge computing: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2022.3199544
SSID ssj0000561934
Score 2.3309898
Snippet Edge computing has been greatly assisted by the quick development of cloud computing and mobile communications. Even though there has been a lot of interest in...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101176
SubjectTerms Cloud computing
Gated recurrent unit
Mobile edge
MobileNet
Parallel convolutional neural network
Title Deep learning-based workload prediction and resource provisioning for mobile edge-cloud computing in healthcare applications
URI https://dx.doi.org/10.1016/j.suscom.2025.101176
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqsrBwI8pReWA1jRPHScaqUBUQXaBSt8gnFJUk6rEhfjt-OaoiIQbGOHFifbHf-fkZoWvps9hyGxBKE0NY7GkiDJUkETbwJQ-CQENG92nMRxP2MA2nLTRo9sIArbKW_ZVML6V13dKr0ewVs1nv2XfeShhEiV_W9I-g7DZjEdTPv_mimzgLWMhJmVyG5wl0aHbQlTSv5XoJtBHf6X5oolB85DcNtaV1hgdorzYXcb8a0SFqmewI7TdHMeB6ZR6jz1tjClwfAfFKQDdpDJyreS40LhaQjoFfgEWm8aIO2eMynrCsIrLYWa_4I5dOSmCIsRE1z9caq_JTcH-W4bcNWQxvJ75P0GR49zIYkfpgBaKcvbIiPISy7B4Xyi1nrRKltNGGep5l3DOelSKiTFgRKp04RK3vnCTPRr60MTVc8-AUtbM8M2cIc6GprxJPGS6ZiIzzVgx1L2YmZoGitINIA2ZaVPUz0oZY9p5W4KcAflqB30FRg3j6Yx6kTsT_2fP83z0v0C5cVcyxS9ReLdbmypkaK9kt51IX7fTvH0fjb_l51tE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKO8DCG1GeHlitxonjNGNVQC19LLRSt8jxA4pKWvWx8ePxJU5VJMTAauuS6HK-5-c7hB5SnzUNNwGhNNaENT1FhKYpiYUJ_JQHQaCgojsY8s6YvUzCSQW1y7swAKt0ur_Q6bm2disNx83GYjptvPo2WgmDKPbznv4R30M16E5lhb3W6vY6w22qBZzkOK8vAwkBmvISXY70Wm1WgBzxrfmHJQr9R34zUjuG5_kYHTqPEbeKjzpBFZ2doqNyGgN2h_MMfT1qvcBuCsQbAfOkMMCuZnOh8GIJFRn4C1hkCi9d1h7nKYVVkZTF1oHFn_PUKgoMaTYiZ_ONwjJ_FexPM_y-xYvh3dr3ORo_P43aHeJmKxBpXZY14SF0Zve4kPZEKxlLqbTS1PMM4572TCoiyoQRoVQxi5jxbZzkmchPTZNqrnhwgarZPNOXCHOhqC9jT2qeMhFpG7Boah_MdJMFktI6IiUzk0XRQiMpsWUfScH8BJifFMyvo6jkePJDFBKr5f-kvPo35T3a74wG_aTfHfau0QHsFECyG1RdLzf61noe6_TOSdY3WyzZgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+workload+prediction+and+resource+provisioning+for+mobile+edge-cloud+computing+in+healthcare+applications&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=S%2C+Durga&rft.au=Daniel%2C+Esther&rft.au=S%2C+Deepakanmani&rft.au=V.K%2C+Reshma&rft.date=2025-09-01&rft.pub=Elsevier+Inc&rft.issn=2210-5379&rft.volume=47&rft_id=info:doi/10.1016%2Fj.suscom.2025.101176&rft.externalDocID=S2210537925000976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon