Morphological feature extraction of corn roots using deep learning

The study of corn root morphology is critical for understanding root architecture, which directly influences water and nutrient uptake, plant stability, and overall yield performance. It also plays a crucial role in advancing crop breeding programs. Traditional methods of analyzing root morphology a...

Full description

Saved in:
Bibliographic Details
Published inRhizosphere Vol. 35; p. 101151
Main Authors Fatemi, Ali, Inanlu, M.J., Momin, Abdul, Grift, Tony
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study of corn root morphology is critical for understanding root architecture, which directly influences water and nutrient uptake, plant stability, and overall yield performance. It also plays a crucial role in advancing crop breeding programs. Traditional methods of analyzing root morphology are often labor-intensive, time-consuming, and subject to variability. This research introduces a deep learning (DL)-based approach for the automated and precise extraction of morphological features from monochrome images of corn roots. While DL methods have been widely applied to various agricultural problems such as yield estimation, cultivar classification, and disease detection, its application to plant features, particularly root traits, remains limited. In this study, three DL architectures- EfficientNet_B0, DenseNet_121, and ResNet_50- were used to extract and predict 12 morphological features from both raw and background-subtracted side-view images of corn roots. The results showed that all three architectures performed similarly, with DenseNet_121 slightly outperforming the others in terms of coefficient of determination and normalized root mean square error (NRMSE) metrics for background-subtracted images (mean R2 0.9199 and mean NRMSE 0.0444), while EfficientNet_B0 showed superior performance with raw images (mean R2 0.9057 and mean NRMSE 0.0480). Importantly, no significant difference in architecture performance was observed between raw and background-subtracted images. The study shows the potential of end-to-end learning by providing a robust, automated tool for plant morphological feature extraction. •Introduces a deep learning-based approach for automated extraction of corn root morphology.•Compares three deep learning architectures (EfficientNet_B0, ResNet_50, DenseNet_121) for feature extraction.•DenseNet_121 achieved higher prediction accuracy with background-subtracted images.•The study highlights the potential of deep learning as an end-to-end approach for root morphological analysis in crop breeding programs.
AbstractList The study of corn root morphology is critical for understanding root architecture, which directly influences water and nutrient uptake, plant stability, and overall yield performance. It also plays a crucial role in advancing crop breeding programs. Traditional methods of analyzing root morphology are often labor-intensive, time-consuming, and subject to variability. This research introduces a deep learning (DL)-based approach for the automated and precise extraction of morphological features from monochrome images of corn roots. While DL methods have been widely applied to various agricultural problems such as yield estimation, cultivar classification, and disease detection, its application to plant features, particularly root traits, remains limited. In this study, three DL architectures- EfficientNet_B0, DenseNet_121, and ResNet_50- were used to extract and predict 12 morphological features from both raw and background-subtracted side-view images of corn roots. The results showed that all three architectures performed similarly, with DenseNet_121 slightly outperforming the others in terms of coefficient of determination and normalized root mean square error (NRMSE) metrics for background-subtracted images (mean R2 0.9199 and mean NRMSE 0.0444), while EfficientNet_B0 showed superior performance with raw images (mean R2 0.9057 and mean NRMSE 0.0480). Importantly, no significant difference in architecture performance was observed between raw and background-subtracted images. The study shows the potential of end-to-end learning by providing a robust, automated tool for plant morphological feature extraction. •Introduces a deep learning-based approach for automated extraction of corn root morphology.•Compares three deep learning architectures (EfficientNet_B0, ResNet_50, DenseNet_121) for feature extraction.•DenseNet_121 achieved higher prediction accuracy with background-subtracted images.•The study highlights the potential of deep learning as an end-to-end approach for root morphological analysis in crop breeding programs.
ArticleNumber 101151
Author Inanlu, M.J.
Grift, Tony
Momin, Abdul
Fatemi, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Fatemi
  fullname: Fatemi, Ali
  organization: Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
– sequence: 2
  givenname: M.J.
  surname: Inanlu
  fullname: Inanlu, M.J.
  organization: Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
– sequence: 3
  givenname: Abdul
  surname: Momin
  fullname: Momin, Abdul
  organization: Agricultural Engineering Technology, School of Agriculture, Tennessee Tech University, Cookeville, TN, USA
– sequence: 4
  givenname: Tony
  surname: Grift
  fullname: Grift, Tony
  email: grift@illinois.edu
  organization: Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
BookMark eNp9kM1OwzAQhC0EEqX0DTj4BVLWP3GSCxJU_ElFXOBsOc66dRXsyE4RvD2twoETp50daUaj74KchhiQkCsGSwZMXe-WaevzsF1y4OXRYiU7ITMuS15w1tSnf_Q5WeS8AwBWKVEqMSN3LzEN29jHjbempw7NuE9I8WtMxo4-BhodtTEFmmIcM91nHza0QxxojyaFw3dJzpzpMy5-75y8P9y_rZ6K9evj8-p2XVhW8bFQopXApauZMS0TTYsdOtEpLBV3UCuQXeMaWbKOoZJQ25ZXFdq2RmGBAYg5kVOvTTHnhE4PyX-Y9K0Z6CMKvdMTCn1EoScUh9jNFMPDtk-PSWfrMVjsfEI76i76_wt-ADGTa1U
Cites_doi 10.1109/ACCESS.2022.3159678
10.1016/j.knosys.2021.106874
10.1093/plphys/kiab311
10.1038/s41598-023-28400-x
10.1104/pp.19.00752
10.18576/amis/160304
10.1016/j.rse.2020.111946
10.34133/plantphenomics.0175
10.1016/j.jspr.2021.101800
10.1007/s10514-020-09915-y
10.1155/2022/2062944
10.1016/j.ecoinf.2023.102217
10.1186/s12864-021-07874-x
10.1016/j.aiia.2019.05.004
10.1016/j.neucom.2022.04.127
10.1109/TPAMI.2023.3250241
10.22178/pos.110-8
10.1093/gigascience/giab052
10.1145/3506695
10.1071/AN18522
10.1088/1748-9326/ab66cb
10.1016/j.compag.2018.02.016
10.1186/s13007-021-00829-z
10.1007/s00521-022-07744-x
10.1109/JSTARS.2020.3019046
10.1016/j.rse.2021.112599
10.1016/j.aac.2022.10.001
10.3389/fgene.2022.963852
10.1111/gcb.14885
10.3390/rs14030638
10.1093/gigascience/giz123
10.1016/j.atech.2022.100108
10.1142/S1469026824500172
10.1016/j.biosystemseng.2011.06.004
10.1186/s13007-024-01208-0
10.1109/ACCESS.2021.3120379
10.3389/fpls.2023.1120189
10.1109/LPT.2025.3553701
10.1007/s11104-021-05010-y
10.1111/nph.18387
10.1186/s13007-024-01240-0
10.1111/tpj.15669
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.rhisph.2025.101151
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2452-2198
ExternalDocumentID 10_1016_j_rhisph_2025_101151
S2452219825001363
GroupedDBID --M
0R~
AAEDT
AAEDW
AAHBH
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABGRD
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPCBC
SSA
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c172t-63b4024f81aab139bedef3d6e562f08604d9f9451d1e6408cb277ecb8e3c01003
IEDL.DBID AIKHN
ISSN 2452-2198
IngestDate Thu Aug 21 00:34:35 EDT 2025
Sat Aug 30 17:14:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Morphological feature extraction
Image processing
Root phenotyping
End-to-end learning
Crop breeding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-63b4024f81aab139bedef3d6e562f08604d9f9451d1e6408cb277ecb8e3c01003
ParticipantIDs crossref_primary_10_1016_j_rhisph_2025_101151
elsevier_sciencedirect_doi_10_1016_j_rhisph_2025_101151
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Rhizosphere
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zheng, Hey, Jubery, Liu, Yang, Coffey (bib57) 2020; 182
Lin, Zhong, Wang, Xu, Jiang, Xu, Ying, Rodriguez, Ting, Li (bib32) 2020; 15
Xu, Zhu, Zhong, Lin, Xu, Jiang, Huang, Li, Lin (bib51) 2020; 247
Liao, Li, Shang, Ma (bib31) 2022; 31
Divyanth, Ahmad, Saraswat (bib10) 2023; 3
Maqbool, Hassan, Xia, York, Rasheed, He (bib35) 2022; 110
Liu, Barrow, Hanlon, Lynch, Bucksch (bib33) 2021; 187
Sun, Lai, Di, Sun, Tao, Shen (bib45) 2020; 13
Gaggion, Ariel, Daric, Lambert, Legendre, Roulé (bib13) 2021; 10
Smith (bib43) 2018; 60
Javanmardi, Ashtiani, Verbeek, Martynenko (bib21) 2021; 92
Kishore, Yasar, Taspinar, Kursun, Cinar, Shankar, Koklu, Ofori (bib27) 2022
Shao, Jiang, Li, Howard, Lehner, Mullen, Gunn, McKay, Topp (bib41) 2021
Yasrab, Atkinson, Wells, French, Pridmore, Pound (bib53) 2019; 8
Fathi, Shah-Hosseini (bib12) 2023; 10
Teramoto, Uga (bib47) 2024; 20
Obanewa, Olope (bib37) 2024; 10
Alle, Gruber, Wörlein, Uhlmann, Claußen, Wittenberg, Gerth (bib2) 2023; 14
Javaid, Haleem, Khan, Suman (bib20) 2023; 2
Khaki, Pham, Han, Kuhl, Kent, Wang (bib26) 2021; 218
Jiang, Hu, Zhong, Xu, Xu, Huang, Wang, Ying, Lin (bib23) 2020; 26
Irianto, Findley (bib18) 2024
Lynch, Strock, Schneider, Sidhu, Ajmera, Galindo-Castañeda, Klein, Hanlon (bib34) 2021; 466
Tan, Le (bib46) 2019
Kuwata, Shibasaki (bib30) 2016; 3
Krizhevsky, Sutskever, Hinton (bib29) 2012; 25
Sun, Chen, Cui, Lin, Liu, Jin (bib44) 2022; 13
Binder, Hossain, Bucksch, Fok (bib8) 2025
Jha, Doshi, Patel, Shah (bib22) 2019; 2
Ju, Liu, Oestreich, Wang, Topp, Ju (bib24) 2024; 20
Kitano, Mendes, Geus, Oliveira, Souza (bib28) 2019
Moussa, Mandozai, Jin, Qu, Zhang, Zhao (bib36) 2021; 22
Santurkar, Tsipras, Ilyas, Madry (bib40) 2018
Fageria (bib11) 2012
Huang, Liu, Van Der Maaten, Weinberger (bib16) 2017
Grift, Novais, Bohn (bib14) 2011; 110
Zeng, Li, Jiang, Ju, Schreiber, Chambers (bib55) 2021; 17
Smith, Han, Petersen, Olsen, Giese, Athmann (bib42) 2022; 236
Chakraborty, Chandel, Jat, Tiwari, Rajwade, Subeesh (bib9) 2022; 34
Alibabaei, Gaspar, Lima, Campos, Girão, Monteiro, Lopes (bib1) 2022; 14
Huang, Qin, Zhou, Zhu, Liu, Shao (bib17) 2023; 45
Tian, Su, Lauria, Liu (bib48) 2022; 497
Yalcin, Razavi (bib52) 2016
Kamilaris, Prenafeta-Boldú (bib25) 2018; 147
Xu, Yang, Xiong, Li, Huang, Ting, Ying, Lin (bib50) 2021; 264
Amin, Darwish, Hassanien, Soliman (bib3) 2022; 10
Zhang, Kayacan, Thompson, Chowdhary (bib56) 2020; 44
He, Zhang, Ren, Sun (bib15) 2016
Peters, Blume-Werry, Gillert, Schwieger, von Lukas, Kreyling (bib39) 2023; 13
Velesaca, Mira, Suárez, Larrea, Sappa (bib49) 2020
Attri, Awasthi, Sharma, Rathee (bib5) 2023; 77
Yu, Liu, Chen, Heidari, Zhang, Chen, Mafarja, Turabieh (bib54) 2021; 9
Jadon, Patil, Jadon (bib19) 2024
Berrigan, Wang, Carrillo, Echegoyen, Kappes, Torres (bib7) 2024; 6
Bannerjee, Sarkar, Das, Ghosh (bib6) 2018; 7
Ashwini, Sellam (bib4) 2022; 16
Patterson, Adam (bib38) 2017
Javanmardi (10.1016/j.rhisph.2025.101151_bib21) 2021; 92
Kitano (10.1016/j.rhisph.2025.101151_bib28) 2019
Maqbool (10.1016/j.rhisph.2025.101151_bib35) 2022; 110
Jha (10.1016/j.rhisph.2025.101151_bib22) 2019; 2
Xu (10.1016/j.rhisph.2025.101151_bib50) 2021; 264
Xu (10.1016/j.rhisph.2025.101151_bib51) 2020; 247
Amin (10.1016/j.rhisph.2025.101151_bib3) 2022; 10
Alibabaei (10.1016/j.rhisph.2025.101151_bib1) 2022; 14
Velesaca (10.1016/j.rhisph.2025.101151_bib49) 2020
Binder (10.1016/j.rhisph.2025.101151_bib8) 2025
Kishore (10.1016/j.rhisph.2025.101151_bib27) 2022
Santurkar (10.1016/j.rhisph.2025.101151_bib40) 2018
Gaggion (10.1016/j.rhisph.2025.101151_bib13) 2021; 10
Peters (10.1016/j.rhisph.2025.101151_bib39) 2023; 13
Yalcin (10.1016/j.rhisph.2025.101151_bib52) 2016
Patterson (10.1016/j.rhisph.2025.101151_bib38) 2017
Krizhevsky (10.1016/j.rhisph.2025.101151_bib29) 2012; 25
Lin (10.1016/j.rhisph.2025.101151_bib32) 2020; 15
Lynch (10.1016/j.rhisph.2025.101151_bib34) 2021; 466
Obanewa (10.1016/j.rhisph.2025.101151_bib37) 2024; 10
He (10.1016/j.rhisph.2025.101151_bib15) 2016
Irianto (10.1016/j.rhisph.2025.101151_bib18) 2024
Yasrab (10.1016/j.rhisph.2025.101151_bib53) 2019; 8
Kamilaris (10.1016/j.rhisph.2025.101151_bib25) 2018; 147
Tian (10.1016/j.rhisph.2025.101151_bib48) 2022; 497
Fageria (10.1016/j.rhisph.2025.101151_bib11) 2012
Tan (10.1016/j.rhisph.2025.101151_bib46) 2019
Jiang (10.1016/j.rhisph.2025.101151_bib23) 2020; 26
Grift (10.1016/j.rhisph.2025.101151_bib14) 2011; 110
Divyanth (10.1016/j.rhisph.2025.101151_bib10) 2023; 3
Yu (10.1016/j.rhisph.2025.101151_bib54) 2021; 9
Attri (10.1016/j.rhisph.2025.101151_bib5) 2023; 77
Berrigan (10.1016/j.rhisph.2025.101151_bib7) 2024; 6
Javaid (10.1016/j.rhisph.2025.101151_bib20) 2023; 2
Sun (10.1016/j.rhisph.2025.101151_bib45) 2020; 13
Smith (10.1016/j.rhisph.2025.101151_bib43) 2018; 60
Ju (10.1016/j.rhisph.2025.101151_bib24) 2024; 20
Ashwini (10.1016/j.rhisph.2025.101151_bib4) 2022; 16
Khaki (10.1016/j.rhisph.2025.101151_bib26) 2021; 218
Moussa (10.1016/j.rhisph.2025.101151_bib36) 2021; 22
Sun (10.1016/j.rhisph.2025.101151_bib44) 2022; 13
Fathi (10.1016/j.rhisph.2025.101151_bib12) 2023; 10
Kuwata (10.1016/j.rhisph.2025.101151_bib30) 2016; 3
Bannerjee (10.1016/j.rhisph.2025.101151_bib6) 2018; 7
Smith (10.1016/j.rhisph.2025.101151_bib42) 2022; 236
Huang (10.1016/j.rhisph.2025.101151_bib16) 2017
Zeng (10.1016/j.rhisph.2025.101151_bib55) 2021; 17
Alle (10.1016/j.rhisph.2025.101151_bib2) 2023; 14
Zhang (10.1016/j.rhisph.2025.101151_bib56) 2020; 44
Zheng (10.1016/j.rhisph.2025.101151_bib57) 2020; 182
Liao (10.1016/j.rhisph.2025.101151_bib31) 2022; 31
Jadon (10.1016/j.rhisph.2025.101151_bib19) 2024
Teramoto (10.1016/j.rhisph.2025.101151_bib47) 2024; 20
Shao (10.1016/j.rhisph.2025.101151_bib41) 2021
Liu (10.1016/j.rhisph.2025.101151_bib33) 2021; 187
Huang (10.1016/j.rhisph.2025.101151_bib17) 2023; 45
Chakraborty (10.1016/j.rhisph.2025.101151_bib9) 2022; 34
References_xml – volume: 6
  start-page: 175
  year: 2024
  ident: bib7
  article-title: Fast and efficient root phenotyping via pose estimation
  publication-title: Plant Phenomics
– volume: 218
  year: 2021
  ident: bib26
  article-title: Deepcorn: a semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation
  publication-title: Knowl Based Syst
– volume: 3
  year: 2023
  ident: bib10
  article-title: A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery
  publication-title: Smart Agricultural Technology
– volume: 45
  start-page: 10173
  year: 2023
  end-page: 10196
  ident: bib17
  article-title: Normalization techniques in training DNNs: methodology, analysis and application
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2012
  ident: bib11
  article-title: The Role of Plant Roots in Crop Production
– volume: 2
  start-page: 15
  year: 2023
  end-page: 30
  ident: bib20
  article-title: Understanding the potential applications of artificial intelligence in agriculture sector
  publication-title: Advanced Agrochem
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: bib25
  article-title: Deep learning in agriculture: a survey
  publication-title: Comput. Electron. Agric.
– volume: 264
  year: 2021
  ident: bib50
  article-title: Towards interpreting multi-temporal deep learning models in crop mapping
  publication-title: Remote Sens. Environ.
– year: 2025
  ident: bib8
  article-title: Fiber Bragg grating based sensing system for non-destructive root phenotyping using ResNet prediction
  publication-title: IEEE Photonics Technology Letters, 37(8), 473-476
– volume: 34
  start-page: 20539
  year: 2022
  end-page: 20573
  ident: bib9
  article-title: Deep learning approaches and interventions for futuristic engineering in agriculture
  publication-title: Neural Comput. Appl.
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib16
  article-title: Densely connected convolutional networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 110
  start-page: 23
  year: 2022
  end-page: 42
  ident: bib35
  article-title: Root system architecture in cereals: progress, challenges and perspective
  publication-title: Plant J.
– volume: 182
  start-page: 977
  year: 2020
  end-page: 991
  ident: bib57
  article-title: Shared genetic control of root system architecture between Zea mays and Sorghum bicolor
  publication-title: Plant physiology
– volume: 26
  start-page: 1754
  year: 2020
  end-page: 1766
  ident: bib23
  article-title: A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level
  publication-title: Glob Chang Biol
– volume: 16
  start-page: 423
  year: 2022
  end-page: 433
  ident: bib4
  article-title: Corn disease detection based on deep neural network for substantiating the crop yield
  publication-title: Applied Mathematics & Information Sciences
– volume: 187
  start-page: 739
  year: 2021
  end-page: 757
  ident: bib33
  article-title: DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays)
  publication-title: Plant physiology
– volume: 13
  start-page: 1399
  year: 2023
  ident: bib39
  article-title: As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network “RootDetector”
  publication-title: Sci. Rep.
– volume: 17
  start-page: 127
  year: 2021
  ident: bib55
  article-title: TopoRoot: a method for computing hierarchy and fine-grained traits of maize roots from 3D imaging
  publication-title: Plant Methods
– volume: 10
  year: 2021
  ident: bib13
  article-title: ChronoRoot: high-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture
  publication-title: GigaScience
– volume: 92
  year: 2021
  ident: bib21
  article-title: Computer-vision classification of corn seed varieties using deep convolutional neural network
  publication-title: J. Stored Prod. Res.
– start-page: 66
  year: 2020
  end-page: 67
  ident: bib49
  article-title: Deep learning based corn kernel classification
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– year: 2018
  ident: bib40
  article-title: How Does Batch Normalization Help Optimization?
– volume: 247
  year: 2020
  ident: bib51
  article-title: DeepCropMapping: a multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 558
  year: 2021
  ident: bib36
  article-title: Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages
  publication-title: BMC Genom.
– volume: 14
  year: 2023
  ident: bib2
  article-title: 3D segmentation of plant root systems using spatial pyramid pooling and locally adaptive field-of-view inference
  publication-title: Front. Plant Sci.
– volume: 9
  start-page: 143824
  year: 2021
  end-page: 143835
  ident: bib54
  article-title: Corn leaf diseases diagnosis based on K-means clustering and deep learning
  publication-title: IEEE Access
– volume: 25
  year: 2012
  ident: bib29
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  year: 2022
  ident: bib44
  article-title: Genome-wide association study reveals the genetic basis of brace root angle and diameter in maize
  publication-title: Front. Genet.
– volume: 110
  start-page: 40
  year: 2011
  end-page: 48
  ident: bib14
  article-title: High-throughput phenotyping technology for maize roots
  publication-title: Biosyst. Eng.
– volume: 44
  start-page: 1289
  year: 2020
  end-page: 1302
  ident: bib56
  article-title: High precision control and deep learning-based corn stand counting algorithms for agricultural robot
  publication-title: Auton. Robots
– volume: 13
  start-page: 5048
  year: 2020
  end-page: 5060
  ident: bib45
  article-title: Multilevel deep learning network for county-level corn yield estimation in the us corn belt
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
– volume: 466
  start-page: 21
  year: 2021
  end-page: 63
  ident: bib34
  article-title: Root anatomy and soil resource capture
  publication-title: Plant Soil
– volume: 497
  start-page: 129
  year: 2022
  end-page: 158
  ident: bib48
  article-title: Recent advances on loss functions in deep learning for computer vision
  publication-title: Neurocomputing
– year: 2021
  ident: bib41
  article-title: Complementary phenotyping of maize root system architecture by root pulling force and X-ray imaging
  publication-title: Plant Phenomics 2021
– volume: 2
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib22
  article-title: A comprehensive review on automation in agriculture using artificial intelligence
  publication-title: Artificial Intelligence in Agriculture
– year: 2019
  ident: bib28
  article-title: Corn plant counting using deep learning and UAV images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 20
  start-page: 73
  year: 2024
  ident: bib47
  article-title: Convolutional neural networks combined with conventional filtering to semantically segment plant roots in rapidly scanned X-ray computed tomography volumes with high noise levels
  publication-title: Plant Methods
– volume: 8
  year: 2019
  ident: bib53
  article-title: RootNav 2.0: deep learning for automatic navigation of complex plant root architectures
  publication-title: GigaScience
– volume: 10
  start-page: 187
  year: 2023
  end-page: 193
  ident: bib12
  article-title: Automatic corn and soybean mapping based on deep learning methods (case study: Hamilton, hardin, boone, story, Dallas, polk, and jusper counties in lowa state). ISPRS annals of the photogrammetry
  publication-title: Remote Sensing and Spatial Information Sciences
– start-page: 117
  year: 2024
  end-page: 147
  ident: bib19
  article-title: A Comprehensive Survey of Regression-Based Loss Functions for Time Series Forecasting
– volume: 3
  start-page: 131
  year: 2016
  end-page: 136
  ident: bib30
  article-title: Estimating corn yield in the United States with modis evi and machine learning methods. ISPRS Annals of the Photogrammetry
  publication-title: Remote Sensing and Spatial Information Sciences
– volume: 77
  year: 2023
  ident: bib5
  article-title: A review of deep learning techniques used in agriculture
  publication-title: Ecol. Inform.
– volume: 15
  year: 2020
  ident: bib32
  article-title: DeepCropNet: a deep spatial-temporal learning framework for county-level corn yield estimation
  publication-title: Environ. Res. Lett.
– volume: 20
  start-page: 132
  year: 2024
  ident: bib24
  article-title: TopoRoot+: computing whorl and soil line traits of field-excavated maize roots from CT imaging
  publication-title: Plant Methods
– year: 2024
  ident: bib18
  article-title: Fuzzy deep learning recurrent neural network algorithm to detect corn leaf disease
  publication-title: Int. J. Comput. Intell. Appl.
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: bib46
  article-title: Efficientnet: rethinking model scaling for convolutional neural networks
  publication-title: International Conference on Machine Learning
– volume: 10
  start-page: 31103
  year: 2022
  end-page: 31115
  ident: bib3
  article-title: End-to-End deep learning model for corn leaf disease classification
  publication-title: IEEE Access
– volume: 14
  start-page: 638
  year: 2022
  ident: bib1
  article-title: A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities
  publication-title: Remote Sens.
– volume: 31
  start-page: 1
  year: 2022
  end-page: 40
  ident: bib31
  article-title: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks
  publication-title: ACM Trans. Software Eng. Methodol.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib15
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 10
  start-page: 2029
  year: 2024
  end-page: 2036
  ident: bib37
  article-title: Deep learning techniques for image recognition (machine learning)
  publication-title: Path of Science
– year: 2022
  ident: bib27
  article-title: Computer-aided multiclass classification of corn from corn images integrating deep feature extraction
  publication-title: Comput Intell Neurosci 2022
– volume: 236
  start-page: 774
  year: 2022
  end-page: 791
  ident: bib42
  article-title: RootPainter: deep learning segmentation of biological images with corrective annotation
  publication-title: New Phytol.
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib52
  article-title: Plant classification using convolutional neural networks
  publication-title: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics)
– volume: 7
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib6
  article-title: Artificial intelligence in agriculture: a literature survey
  publication-title: Int J Sci Res Comput Sci Appl Manag Stud
– volume: 60
  start-page: 46
  year: 2018
  end-page: 54
  ident: bib43
  article-title: Getting value from artificial intelligence in agriculture
  publication-title: Anim. Prod. Sci.
– year: 2017
  ident: bib38
  article-title: Deep Learning: A Practitioner's Approach
– volume: 10
  start-page: 31103
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib3
  article-title: End-to-End deep learning model for corn leaf disease classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3159678
– volume: 218
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib26
  article-title: Deepcorn: a semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.106874
– volume: 187
  start-page: 739
  issue: 2
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib33
  article-title: DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays)
  publication-title: Plant physiology
  doi: 10.1093/plphys/kiab311
– volume: 13
  start-page: 1399
  issue: 1
  year: 2023
  ident: 10.1016/j.rhisph.2025.101151_bib39
  article-title: As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network “RootDetector”
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28400-x
– volume: 182
  start-page: 977
  issue: 2
  year: 2020
  ident: 10.1016/j.rhisph.2025.101151_bib57
  article-title: Shared genetic control of root system architecture between Zea mays and Sorghum bicolor
  publication-title: Plant physiology
  doi: 10.1104/pp.19.00752
– volume: 16
  start-page: 423
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib4
  article-title: Corn disease detection based on deep neural network for substantiating the crop yield
  publication-title: Applied Mathematics & Information Sciences
  doi: 10.18576/amis/160304
– volume: 247
  year: 2020
  ident: 10.1016/j.rhisph.2025.101151_bib51
  article-title: DeepCropMapping: a multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111946
– volume: 6
  start-page: 175
  year: 2024
  ident: 10.1016/j.rhisph.2025.101151_bib7
  article-title: Fast and efficient root phenotyping via pose estimation
  publication-title: Plant Phenomics
  doi: 10.34133/plantphenomics.0175
– year: 2012
  ident: 10.1016/j.rhisph.2025.101151_bib11
– volume: 92
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib21
  article-title: Computer-vision classification of corn seed varieties using deep convolutional neural network
  publication-title: J. Stored Prod. Res.
  doi: 10.1016/j.jspr.2021.101800
– start-page: 2261
  year: 2017
  ident: 10.1016/j.rhisph.2025.101151_bib16
  article-title: Densely connected convolutional networks
– year: 2019
  ident: 10.1016/j.rhisph.2025.101151_bib28
  article-title: Corn plant counting using deep learning and UAV images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 44
  start-page: 1289
  year: 2020
  ident: 10.1016/j.rhisph.2025.101151_bib56
  article-title: High precision control and deep learning-based corn stand counting algorithms for agricultural robot
  publication-title: Auton. Robots
  doi: 10.1007/s10514-020-09915-y
– year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib27
  article-title: Computer-aided multiclass classification of corn from corn images integrating deep feature extraction
  publication-title: Comput Intell Neurosci 2022
  doi: 10.1155/2022/2062944
– volume: 77
  year: 2023
  ident: 10.1016/j.rhisph.2025.101151_bib5
  article-title: A review of deep learning techniques used in agriculture
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102217
– year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib41
  article-title: Complementary phenotyping of maize root system architecture by root pulling force and X-ray imaging
– volume: 22
  start-page: 558
  issue: 1
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib36
  article-title: Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages
  publication-title: BMC Genom.
  doi: 10.1186/s12864-021-07874-x
– year: 2017
  ident: 10.1016/j.rhisph.2025.101151_bib38
– volume: 2
  start-page: 1
  year: 2019
  ident: 10.1016/j.rhisph.2025.101151_bib22
  article-title: A comprehensive review on automation in agriculture using artificial intelligence
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2019.05.004
– volume: 497
  start-page: 129
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib48
  article-title: Recent advances on loss functions in deep learning for computer vision
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.127
– volume: 45
  start-page: 10173
  year: 2023
  ident: 10.1016/j.rhisph.2025.101151_bib17
  article-title: Normalization techniques in training DNNs: methodology, analysis and application
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3250241
– volume: 10
  start-page: 2029
  year: 2024
  ident: 10.1016/j.rhisph.2025.101151_bib37
  article-title: Deep learning techniques for image recognition (machine learning)
  publication-title: Path of Science
  doi: 10.22178/pos.110-8
– volume: 10
  issue: 7
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib13
  article-title: ChronoRoot: high-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture
  publication-title: GigaScience
  doi: 10.1093/gigascience/giab052
– volume: 31
  start-page: 1
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib31
  article-title: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks
  publication-title: ACM Trans. Software Eng. Methodol.
  doi: 10.1145/3506695
– start-page: 1
  year: 2016
  ident: 10.1016/j.rhisph.2025.101151_bib52
  article-title: Plant classification using convolutional neural networks
– start-page: 770
  year: 2016
  ident: 10.1016/j.rhisph.2025.101151_bib15
  article-title: Deep residual learning for image recognition
– volume: 60
  start-page: 46
  year: 2018
  ident: 10.1016/j.rhisph.2025.101151_bib43
  article-title: Getting value from artificial intelligence in agriculture
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN18522
– volume: 3
  start-page: 131
  year: 2016
  ident: 10.1016/j.rhisph.2025.101151_bib30
  article-title: Estimating corn yield in the United States with modis evi and machine learning methods. ISPRS Annals of the Photogrammetry
  publication-title: Remote Sensing and Spatial Information Sciences
– volume: 15
  year: 2020
  ident: 10.1016/j.rhisph.2025.101151_bib32
  article-title: DeepCropNet: a deep spatial-temporal learning framework for county-level corn yield estimation
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab66cb
– year: 2018
  ident: 10.1016/j.rhisph.2025.101151_bib40
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.rhisph.2025.101151_bib25
  article-title: Deep learning in agriculture: a survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.016
– volume: 17
  start-page: 127
  issue: 1
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib55
  article-title: TopoRoot: a method for computing hierarchy and fine-grained traits of maize roots from 3D imaging
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00829-z
– volume: 34
  start-page: 20539
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib9
  article-title: Deep learning approaches and interventions for futuristic engineering in agriculture
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07744-x
– volume: 7
  start-page: 1
  year: 2018
  ident: 10.1016/j.rhisph.2025.101151_bib6
  article-title: Artificial intelligence in agriculture: a literature survey
  publication-title: Int J Sci Res Comput Sci Appl Manag Stud
– start-page: 6105
  year: 2019
  ident: 10.1016/j.rhisph.2025.101151_bib46
  article-title: Efficientnet: rethinking model scaling for convolutional neural networks
– volume: 13
  start-page: 5048
  year: 2020
  ident: 10.1016/j.rhisph.2025.101151_bib45
  article-title: Multilevel deep learning network for county-level corn yield estimation in the us corn belt
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2020.3019046
– volume: 264
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib50
  article-title: Towards interpreting multi-temporal deep learning models in crop mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112599
– volume: 10
  start-page: 187
  year: 2023
  ident: 10.1016/j.rhisph.2025.101151_bib12
  article-title: Automatic corn and soybean mapping based on deep learning methods (case study: Hamilton, hardin, boone, story, Dallas, polk, and jusper counties in lowa state). ISPRS annals of the photogrammetry
  publication-title: Remote Sensing and Spatial Information Sciences
– volume: 2
  start-page: 15
  year: 2023
  ident: 10.1016/j.rhisph.2025.101151_bib20
  article-title: Understanding the potential applications of artificial intelligence in agriculture sector
  publication-title: Advanced Agrochem
  doi: 10.1016/j.aac.2022.10.001
– start-page: 117
  year: 2024
  ident: 10.1016/j.rhisph.2025.101151_bib19
– volume: 13
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib44
  article-title: Genome-wide association study reveals the genetic basis of brace root angle and diameter in maize
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.963852
– volume: 26
  start-page: 1754
  year: 2020
  ident: 10.1016/j.rhisph.2025.101151_bib23
  article-title: A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14885
– volume: 14
  start-page: 638
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib1
  article-title: A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities
  publication-title: Remote Sens.
  doi: 10.3390/rs14030638
– volume: 8
  issue: 11
  year: 2019
  ident: 10.1016/j.rhisph.2025.101151_bib53
  article-title: RootNav 2.0: deep learning for automatic navigation of complex plant root architectures
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz123
– volume: 25
  year: 2012
  ident: 10.1016/j.rhisph.2025.101151_bib29
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 3
  year: 2023
  ident: 10.1016/j.rhisph.2025.101151_bib10
  article-title: A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery
  publication-title: Smart Agricultural Technology
  doi: 10.1016/j.atech.2022.100108
– year: 2024
  ident: 10.1016/j.rhisph.2025.101151_bib18
  article-title: Fuzzy deep learning recurrent neural network algorithm to detect corn leaf disease
  publication-title: Int. J. Comput. Intell. Appl.
  doi: 10.1142/S1469026824500172
– volume: 110
  start-page: 40
  year: 2011
  ident: 10.1016/j.rhisph.2025.101151_bib14
  article-title: High-throughput phenotyping technology for maize roots
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2011.06.004
– volume: 20
  start-page: 73
  issue: 1
  year: 2024
  ident: 10.1016/j.rhisph.2025.101151_bib47
  article-title: Convolutional neural networks combined with conventional filtering to semantically segment plant roots in rapidly scanned X-ray computed tomography volumes with high noise levels
  publication-title: Plant Methods
  doi: 10.1186/s13007-024-01208-0
– volume: 9
  start-page: 143824
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib54
  article-title: Corn leaf diseases diagnosis based on K-means clustering and deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3120379
– volume: 14
  year: 2023
  ident: 10.1016/j.rhisph.2025.101151_bib2
  article-title: 3D segmentation of plant root systems using spatial pyramid pooling and locally adaptive field-of-view inference
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1120189
– year: 2025
  ident: 10.1016/j.rhisph.2025.101151_bib8
  article-title: Fiber Bragg grating based sensing system for non-destructive root phenotyping using ResNet prediction
  publication-title: IEEE Photonics Technology Letters, 37(8), 473-476
  doi: 10.1109/LPT.2025.3553701
– volume: 466
  start-page: 21
  year: 2021
  ident: 10.1016/j.rhisph.2025.101151_bib34
  article-title: Root anatomy and soil resource capture
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05010-y
– start-page: 66
  year: 2020
  ident: 10.1016/j.rhisph.2025.101151_bib49
  article-title: Deep learning based corn kernel classification
– volume: 236
  start-page: 774
  issue: 2
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib42
  article-title: RootPainter: deep learning segmentation of biological images with corrective annotation
  publication-title: New Phytol.
  doi: 10.1111/nph.18387
– volume: 20
  start-page: 132
  issue: 1
  year: 2024
  ident: 10.1016/j.rhisph.2025.101151_bib24
  article-title: TopoRoot+: computing whorl and soil line traits of field-excavated maize roots from CT imaging
  publication-title: Plant Methods
  doi: 10.1186/s13007-024-01240-0
– volume: 110
  start-page: 23
  year: 2022
  ident: 10.1016/j.rhisph.2025.101151_bib35
  article-title: Root system architecture in cereals: progress, challenges and perspective
  publication-title: Plant J.
  doi: 10.1111/tpj.15669
SSID ssj0001763563
Score 2.3017395
Snippet The study of corn root morphology is critical for understanding root architecture, which directly influences water and nutrient uptake, plant stability, and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101151
SubjectTerms Crop breeding
Deep learning
End-to-end learning
Image processing
Morphological feature extraction
Root phenotyping
Title Morphological feature extraction of corn roots using deep learning
URI https://dx.doi.org/10.1016/j.rhisph.2025.101151
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdmFBIECUlzywWs3TTsZSURVQu0ClbpEd26UMadSG_885dgRIiIExlk5KzvZ33-VeAHec55EQKqUZw22wkSYqhcxpyTkXLFJGtd355ws2WyZPq3TVg0lXC2PTKj32O0xv0dqvjLw2R_VmM3qxMUO8b-jitI3H4gMYRGhdgz4Mxo_Ps8XXr5a2CZuNNVsRamW6Iro202v3ttnXNjARpXYpTMPfjdQ3wzM9hiPPGMnYvdQJ9HR1CvfzLSqoAy5idNufkyDS7lylAtkago5lRZAZN3ti09vXRGldEz8nYn0Gy-nD62RG_TgEWiLLaCiLJTp7iclCISQSN6mVNrFiGimMQc8kSFRu8iQNVahZEmSljDjXpcx0XKLXFcTn0K-2lb4AwnLBhYikFnb8ecwEx8snlRCpRHog8iHQ7vuL2nW9KLp0sPfC6auw-iqcvobAOyUVP3avQGD-U_Ly35JXcGifXL7XNfSb3Ye-QYLQyFt_AD4Bluu5Ng
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoAFgQDR8vLAarV52clYKqqUPhZaqZtlx04pQxq14f9zzkOAhBhYHZ2UnO3P3-XO3wE8ch65UuqAhgynwWaaqJIqognnXDJXp7pU558vWLzyX9bBugWj5i6MLaussb_C9BKt65F-7c1-vt32X23OEPcbhjil8Jh3BB2rToXLvDOcTOPF16-WUoTN5pqtCbU2zSW6stJr_7Y95DYx4QZ2yAmc3w-pbwfP-AxOa8ZIhtVLnUPLZBfwNN-hgxrgIqkp9TkJIu2-uqlAdinBwDIjyIyLA7Hl7RuijclJ3Sdicwmr8fNyFNO6HQJNkGUUlHkKgz0_DR0pFRI3ZbRJPc0MUpgUI5OBr6M08gNHO4b5gzBRLucmUaHxEoy6Bt4VtLNdZq6BsEhyKV1lpG1_7jHJcfMpLWWgkB7IqAu0-X6RV6oXoikHexeVv4T1l6j81QXeOEn8mD2BwPynZe_flg9wHC_nMzGbLKY3cGKfVLVft9Au9h_mDslCoe7rxfAJcCK8JQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphological+feature+extraction+of+corn+roots+using+deep+learning&rft.jtitle=Rhizosphere&rft.au=Fatemi%2C+Ali&rft.au=Inanlu%2C+M.J.&rft.au=Momin%2C+Abdul&rft.au=Grift%2C+Tony&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=35&rft_id=info:doi/10.1016%2Fj.rhisph.2025.101151&rft.externalDocID=S2452219825001363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon