Deep learning-based workload prediction and resource provisioning for mobile edge-cloud computing in healthcare applications
Edge computing has been greatly assisted by the quick development of cloud computing and mobile communications. Even though there has been a lot of interest in edge computing technologies, the majority of research has been application-specific and did not consider cloud providers' control persp...
Saved in:
Published in | Sustainable computing informatics and systems Vol. 47; p. 101176 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2210-5379 |
DOI | 10.1016/j.suscom.2025.101176 |
Cover
Loading…
Abstract | Edge computing has been greatly assisted by the quick development of cloud computing and mobile communications. Even though there has been a lot of interest in edge computing technologies, the majority of research has been application-specific and did not consider cloud providers' control perspective, which offers general-purpose edge services. Thus, a new model called Parallel Convolutional MobileNet (PConvM-Net) is presented for resource provisioning and workload prediction. First, Multi-Access Edge Computing (MEC) for resource provision is considered, and here resource provisioning manager includes two main components, like workload estimation and monitoring. In the prediction module, the workload prediction is performed by employing a Gated Recurrent Unit (GRU). In the decision module, the threshold scale-up process is executed. Moreover, in order to choose the number of resources in the scale-down and scale-up process, a Parallel Convolutional MobileNet (PConvM-Net) is utilized. Further, the decision is considered based on parameters such as bandwidth, Central Processing Unit (CPU), memory usage, energy, and execution time. Here, PConvM-Net is formulated by the amalgamation of MobileNet and Parallel Convolutional Neural Network (PCNN). The simulation outcomes of PConvM-Net calculated a minimum execution time, energy consumption, CPU utilization, Task Response Time, SLA Violation, and Availability of 8.616 sec, 39.876 J, 83.877 %, 7.644 sec, 2.877 %, and 91.876 %.
•At first, Multi-Access Edge Computing (MEC) for resource provision is considered.•Resource provisioning has two components, like workload estimation and monitoring.•The workload prediction is performed by employing a Gated Recurrent Unit (GRU). |
---|---|
AbstractList | Edge computing has been greatly assisted by the quick development of cloud computing and mobile communications. Even though there has been a lot of interest in edge computing technologies, the majority of research has been application-specific and did not consider cloud providers' control perspective, which offers general-purpose edge services. Thus, a new model called Parallel Convolutional MobileNet (PConvM-Net) is presented for resource provisioning and workload prediction. First, Multi-Access Edge Computing (MEC) for resource provision is considered, and here resource provisioning manager includes two main components, like workload estimation and monitoring. In the prediction module, the workload prediction is performed by employing a Gated Recurrent Unit (GRU). In the decision module, the threshold scale-up process is executed. Moreover, in order to choose the number of resources in the scale-down and scale-up process, a Parallel Convolutional MobileNet (PConvM-Net) is utilized. Further, the decision is considered based on parameters such as bandwidth, Central Processing Unit (CPU), memory usage, energy, and execution time. Here, PConvM-Net is formulated by the amalgamation of MobileNet and Parallel Convolutional Neural Network (PCNN). The simulation outcomes of PConvM-Net calculated a minimum execution time, energy consumption, CPU utilization, Task Response Time, SLA Violation, and Availability of 8.616 sec, 39.876 J, 83.877 %, 7.644 sec, 2.877 %, and 91.876 %.
•At first, Multi-Access Edge Computing (MEC) for resource provision is considered.•Resource provisioning has two components, like workload estimation and monitoring.•The workload prediction is performed by employing a Gated Recurrent Unit (GRU). |
ArticleNumber | 101176 |
Author | S, Deepakanmani V.K, Reshma Daniel, Esther S, Durga |
Author_xml | – sequence: 1 givenname: Durga surname: S fullname: S, Durga email: durga.sivan@gmail.com organization: TIFAC CORE in Cyber Security, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu 641112, India – sequence: 2 givenname: Esther surname: Daniel fullname: Daniel, Esther email: estherdaniell@gmail.com organization: Division of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India – sequence: 3 givenname: Deepakanmani surname: S fullname: S, Deepakanmani email: deepakanmanisampath@gmail.com organization: Department of Information Technology, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu 641008, India – sequence: 4 givenname: Reshma surname: V.K fullname: V.K, Reshma email: vkreshmaphd@gmail.com organization: Department of Computer Science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu 641008, India |
BookMark | eNp9kM1qwzAQhHVIoWmaN-hBL-BUki05vhRK-guBXtqzkKVVotSRjGSnFPrwlUnP3cvCDDMM3xWa-eABoRtKVpRQcXtYpTHpcFwxwvgk0VrM0JwxSgpe1s0lWqZ0IPm4oE1ZzdHPA0CPO1DRO78rWpXA4K8QP7ugDO4jGKcHFzxW3uAIKYxRQ9bDyaUs5wy2IeJjaF0HGMwOCt2F0eC8oh-HyXce70F1w16rCFj1fee0mjrTNbqwqkuw_PsL9PH0-L55KbZvz6-b-22hac2GQnDOmzURSpeMGd1obcAAJcRWggCxrapppazi2jRVXVkmGCe2Zq1dUxBGlAtUnXt1DClFsLKP7qjit6RETuDkQZ7ByQmcPIPLsbtzDPK2k4Mok3bgdWYSQQ_SBPd_wS-uuoBP |
Cites_doi | 10.1109/TII.2022.3165085 10.1007/s00521-022-07260-y 10.1109/ACCESS.2022.3190857 10.1109/TGCN.2021.3067309 10.3390/drones7050303 10.1007/s00521-019-04119-7 10.3390/fi16010019 10.1109/OJCOMS.2023.3329420 10.1016/j.heliyon.2023.e23651 10.21203/rs.3.rs-2578054/v1 10.1016/j.future.2016.06.021 10.1016/j.comcom.2024.05.023 10.1109/ACCESS.2023.3249153 10.1049/wss2.12085 10.1016/j.jksuci.2023.01.001 10.1016/j.future.2023.05.017 10.1109/TCCN.2023.3298926 10.1186/s13634-023-01018-x 10.1016/j.future.2017.07.048 10.1109/ACCESS.2018.2790963 10.1109/JIOT.2021.3058953 10.1186/s13638-025-02450-3 10.1186/s13677-021-00237-7 10.3390/s20216125 10.1002/spe.2888 10.1109/ACCESS.2023.3257342 10.1109/TGCN.2021.3121961 10.1109/COMST.2022.3199544 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.suscom.2025.101176 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_suscom_2025_101176 S2210537925000976 |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AFJKZ AFTJW AGCQF AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BELTK BKOJK BLXMC EBS EFJIC EFKBS EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SES SPC SPCBC SSR SSV SSZ T5K ~G- AAYXX CITATION EFLBG |
ID | FETCH-LOGICAL-c172t-65559806ac322dc9ccdede100f460e0fba714afa5cd9474f26250f72bf81e6d63 |
IEDL.DBID | .~1 |
ISSN | 2210-5379 |
IngestDate | Wed Sep 03 16:45:00 EDT 2025 Sat Aug 30 17:13:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Cloud computing Gated recurrent unit MobileNet Mobile edge Parallel convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-65559806ac322dc9ccdede100f460e0fba714afa5cd9474f26250f72bf81e6d63 |
ParticipantIDs | crossref_primary_10_1016_j_suscom_2025_101176 elsevier_sciencedirect_doi_10_1016_j_suscom_2025_101176 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable computing informatics and systems |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kim (bib30) 2022; 10 Yu, Gu, Wang, Zhou, Xue, Yang (bib7) July 2023 Yuan, Zhang, Li, Li, Zhang (bib28) 2023; 11 Sharif, Jung, Ayaz, Yahya, Pitafi (bib18) 2023; 35 Wang, Irwin, Shenoy, Towsley (bib33) 2024 Qadeer, Lee (bib5) 2023; 11 Awoyemi, Hlophe, Maharaj (bib31) 2025; 2025 Shahidinejad, Ghobaei-Arani (bib26) 2020; 50 Chouliaras, Sotiriadis (bib42) 2023; 148 Ssemakula, Gorricho, Kibalya, Serrat-Fernandez (bib32) 2024; 224 Do, Tran, Yoo (bib2) 2023 Zhou, Li, Zhu, Xie, Abawajy, Chowdhury (bib9) 2020; 32 Pusti, Sankaran (bib21) 2022 Sharan, Shridhar, Abirami (bib4) July 2023 Tan, Zhao, Wang, Wang, Wang, Liu, Ghobaei-Arani (bib15) 2024; 10 Djigal, Xu, Liu, Zhang (bib25) 2022; 24 Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H., Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861, 2017. E. Nikougoftar, M. Ghobaei-Arani, 2023, A Fuzzy Q-learning-based Approach for Auto-scaling and Computation Offloading in Edge/Cloud Computing. Fang, Hu, Wei, Liu, Wang (bib19) 2020; 20 Abbas, Cho, Nauman, Khan, Khan, Kondepu (bib27) 2023 Kumar, Spandana, Srisurya, Priyadharshini, Krithika, Sai, Venkatraman (bib17) 2024 Zhu, Peng, Gu, Li, Liu, Zhou, Liu (bib24) 2018; 6 Pillai (bib23) 2022 Durga, Daniel, Leelipushpam (bib22) 2022 Gabi, Dankolo, Muslim, Abraham, Joda, Zainal, Zakaria (bib11) 2022; 34 Ahmad, Zhang, Khan, Khan, Hayat (bib8) 2023; 7 Arun Kumar, Kalaga, Kumar, Kawaji, Brenza (bib37) 2021; 146 He, Yang, He, Guizani (bib16) 2023 Zhou, Shojafar, Abawajy, Yin, Lu (bib36) 2021; 6 Zhang, Wu, Lin, Lin, Liu (bib12) 2024; 16 Bhaladhare, Jinwala (bib40) 2014; 2014 Nehra, Kesswani (bib41) 2024; 11 Zhou, Shojafar, Alazab, Abawajy, Li (bib14) 2021; 5 Wu, Cai, Bi, Xia, Gao, Tang, Lai (bib29) 2023 Zhou, Shojafar, Alazab, Li (bib35) 2022; 18 Tärneberg, Mehta, Wadbro, Tordsson, Eker, Kihl, Elmroth (bib10) 2017; 70 Nguyen, Pathirana, Ding, Seneviratne (bib34) 2021; 8 Durga, Daniel, Andrew, Bhat (bib6) 2024 Zhou, Abawajy, Chowdhury, Hu, Li, Cheng, Alelaiwi, Li (bib13) 2018; 86 Durga, Daniel, Onesimu, Sei (bib1) 2022 Chen, Du, Xiao (bib20) 2021; 10 Lee, Jha, Agrawal, Choudhary, Liao (bib38) 2017 Abbas (10.1016/j.suscom.2025.101176_bib27) 2023 Bhaladhare (10.1016/j.suscom.2025.101176_bib40) 2014; 2014 Do (10.1016/j.suscom.2025.101176_bib2) 2023 Zhu (10.1016/j.suscom.2025.101176_bib24) 2018; 6 Djigal (10.1016/j.suscom.2025.101176_bib25) 2022; 24 Durga (10.1016/j.suscom.2025.101176_bib22) 2022 Wu (10.1016/j.suscom.2025.101176_bib29) 2023 Durga (10.1016/j.suscom.2025.101176_bib6) 2024 Ahmad (10.1016/j.suscom.2025.101176_bib8) 2023; 7 Kim (10.1016/j.suscom.2025.101176_bib30) 2022; 10 Nguyen (10.1016/j.suscom.2025.101176_bib34) 2021; 8 Sharan (10.1016/j.suscom.2025.101176_bib4) 2023 10.1016/j.suscom.2025.101176_bib39 Fang (10.1016/j.suscom.2025.101176_bib19) 2020; 20 Qadeer (10.1016/j.suscom.2025.101176_bib5) 2023; 11 Zhou (10.1016/j.suscom.2025.101176_bib14) 2021; 5 Chen (10.1016/j.suscom.2025.101176_bib20) 2021; 10 10.1016/j.suscom.2025.101176_bib3 Chouliaras (10.1016/j.suscom.2025.101176_bib42) 2023; 148 Tärneberg (10.1016/j.suscom.2025.101176_bib10) 2017; 70 Zhang (10.1016/j.suscom.2025.101176_bib12) 2024; 16 Shahidinejad (10.1016/j.suscom.2025.101176_bib26) 2020; 50 Pusti (10.1016/j.suscom.2025.101176_bib21) 2022 Yu (10.1016/j.suscom.2025.101176_bib7) 2023 Gabi (10.1016/j.suscom.2025.101176_bib11) 2022; 34 Kumar (10.1016/j.suscom.2025.101176_bib17) 2024 Sharif (10.1016/j.suscom.2025.101176_bib18) 2023; 35 Yuan (10.1016/j.suscom.2025.101176_bib28) 2023; 11 He (10.1016/j.suscom.2025.101176_bib16) 2023 Ssemakula (10.1016/j.suscom.2025.101176_bib32) 2024; 224 Zhou (10.1016/j.suscom.2025.101176_bib9) 2020; 32 Awoyemi (10.1016/j.suscom.2025.101176_bib31) 2025; 2025 Durga (10.1016/j.suscom.2025.101176_bib1) 2022 Tan (10.1016/j.suscom.2025.101176_bib15) 2024; 10 Zhou (10.1016/j.suscom.2025.101176_bib35) 2022; 18 Arun Kumar (10.1016/j.suscom.2025.101176_bib37) 2021; 146 Lee (10.1016/j.suscom.2025.101176_bib38) 2017 Nehra (10.1016/j.suscom.2025.101176_bib41) 2024; 11 Zhou (10.1016/j.suscom.2025.101176_bib13) 2018; 86 Pillai (10.1016/j.suscom.2025.101176_bib23) 2022 Wang (10.1016/j.suscom.2025.101176_bib33) 2024 Zhou (10.1016/j.suscom.2025.101176_bib36) 2021; 6 |
References_xml | – reference: E. Nikougoftar, M. Ghobaei-Arani, 2023, A Fuzzy Q-learning-based Approach for Auto-scaling and Computation Offloading in Edge/Cloud Computing. – start-page: 1 year: July 2023 end-page: 10 ident: bib7 article-title: EA-Market: Empowering Real-Time Big Data Applications with Short-Term Edge SLA Leases publication-title: Proceedings of 32nd International Conference on Computer Communications and Networks (ICCCN) – volume: 70 start-page: 163 year: 2017 end-page: 177 ident: bib10 article-title: Dynamic application placement in the mobile cloud network publication-title: Future Gener. Comput. Syst. – volume: 16 start-page: 19 year: 2024 ident: bib12 article-title: Proximal policy optimization for efficient D2D-assisted computation offloading and resource allocation in multi-access edge computing publication-title: Future Internet – volume: 86 start-page: 836 year: 2018 end-page: 850 ident: bib13 article-title: Minimizing SLA violation and power consumption in Cloud data centers using adaptive energy-aware algorithms publication-title: Future Gener. Comput. Syst. – volume: 18 start-page: 8967 year: 2022 end-page: 8976 ident: bib35 article-title: IECL: an intelligent energy consumption model for cloud manufacturing publication-title: IEEE Trans. Ind. Inform. – reference: Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H., Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861, 2017. – volume: 10 start-page: 1 year: 2021 end-page: 17 ident: bib20 article-title: A multi-objective optimization for resource allocation of emergent demands in cloud computing publication-title: J. Cloud Comput. – volume: 146 year: 2021 ident: bib37 article-title: Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells publication-title: Chaos Solitons Fractals – volume: 7 start-page: 303 year: 2023 ident: bib8 article-title: JO-TADP: learning-based cooperative dynamic resource allocation for MEC–UAV-enabled wireless network publication-title: Drones – year: 2023 ident: bib16 article-title: Computation offloading and resource allocation based on DT-MEC-assisted federated learning framework publication-title: IEEE Trans. Cogn. Commun. Netw. – year: 2024 ident: bib6 article-title: SmartCardio: advancing cardiac risk prediction through Internet of things and edge cloud intelligence publication-title: IET Wirel. Sens. Syst. – start-page: 183 year: 2017 end-page: 192 ident: bib38 article-title: Parallel deep convolutional neural network training by exploiting the overlapping of computation and communication publication-title: proceedings of 2017 IEEE 24th international conference on high performance computing (HiPC) – volume: 2025 year: 2025 ident: bib31 article-title: Dynamic resource provisioning in containerized edge systems with reconfigurable edge servers publication-title: EURASIP J. Wirel. Commun. Netw. – start-page: 1 year: 2022 end-page: 14 ident: bib22 article-title: A novel request state aware resource provisioning and intelligent resource capacity prediction in hybrid mobile cloud publication-title: J. Ambient Intell. Humaniz. Comput. – start-page: 56 year: 2023 ident: bib29 article-title: Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream publication-title: EURASIP J. Adv. Signal Process. – volume: 6 start-page: 238 year: 2021 end-page: 247 ident: bib36 article-title: ECMS: an edge intelligent energy efficient model in mobile edge computing publication-title: IEEE Trans. Green. Commun. Netw. – volume: 5 start-page: 658 year: 2021 end-page: 669 ident: bib14 article-title: AFED-EF: An energy-efficient VM allocation algorithm for IoT applications in a cloud data center publication-title: IEEE Trans. Green. Commun. Netw. – volume: 2014 year: 2014 ident: bib40 article-title: A clustering approach for the l-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm publication-title: Adv. Comput. Eng. – volume: 24 start-page: 2449 year: 2022 end-page: 2494 ident: bib25 article-title: Machine and deep learning for resource allocation in multi-access edge computing: A survey publication-title: IEEE Commun. Surv. Tutor. – volume: 10 year: 2024 ident: bib15 article-title: A decision-making mechanism for task offloading using learning automata and deep learning in mobile edge networks publication-title: Heliyon – volume: 8 start-page: 11743 year: 2021 end-page: 11757 ident: bib34 article-title: BEdgeHealth: a decentralized architecture for edge-based IoMT networks using blockchain publication-title: IEEE Internet Things J. – volume: 6 start-page: 5332 year: 2018 end-page: 5340 ident: bib24 article-title: Fair resource allocation for system throughput maximization in mobile edge computing publication-title: IEEE Access – volume: 224 start-page: 42 year: 2024 end-page: 59 ident: bib32 article-title: Optimized provisioning technique of future services with different QoS requirements in multi-access edge computing publication-title: Comput. Commun. – volume: 34 start-page: 14085 year: 2022 end-page: 14105 ident: bib11 article-title: Dynamic scheduling of heterogeneous resources across mobile edge-cloud continuum using fruit fly-based simulated annealing optimization scheme publication-title: Neural Comput. Appl. – year: 2022 ident: bib1 article-title: Resource provisioning techniques in multi-access edge computing environments: outlook, expression, and beyond publication-title: Mob. Inf. Syst. – volume: 11 year: 2024 ident: bib41 article-title: A workload prediction model for reducing service level agreement violations in cloud data centers publication-title: Decis. Anal. J. – volume: 11 start-page: 20381 year: 2023 end-page: 20398 ident: bib5 article-title: Deep-deterministic policy gradient based multi-resource allocation in edge-cloud system: a distributed approach publication-title: IEEE Access – start-page: 1 year: July 2023 end-page: 5 ident: bib4 article-title: Enhancing Quality of Service (QoS) In Cloud Computing publication-title: In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT – volume: 32 start-page: 1531 year: 2020 end-page: 1541 ident: bib9 article-title: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments publication-title: Neural Comput. Appl. – year: 2023 ident: bib27 article-title: Convergence of AI and MEC for autonomous IoT service provisioning and assurance in B5G publication-title: IEEE Open J. Commun. Soc. – volume: 35 start-page: 544 year: 2023 end-page: 559 ident: bib18 article-title: Priority-based task scheduling and resource allocation in edge computing for health monitoring system publication-title: J. King Saud. Univ. Comput. Inf. Sci. – year: 2023 ident: bib2 article-title: Deep reinforcement learning-based task offloading and resource allocation for industrial iot in MEC federation system publication-title: IEEE Access – volume: 50 start-page: 2212 year: 2020 end-page: 2230 ident: bib26 article-title: Joint computation offloading and resource provisioning for edge-cloud computing environment: A machine learning-based approach publication-title: Softw. Pract. Exp. – year: 2024 ident: bib33 article-title: INVAR: Inversion Aware Resource Provisioning and Workload Scheduling for Edge Computing publication-title: proceedings of IEEE INFOCOM 2024 – volume: 148 start-page: 173 year: 2023 end-page: 183 ident: bib42 article-title: An adaptive auto-scaling framework for cloud resource provisioning publication-title: Future Gener. Comput. Syst. – volume: 11 start-page: 27099 year: 2023 end-page: 27110 ident: bib28 article-title: Joint optimization of dnn partition and continuous task scheduling for digital twin-aided mec network with deep reinforcement learning publication-title: IEEE Access – volume: 20 start-page: 6125 year: 2020 ident: bib19 article-title: An efficient resource allocation strategy for edge-computing based environmental monitoring system publication-title: Sensors – start-page: 1231 year: 2022 end-page: 1236 ident: bib23 article-title: Enhancing Energy Efficiency of Intensive Computing Applications using Approximate Computing publication-title: In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC – start-page: 293 year: 2022 end-page: 296 ident: bib21 article-title: Security and Energy-Aware Resource Allocation in Mobile Edge Computing (MEC) publication-title: 2022 IEEE International Symposium on Smart Electronic Systems (iSES) – start-page: 1 year: 2024 end-page: 8 ident: bib17 article-title: Enhancing Computation Offloading in Wireless-Powered Mobile-Edge Computing Networks with Deep Reinforcement Learning for Online Optimization publication-title: 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT – volume: 10 start-page: 74523 year: 2022 end-page: 74532 ident: bib30 article-title: Collaborative Resource Sharing Game Based Cloud-Edge Offload Computing Orchestration Scheme publication-title: IEEE Access – start-page: 1231 year: 2022 ident: 10.1016/j.suscom.2025.101176_bib23 article-title: Enhancing Energy Efficiency of Intensive Computing Applications using Approximate Computing – volume: 18 start-page: 8967 issue: 12 year: 2022 ident: 10.1016/j.suscom.2025.101176_bib35 article-title: IECL: an intelligent energy consumption model for cloud manufacturing publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3165085 – start-page: 1 year: 2024 ident: 10.1016/j.suscom.2025.101176_bib17 article-title: Enhancing Computation Offloading in Wireless-Powered Mobile-Edge Computing Networks with Deep Reinforcement Learning for Online Optimization – volume: 34 start-page: 14085 issue: 16 year: 2022 ident: 10.1016/j.suscom.2025.101176_bib11 article-title: Dynamic scheduling of heterogeneous resources across mobile edge-cloud continuum using fruit fly-based simulated annealing optimization scheme publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07260-y – volume: 10 start-page: 74523 year: 2022 ident: 10.1016/j.suscom.2025.101176_bib30 article-title: Collaborative Resource Sharing Game Based Cloud-Edge Offload Computing Orchestration Scheme publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190857 – start-page: 183 year: 2017 ident: 10.1016/j.suscom.2025.101176_bib38 article-title: Parallel deep convolutional neural network training by exploiting the overlapping of computation and communication – volume: 5 start-page: 658 issue: 2 year: 2021 ident: 10.1016/j.suscom.2025.101176_bib14 article-title: AFED-EF: An energy-efficient VM allocation algorithm for IoT applications in a cloud data center publication-title: IEEE Trans. Green. Commun. Netw. doi: 10.1109/TGCN.2021.3067309 – year: 2022 ident: 10.1016/j.suscom.2025.101176_bib1 article-title: Resource provisioning techniques in multi-access edge computing environments: outlook, expression, and beyond publication-title: Mob. Inf. Syst. – volume: 7 start-page: 303 issue: 5 year: 2023 ident: 10.1016/j.suscom.2025.101176_bib8 article-title: JO-TADP: learning-based cooperative dynamic resource allocation for MEC–UAV-enabled wireless network publication-title: Drones doi: 10.3390/drones7050303 – volume: 32 start-page: 1531 year: 2020 ident: 10.1016/j.suscom.2025.101176_bib9 article-title: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04119-7 – volume: 16 start-page: 19 issue: 1 year: 2024 ident: 10.1016/j.suscom.2025.101176_bib12 article-title: Proximal policy optimization for efficient D2D-assisted computation offloading and resource allocation in multi-access edge computing publication-title: Future Internet doi: 10.3390/fi16010019 – year: 2023 ident: 10.1016/j.suscom.2025.101176_bib27 article-title: Convergence of AI and MEC for autonomous IoT service provisioning and assurance in B5G publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2023.3329420 – volume: 10 issue: 1 year: 2024 ident: 10.1016/j.suscom.2025.101176_bib15 article-title: A decision-making mechanism for task offloading using learning automata and deep learning in mobile edge networks publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e23651 – ident: 10.1016/j.suscom.2025.101176_bib3 doi: 10.21203/rs.3.rs-2578054/v1 – volume: 70 start-page: 163 year: 2017 ident: 10.1016/j.suscom.2025.101176_bib10 article-title: Dynamic application placement in the mobile cloud network publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2016.06.021 – start-page: 1 year: 2023 ident: 10.1016/j.suscom.2025.101176_bib7 article-title: EA-Market: Empowering Real-Time Big Data Applications with Short-Term Edge SLA Leases – volume: 2014 issue: 1 year: 2014 ident: 10.1016/j.suscom.2025.101176_bib40 article-title: A clustering approach for the l-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm publication-title: Adv. Comput. Eng. – start-page: 293 year: 2022 ident: 10.1016/j.suscom.2025.101176_bib21 article-title: Security and Energy-Aware Resource Allocation in Mobile Edge Computing (MEC) – year: 2024 ident: 10.1016/j.suscom.2025.101176_bib33 article-title: INVAR: Inversion Aware Resource Provisioning and Workload Scheduling for Edge Computing – volume: 224 start-page: 42 year: 2024 ident: 10.1016/j.suscom.2025.101176_bib32 article-title: Optimized provisioning technique of future services with different QoS requirements in multi-access edge computing publication-title: Comput. Commun. doi: 10.1016/j.comcom.2024.05.023 – start-page: 1 year: 2022 ident: 10.1016/j.suscom.2025.101176_bib22 article-title: A novel request state aware resource provisioning and intelligent resource capacity prediction in hybrid mobile cloud publication-title: J. Ambient Intell. Humaniz. Comput. – year: 2023 ident: 10.1016/j.suscom.2025.101176_bib2 article-title: Deep reinforcement learning-based task offloading and resource allocation for industrial iot in MEC federation system publication-title: IEEE Access – start-page: 1 year: 2023 ident: 10.1016/j.suscom.2025.101176_bib4 article-title: Enhancing Quality of Service (QoS) In Cloud Computing – volume: 11 start-page: 20381 year: 2023 ident: 10.1016/j.suscom.2025.101176_bib5 article-title: Deep-deterministic policy gradient based multi-resource allocation in edge-cloud system: a distributed approach publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3249153 – year: 2024 ident: 10.1016/j.suscom.2025.101176_bib6 article-title: SmartCardio: advancing cardiac risk prediction through Internet of things and edge cloud intelligence publication-title: IET Wirel. Sens. Syst. doi: 10.1049/wss2.12085 – volume: 35 start-page: 544 issue: 2 year: 2023 ident: 10.1016/j.suscom.2025.101176_bib18 article-title: Priority-based task scheduling and resource allocation in edge computing for health monitoring system publication-title: J. King Saud. Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2023.01.001 – volume: 148 start-page: 173 year: 2023 ident: 10.1016/j.suscom.2025.101176_bib42 article-title: An adaptive auto-scaling framework for cloud resource provisioning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2023.05.017 – year: 2023 ident: 10.1016/j.suscom.2025.101176_bib16 article-title: Computation offloading and resource allocation based on DT-MEC-assisted federated learning framework publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2023.3298926 – start-page: 56 issue: 1 year: 2023 ident: 10.1016/j.suscom.2025.101176_bib29 article-title: Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-023-01018-x – volume: 86 start-page: 836 year: 2018 ident: 10.1016/j.suscom.2025.101176_bib13 article-title: Minimizing SLA violation and power consumption in Cloud data centers using adaptive energy-aware algorithms publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.07.048 – volume: 6 start-page: 5332 year: 2018 ident: 10.1016/j.suscom.2025.101176_bib24 article-title: Fair resource allocation for system throughput maximization in mobile edge computing publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2790963 – volume: 8 start-page: 11743 issue: 14 year: 2021 ident: 10.1016/j.suscom.2025.101176_bib34 article-title: BEdgeHealth: a decentralized architecture for edge-based IoMT networks using blockchain publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3058953 – ident: 10.1016/j.suscom.2025.101176_bib39 – volume: 2025 year: 2025 ident: 10.1016/j.suscom.2025.101176_bib31 article-title: Dynamic resource provisioning in containerized edge systems with reconfigurable edge servers publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-025-02450-3 – volume: 11 year: 2024 ident: 10.1016/j.suscom.2025.101176_bib41 article-title: A workload prediction model for reducing service level agreement violations in cloud data centers publication-title: Decis. Anal. J. – volume: 10 start-page: 1 year: 2021 ident: 10.1016/j.suscom.2025.101176_bib20 article-title: A multi-objective optimization for resource allocation of emergent demands in cloud computing publication-title: J. Cloud Comput. doi: 10.1186/s13677-021-00237-7 – volume: 20 start-page: 6125 issue: 21 year: 2020 ident: 10.1016/j.suscom.2025.101176_bib19 article-title: An efficient resource allocation strategy for edge-computing based environmental monitoring system publication-title: Sensors doi: 10.3390/s20216125 – volume: 50 start-page: 2212 issue: 12 year: 2020 ident: 10.1016/j.suscom.2025.101176_bib26 article-title: Joint computation offloading and resource provisioning for edge-cloud computing environment: A machine learning-based approach publication-title: Softw. Pract. Exp. doi: 10.1002/spe.2888 – volume: 146 year: 2021 ident: 10.1016/j.suscom.2025.101176_bib37 article-title: Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells publication-title: Chaos Solitons Fractals – volume: 11 start-page: 27099 year: 2023 ident: 10.1016/j.suscom.2025.101176_bib28 article-title: Joint optimization of dnn partition and continuous task scheduling for digital twin-aided mec network with deep reinforcement learning publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3257342 – volume: 6 start-page: 238 issue: 1 year: 2021 ident: 10.1016/j.suscom.2025.101176_bib36 article-title: ECMS: an edge intelligent energy efficient model in mobile edge computing publication-title: IEEE Trans. Green. Commun. Netw. doi: 10.1109/TGCN.2021.3121961 – volume: 24 start-page: 2449 issue: 4 year: 2022 ident: 10.1016/j.suscom.2025.101176_bib25 article-title: Machine and deep learning for resource allocation in multi-access edge computing: A survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2022.3199544 |
SSID | ssj0000561934 |
Score | 2.3309898 |
Snippet | Edge computing has been greatly assisted by the quick development of cloud computing and mobile communications. Even though there has been a lot of interest in... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 101176 |
SubjectTerms | Cloud computing Gated recurrent unit Mobile edge MobileNet Parallel convolutional neural network |
Title | Deep learning-based workload prediction and resource provisioning for mobile edge-cloud computing in healthcare applications |
URI | https://dx.doi.org/10.1016/j.suscom.2025.101176 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqsrBwI8pReWA1jRPHScaqUBUQXaBSt8gnFJUk6rEhfjt-OaoiIQbGOHFifbHf-fkZoWvps9hyGxBKE0NY7GkiDJUkETbwJQ-CQENG92nMRxP2MA2nLTRo9sIArbKW_ZVML6V13dKr0ewVs1nv2XfeShhEiV_W9I-g7DZjEdTPv_mimzgLWMhJmVyG5wl0aHbQlTSv5XoJtBHf6X5oolB85DcNtaV1hgdorzYXcb8a0SFqmewI7TdHMeB6ZR6jz1tjClwfAfFKQDdpDJyreS40LhaQjoFfgEWm8aIO2eMynrCsIrLYWa_4I5dOSmCIsRE1z9caq_JTcH-W4bcNWQxvJ75P0GR49zIYkfpgBaKcvbIiPISy7B4Xyi1nrRKltNGGep5l3DOelSKiTFgRKp04RK3vnCTPRr60MTVc8-AUtbM8M2cIc6GprxJPGS6ZiIzzVgx1L2YmZoGitINIA2ZaVPUz0oZY9p5W4KcAflqB30FRg3j6Yx6kTsT_2fP83z0v0C5cVcyxS9ReLdbmypkaK9kt51IX7fTvH0fjb_l51tE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKO8DCG1GeHlitxonjNGNVQC19LLRSt8jxA4pKWvWx8ePxJU5VJMTAauuS6HK-5-c7hB5SnzUNNwGhNNaENT1FhKYpiYUJ_JQHQaCgojsY8s6YvUzCSQW1y7swAKt0ur_Q6bm2disNx83GYjptvPo2WgmDKPbznv4R30M16E5lhb3W6vY6w22qBZzkOK8vAwkBmvISXY70Wm1WgBzxrfmHJQr9R34zUjuG5_kYHTqPEbeKjzpBFZ2doqNyGgN2h_MMfT1qvcBuCsQbAfOkMMCuZnOh8GIJFRn4C1hkCi9d1h7nKYVVkZTF1oHFn_PUKgoMaTYiZ_ONwjJ_FexPM_y-xYvh3dr3ORo_P43aHeJmKxBpXZY14SF0Zve4kPZEKxlLqbTS1PMM4572TCoiyoQRoVQxi5jxbZzkmchPTZNqrnhwgarZPNOXCHOhqC9jT2qeMhFpG7Boah_MdJMFktI6IiUzk0XRQiMpsWUfScH8BJifFMyvo6jkePJDFBKr5f-kvPo35T3a74wG_aTfHfau0QHsFECyG1RdLzf61noe6_TOSdY3WyzZgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+workload+prediction+and+resource+provisioning+for+mobile+edge-cloud+computing+in+healthcare+applications&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=S%2C+Durga&rft.au=Daniel%2C+Esther&rft.au=S%2C+Deepakanmani&rft.au=V.K%2C+Reshma&rft.date=2025-09-01&rft.pub=Elsevier+Inc&rft.issn=2210-5379&rft.volume=47&rft_id=info:doi/10.1016%2Fj.suscom.2025.101176&rft.externalDocID=S2210537925000976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |