Morphological feature extraction of corn roots using deep learning
The study of corn root morphology is critical for understanding root architecture, which directly influences water and nutrient uptake, plant stability, and overall yield performance. It also plays a crucial role in advancing crop breeding programs. Traditional methods of analyzing root morphology a...
Saved in:
Published in | Rhizosphere Vol. 35; p. 101151 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study of corn root morphology is critical for understanding root architecture, which directly influences water and nutrient uptake, plant stability, and overall yield performance. It also plays a crucial role in advancing crop breeding programs. Traditional methods of analyzing root morphology are often labor-intensive, time-consuming, and subject to variability. This research introduces a deep learning (DL)-based approach for the automated and precise extraction of morphological features from monochrome images of corn roots. While DL methods have been widely applied to various agricultural problems such as yield estimation, cultivar classification, and disease detection, its application to plant features, particularly root traits, remains limited. In this study, three DL architectures- EfficientNet_B0, DenseNet_121, and ResNet_50- were used to extract and predict 12 morphological features from both raw and background-subtracted side-view images of corn roots. The results showed that all three architectures performed similarly, with DenseNet_121 slightly outperforming the others in terms of coefficient of determination and normalized root mean square error (NRMSE) metrics for background-subtracted images (mean R2 0.9199 and mean NRMSE 0.0444), while EfficientNet_B0 showed superior performance with raw images (mean R2 0.9057 and mean NRMSE 0.0480). Importantly, no significant difference in architecture performance was observed between raw and background-subtracted images. The study shows the potential of end-to-end learning by providing a robust, automated tool for plant morphological feature extraction.
•Introduces a deep learning-based approach for automated extraction of corn root morphology.•Compares three deep learning architectures (EfficientNet_B0, ResNet_50, DenseNet_121) for feature extraction.•DenseNet_121 achieved higher prediction accuracy with background-subtracted images.•The study highlights the potential of deep learning as an end-to-end approach for root morphological analysis in crop breeding programs. |
---|---|
AbstractList | The study of corn root morphology is critical for understanding root architecture, which directly influences water and nutrient uptake, plant stability, and overall yield performance. It also plays a crucial role in advancing crop breeding programs. Traditional methods of analyzing root morphology are often labor-intensive, time-consuming, and subject to variability. This research introduces a deep learning (DL)-based approach for the automated and precise extraction of morphological features from monochrome images of corn roots. While DL methods have been widely applied to various agricultural problems such as yield estimation, cultivar classification, and disease detection, its application to plant features, particularly root traits, remains limited. In this study, three DL architectures- EfficientNet_B0, DenseNet_121, and ResNet_50- were used to extract and predict 12 morphological features from both raw and background-subtracted side-view images of corn roots. The results showed that all three architectures performed similarly, with DenseNet_121 slightly outperforming the others in terms of coefficient of determination and normalized root mean square error (NRMSE) metrics for background-subtracted images (mean R2 0.9199 and mean NRMSE 0.0444), while EfficientNet_B0 showed superior performance with raw images (mean R2 0.9057 and mean NRMSE 0.0480). Importantly, no significant difference in architecture performance was observed between raw and background-subtracted images. The study shows the potential of end-to-end learning by providing a robust, automated tool for plant morphological feature extraction.
•Introduces a deep learning-based approach for automated extraction of corn root morphology.•Compares three deep learning architectures (EfficientNet_B0, ResNet_50, DenseNet_121) for feature extraction.•DenseNet_121 achieved higher prediction accuracy with background-subtracted images.•The study highlights the potential of deep learning as an end-to-end approach for root morphological analysis in crop breeding programs. |
ArticleNumber | 101151 |
Author | Inanlu, M.J. Grift, Tony Momin, Abdul Fatemi, Ali |
Author_xml | – sequence: 1 givenname: Ali surname: Fatemi fullname: Fatemi, Ali organization: Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA – sequence: 2 givenname: M.J. surname: Inanlu fullname: Inanlu, M.J. organization: Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA – sequence: 3 givenname: Abdul surname: Momin fullname: Momin, Abdul organization: Agricultural Engineering Technology, School of Agriculture, Tennessee Tech University, Cookeville, TN, USA – sequence: 4 givenname: Tony surname: Grift fullname: Grift, Tony email: grift@illinois.edu organization: Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA |
BookMark | eNp9kM1OwzAQhC0EEqX0DTj4BVLWP3GSCxJU_ElFXOBsOc66dRXsyE4RvD2twoETp50daUaj74KchhiQkCsGSwZMXe-WaevzsF1y4OXRYiU7ITMuS15w1tSnf_Q5WeS8AwBWKVEqMSN3LzEN29jHjbempw7NuE9I8WtMxo4-BhodtTEFmmIcM91nHza0QxxojyaFw3dJzpzpMy5-75y8P9y_rZ6K9evj8-p2XVhW8bFQopXApauZMS0TTYsdOtEpLBV3UCuQXeMaWbKOoZJQ25ZXFdq2RmGBAYg5kVOvTTHnhE4PyX-Y9K0Z6CMKvdMTCn1EoScUh9jNFMPDtk-PSWfrMVjsfEI76i76_wt-ADGTa1U |
Cites_doi | 10.1109/ACCESS.2022.3159678 10.1016/j.knosys.2021.106874 10.1093/plphys/kiab311 10.1038/s41598-023-28400-x 10.1104/pp.19.00752 10.18576/amis/160304 10.1016/j.rse.2020.111946 10.34133/plantphenomics.0175 10.1016/j.jspr.2021.101800 10.1007/s10514-020-09915-y 10.1155/2022/2062944 10.1016/j.ecoinf.2023.102217 10.1186/s12864-021-07874-x 10.1016/j.aiia.2019.05.004 10.1016/j.neucom.2022.04.127 10.1109/TPAMI.2023.3250241 10.22178/pos.110-8 10.1093/gigascience/giab052 10.1145/3506695 10.1071/AN18522 10.1088/1748-9326/ab66cb 10.1016/j.compag.2018.02.016 10.1186/s13007-021-00829-z 10.1007/s00521-022-07744-x 10.1109/JSTARS.2020.3019046 10.1016/j.rse.2021.112599 10.1016/j.aac.2022.10.001 10.3389/fgene.2022.963852 10.1111/gcb.14885 10.3390/rs14030638 10.1093/gigascience/giz123 10.1016/j.atech.2022.100108 10.1142/S1469026824500172 10.1016/j.biosystemseng.2011.06.004 10.1186/s13007-024-01208-0 10.1109/ACCESS.2021.3120379 10.3389/fpls.2023.1120189 10.1109/LPT.2025.3553701 10.1007/s11104-021-05010-y 10.1111/nph.18387 10.1186/s13007-024-01240-0 10.1111/tpj.15669 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rhisph.2025.101151 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-2198 |
ExternalDocumentID | 10_1016_j_rhisph_2025_101151 S2452219825001363 |
GroupedDBID | --M 0R~ AAEDT AAEDW AAHBH AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO AAYWO ABGRD ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGUBO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC EBS EFJIC EFKBS EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPCBC SSA SSZ T5K ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c172t-63b4024f81aab139bedef3d6e562f08604d9f9451d1e6408cb277ecb8e3c01003 |
IEDL.DBID | AIKHN |
ISSN | 2452-2198 |
IngestDate | Thu Aug 21 00:34:35 EDT 2025 Sat Aug 30 17:14:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Morphological feature extraction Image processing Root phenotyping End-to-end learning Crop breeding |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-63b4024f81aab139bedef3d6e562f08604d9f9451d1e6408cb277ecb8e3c01003 |
ParticipantIDs | crossref_primary_10_1016_j_rhisph_2025_101151 elsevier_sciencedirect_doi_10_1016_j_rhisph_2025_101151 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Rhizosphere |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zheng, Hey, Jubery, Liu, Yang, Coffey (bib57) 2020; 182 Lin, Zhong, Wang, Xu, Jiang, Xu, Ying, Rodriguez, Ting, Li (bib32) 2020; 15 Xu, Zhu, Zhong, Lin, Xu, Jiang, Huang, Li, Lin (bib51) 2020; 247 Liao, Li, Shang, Ma (bib31) 2022; 31 Divyanth, Ahmad, Saraswat (bib10) 2023; 3 Maqbool, Hassan, Xia, York, Rasheed, He (bib35) 2022; 110 Liu, Barrow, Hanlon, Lynch, Bucksch (bib33) 2021; 187 Sun, Lai, Di, Sun, Tao, Shen (bib45) 2020; 13 Gaggion, Ariel, Daric, Lambert, Legendre, Roulé (bib13) 2021; 10 Smith (bib43) 2018; 60 Javanmardi, Ashtiani, Verbeek, Martynenko (bib21) 2021; 92 Kishore, Yasar, Taspinar, Kursun, Cinar, Shankar, Koklu, Ofori (bib27) 2022 Shao, Jiang, Li, Howard, Lehner, Mullen, Gunn, McKay, Topp (bib41) 2021 Yasrab, Atkinson, Wells, French, Pridmore, Pound (bib53) 2019; 8 Fathi, Shah-Hosseini (bib12) 2023; 10 Teramoto, Uga (bib47) 2024; 20 Obanewa, Olope (bib37) 2024; 10 Alle, Gruber, Wörlein, Uhlmann, Claußen, Wittenberg, Gerth (bib2) 2023; 14 Javaid, Haleem, Khan, Suman (bib20) 2023; 2 Khaki, Pham, Han, Kuhl, Kent, Wang (bib26) 2021; 218 Jiang, Hu, Zhong, Xu, Xu, Huang, Wang, Ying, Lin (bib23) 2020; 26 Irianto, Findley (bib18) 2024 Lynch, Strock, Schneider, Sidhu, Ajmera, Galindo-Castañeda, Klein, Hanlon (bib34) 2021; 466 Tan, Le (bib46) 2019 Kuwata, Shibasaki (bib30) 2016; 3 Krizhevsky, Sutskever, Hinton (bib29) 2012; 25 Sun, Chen, Cui, Lin, Liu, Jin (bib44) 2022; 13 Binder, Hossain, Bucksch, Fok (bib8) 2025 Jha, Doshi, Patel, Shah (bib22) 2019; 2 Ju, Liu, Oestreich, Wang, Topp, Ju (bib24) 2024; 20 Kitano, Mendes, Geus, Oliveira, Souza (bib28) 2019 Moussa, Mandozai, Jin, Qu, Zhang, Zhao (bib36) 2021; 22 Santurkar, Tsipras, Ilyas, Madry (bib40) 2018 Fageria (bib11) 2012 Huang, Liu, Van Der Maaten, Weinberger (bib16) 2017 Grift, Novais, Bohn (bib14) 2011; 110 Zeng, Li, Jiang, Ju, Schreiber, Chambers (bib55) 2021; 17 Smith, Han, Petersen, Olsen, Giese, Athmann (bib42) 2022; 236 Chakraborty, Chandel, Jat, Tiwari, Rajwade, Subeesh (bib9) 2022; 34 Alibabaei, Gaspar, Lima, Campos, Girão, Monteiro, Lopes (bib1) 2022; 14 Huang, Qin, Zhou, Zhu, Liu, Shao (bib17) 2023; 45 Tian, Su, Lauria, Liu (bib48) 2022; 497 Yalcin, Razavi (bib52) 2016 Kamilaris, Prenafeta-Boldú (bib25) 2018; 147 Xu, Yang, Xiong, Li, Huang, Ting, Ying, Lin (bib50) 2021; 264 Amin, Darwish, Hassanien, Soliman (bib3) 2022; 10 Zhang, Kayacan, Thompson, Chowdhary (bib56) 2020; 44 He, Zhang, Ren, Sun (bib15) 2016 Peters, Blume-Werry, Gillert, Schwieger, von Lukas, Kreyling (bib39) 2023; 13 Velesaca, Mira, Suárez, Larrea, Sappa (bib49) 2020 Attri, Awasthi, Sharma, Rathee (bib5) 2023; 77 Yu, Liu, Chen, Heidari, Zhang, Chen, Mafarja, Turabieh (bib54) 2021; 9 Jadon, Patil, Jadon (bib19) 2024 Berrigan, Wang, Carrillo, Echegoyen, Kappes, Torres (bib7) 2024; 6 Bannerjee, Sarkar, Das, Ghosh (bib6) 2018; 7 Ashwini, Sellam (bib4) 2022; 16 Patterson, Adam (bib38) 2017 Javanmardi (10.1016/j.rhisph.2025.101151_bib21) 2021; 92 Kitano (10.1016/j.rhisph.2025.101151_bib28) 2019 Maqbool (10.1016/j.rhisph.2025.101151_bib35) 2022; 110 Jha (10.1016/j.rhisph.2025.101151_bib22) 2019; 2 Xu (10.1016/j.rhisph.2025.101151_bib50) 2021; 264 Xu (10.1016/j.rhisph.2025.101151_bib51) 2020; 247 Amin (10.1016/j.rhisph.2025.101151_bib3) 2022; 10 Alibabaei (10.1016/j.rhisph.2025.101151_bib1) 2022; 14 Velesaca (10.1016/j.rhisph.2025.101151_bib49) 2020 Binder (10.1016/j.rhisph.2025.101151_bib8) 2025 Kishore (10.1016/j.rhisph.2025.101151_bib27) 2022 Santurkar (10.1016/j.rhisph.2025.101151_bib40) 2018 Gaggion (10.1016/j.rhisph.2025.101151_bib13) 2021; 10 Peters (10.1016/j.rhisph.2025.101151_bib39) 2023; 13 Yalcin (10.1016/j.rhisph.2025.101151_bib52) 2016 Patterson (10.1016/j.rhisph.2025.101151_bib38) 2017 Krizhevsky (10.1016/j.rhisph.2025.101151_bib29) 2012; 25 Lin (10.1016/j.rhisph.2025.101151_bib32) 2020; 15 Lynch (10.1016/j.rhisph.2025.101151_bib34) 2021; 466 Obanewa (10.1016/j.rhisph.2025.101151_bib37) 2024; 10 He (10.1016/j.rhisph.2025.101151_bib15) 2016 Irianto (10.1016/j.rhisph.2025.101151_bib18) 2024 Yasrab (10.1016/j.rhisph.2025.101151_bib53) 2019; 8 Kamilaris (10.1016/j.rhisph.2025.101151_bib25) 2018; 147 Tian (10.1016/j.rhisph.2025.101151_bib48) 2022; 497 Fageria (10.1016/j.rhisph.2025.101151_bib11) 2012 Tan (10.1016/j.rhisph.2025.101151_bib46) 2019 Jiang (10.1016/j.rhisph.2025.101151_bib23) 2020; 26 Grift (10.1016/j.rhisph.2025.101151_bib14) 2011; 110 Divyanth (10.1016/j.rhisph.2025.101151_bib10) 2023; 3 Yu (10.1016/j.rhisph.2025.101151_bib54) 2021; 9 Attri (10.1016/j.rhisph.2025.101151_bib5) 2023; 77 Berrigan (10.1016/j.rhisph.2025.101151_bib7) 2024; 6 Javaid (10.1016/j.rhisph.2025.101151_bib20) 2023; 2 Sun (10.1016/j.rhisph.2025.101151_bib45) 2020; 13 Smith (10.1016/j.rhisph.2025.101151_bib43) 2018; 60 Ju (10.1016/j.rhisph.2025.101151_bib24) 2024; 20 Ashwini (10.1016/j.rhisph.2025.101151_bib4) 2022; 16 Khaki (10.1016/j.rhisph.2025.101151_bib26) 2021; 218 Moussa (10.1016/j.rhisph.2025.101151_bib36) 2021; 22 Sun (10.1016/j.rhisph.2025.101151_bib44) 2022; 13 Fathi (10.1016/j.rhisph.2025.101151_bib12) 2023; 10 Kuwata (10.1016/j.rhisph.2025.101151_bib30) 2016; 3 Bannerjee (10.1016/j.rhisph.2025.101151_bib6) 2018; 7 Smith (10.1016/j.rhisph.2025.101151_bib42) 2022; 236 Huang (10.1016/j.rhisph.2025.101151_bib16) 2017 Zeng (10.1016/j.rhisph.2025.101151_bib55) 2021; 17 Alle (10.1016/j.rhisph.2025.101151_bib2) 2023; 14 Zhang (10.1016/j.rhisph.2025.101151_bib56) 2020; 44 Zheng (10.1016/j.rhisph.2025.101151_bib57) 2020; 182 Liao (10.1016/j.rhisph.2025.101151_bib31) 2022; 31 Jadon (10.1016/j.rhisph.2025.101151_bib19) 2024 Teramoto (10.1016/j.rhisph.2025.101151_bib47) 2024; 20 Shao (10.1016/j.rhisph.2025.101151_bib41) 2021 Liu (10.1016/j.rhisph.2025.101151_bib33) 2021; 187 Huang (10.1016/j.rhisph.2025.101151_bib17) 2023; 45 Chakraborty (10.1016/j.rhisph.2025.101151_bib9) 2022; 34 |
References_xml | – volume: 6 start-page: 175 year: 2024 ident: bib7 article-title: Fast and efficient root phenotyping via pose estimation publication-title: Plant Phenomics – volume: 218 year: 2021 ident: bib26 article-title: Deepcorn: a semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation publication-title: Knowl Based Syst – volume: 3 year: 2023 ident: bib10 article-title: A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery publication-title: Smart Agricultural Technology – volume: 45 start-page: 10173 year: 2023 end-page: 10196 ident: bib17 article-title: Normalization techniques in training DNNs: methodology, analysis and application publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2012 ident: bib11 article-title: The Role of Plant Roots in Crop Production – volume: 2 start-page: 15 year: 2023 end-page: 30 ident: bib20 article-title: Understanding the potential applications of artificial intelligence in agriculture sector publication-title: Advanced Agrochem – volume: 147 start-page: 70 year: 2018 end-page: 90 ident: bib25 article-title: Deep learning in agriculture: a survey publication-title: Comput. Electron. Agric. – volume: 264 year: 2021 ident: bib50 article-title: Towards interpreting multi-temporal deep learning models in crop mapping publication-title: Remote Sens. Environ. – year: 2025 ident: bib8 article-title: Fiber Bragg grating based sensing system for non-destructive root phenotyping using ResNet prediction publication-title: IEEE Photonics Technology Letters, 37(8), 473-476 – volume: 34 start-page: 20539 year: 2022 end-page: 20573 ident: bib9 article-title: Deep learning approaches and interventions for futuristic engineering in agriculture publication-title: Neural Comput. Appl. – start-page: 2261 year: 2017 end-page: 2269 ident: bib16 article-title: Densely connected convolutional networks publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 110 start-page: 23 year: 2022 end-page: 42 ident: bib35 article-title: Root system architecture in cereals: progress, challenges and perspective publication-title: Plant J. – volume: 182 start-page: 977 year: 2020 end-page: 991 ident: bib57 article-title: Shared genetic control of root system architecture between Zea mays and Sorghum bicolor publication-title: Plant physiology – volume: 26 start-page: 1754 year: 2020 end-page: 1766 ident: bib23 article-title: A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level publication-title: Glob Chang Biol – volume: 16 start-page: 423 year: 2022 end-page: 433 ident: bib4 article-title: Corn disease detection based on deep neural network for substantiating the crop yield publication-title: Applied Mathematics & Information Sciences – volume: 187 start-page: 739 year: 2021 end-page: 757 ident: bib33 article-title: DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays) publication-title: Plant physiology – volume: 13 start-page: 1399 year: 2023 ident: bib39 article-title: As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network “RootDetector” publication-title: Sci. Rep. – volume: 17 start-page: 127 year: 2021 ident: bib55 article-title: TopoRoot: a method for computing hierarchy and fine-grained traits of maize roots from 3D imaging publication-title: Plant Methods – volume: 10 year: 2021 ident: bib13 article-title: ChronoRoot: high-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture publication-title: GigaScience – volume: 92 year: 2021 ident: bib21 article-title: Computer-vision classification of corn seed varieties using deep convolutional neural network publication-title: J. Stored Prod. Res. – start-page: 66 year: 2020 end-page: 67 ident: bib49 article-title: Deep learning based corn kernel classification publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops – year: 2018 ident: bib40 article-title: How Does Batch Normalization Help Optimization? – volume: 247 year: 2020 ident: bib51 article-title: DeepCropMapping: a multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping publication-title: Remote Sens. Environ. – volume: 22 start-page: 558 year: 2021 ident: bib36 article-title: Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages publication-title: BMC Genom. – volume: 14 year: 2023 ident: bib2 article-title: 3D segmentation of plant root systems using spatial pyramid pooling and locally adaptive field-of-view inference publication-title: Front. Plant Sci. – volume: 9 start-page: 143824 year: 2021 end-page: 143835 ident: bib54 article-title: Corn leaf diseases diagnosis based on K-means clustering and deep learning publication-title: IEEE Access – volume: 25 year: 2012 ident: bib29 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 year: 2022 ident: bib44 article-title: Genome-wide association study reveals the genetic basis of brace root angle and diameter in maize publication-title: Front. Genet. – volume: 110 start-page: 40 year: 2011 end-page: 48 ident: bib14 article-title: High-throughput phenotyping technology for maize roots publication-title: Biosyst. Eng. – volume: 44 start-page: 1289 year: 2020 end-page: 1302 ident: bib56 article-title: High precision control and deep learning-based corn stand counting algorithms for agricultural robot publication-title: Auton. Robots – volume: 13 start-page: 5048 year: 2020 end-page: 5060 ident: bib45 article-title: Multilevel deep learning network for county-level corn yield estimation in the us corn belt publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens – volume: 466 start-page: 21 year: 2021 end-page: 63 ident: bib34 article-title: Root anatomy and soil resource capture publication-title: Plant Soil – volume: 497 start-page: 129 year: 2022 end-page: 158 ident: bib48 article-title: Recent advances on loss functions in deep learning for computer vision publication-title: Neurocomputing – year: 2021 ident: bib41 article-title: Complementary phenotyping of maize root system architecture by root pulling force and X-ray imaging publication-title: Plant Phenomics 2021 – volume: 2 start-page: 1 year: 2019 end-page: 12 ident: bib22 article-title: A comprehensive review on automation in agriculture using artificial intelligence publication-title: Artificial Intelligence in Agriculture – year: 2019 ident: bib28 article-title: Corn plant counting using deep learning and UAV images publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 20 start-page: 73 year: 2024 ident: bib47 article-title: Convolutional neural networks combined with conventional filtering to semantically segment plant roots in rapidly scanned X-ray computed tomography volumes with high noise levels publication-title: Plant Methods – volume: 8 year: 2019 ident: bib53 article-title: RootNav 2.0: deep learning for automatic navigation of complex plant root architectures publication-title: GigaScience – volume: 10 start-page: 187 year: 2023 end-page: 193 ident: bib12 article-title: Automatic corn and soybean mapping based on deep learning methods (case study: Hamilton, hardin, boone, story, Dallas, polk, and jusper counties in lowa state). ISPRS annals of the photogrammetry publication-title: Remote Sensing and Spatial Information Sciences – start-page: 117 year: 2024 end-page: 147 ident: bib19 article-title: A Comprehensive Survey of Regression-Based Loss Functions for Time Series Forecasting – volume: 3 start-page: 131 year: 2016 end-page: 136 ident: bib30 article-title: Estimating corn yield in the United States with modis evi and machine learning methods. ISPRS Annals of the Photogrammetry publication-title: Remote Sensing and Spatial Information Sciences – volume: 77 year: 2023 ident: bib5 article-title: A review of deep learning techniques used in agriculture publication-title: Ecol. Inform. – volume: 15 year: 2020 ident: bib32 article-title: DeepCropNet: a deep spatial-temporal learning framework for county-level corn yield estimation publication-title: Environ. Res. Lett. – volume: 20 start-page: 132 year: 2024 ident: bib24 article-title: TopoRoot+: computing whorl and soil line traits of field-excavated maize roots from CT imaging publication-title: Plant Methods – year: 2024 ident: bib18 article-title: Fuzzy deep learning recurrent neural network algorithm to detect corn leaf disease publication-title: Int. J. Comput. Intell. Appl. – start-page: 6105 year: 2019 end-page: 6114 ident: bib46 article-title: Efficientnet: rethinking model scaling for convolutional neural networks publication-title: International Conference on Machine Learning – volume: 10 start-page: 31103 year: 2022 end-page: 31115 ident: bib3 article-title: End-to-End deep learning model for corn leaf disease classification publication-title: IEEE Access – volume: 14 start-page: 638 year: 2022 ident: bib1 article-title: A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities publication-title: Remote Sens. – volume: 31 start-page: 1 year: 2022 end-page: 40 ident: bib31 article-title: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks publication-title: ACM Trans. Software Eng. Methodol. – start-page: 770 year: 2016 end-page: 778 ident: bib15 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 10 start-page: 2029 year: 2024 end-page: 2036 ident: bib37 article-title: Deep learning techniques for image recognition (machine learning) publication-title: Path of Science – year: 2022 ident: bib27 article-title: Computer-aided multiclass classification of corn from corn images integrating deep feature extraction publication-title: Comput Intell Neurosci 2022 – volume: 236 start-page: 774 year: 2022 end-page: 791 ident: bib42 article-title: RootPainter: deep learning segmentation of biological images with corrective annotation publication-title: New Phytol. – start-page: 1 year: 2016 end-page: 5 ident: bib52 article-title: Plant classification using convolutional neural networks publication-title: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics) – volume: 7 start-page: 1 year: 2018 end-page: 6 ident: bib6 article-title: Artificial intelligence in agriculture: a literature survey publication-title: Int J Sci Res Comput Sci Appl Manag Stud – volume: 60 start-page: 46 year: 2018 end-page: 54 ident: bib43 article-title: Getting value from artificial intelligence in agriculture publication-title: Anim. Prod. Sci. – year: 2017 ident: bib38 article-title: Deep Learning: A Practitioner's Approach – volume: 10 start-page: 31103 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib3 article-title: End-to-End deep learning model for corn leaf disease classification publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3159678 – volume: 218 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib26 article-title: Deepcorn: a semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.106874 – volume: 187 start-page: 739 issue: 2 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib33 article-title: DIRT/3D: 3D root phenotyping for field-grown maize (Zea mays) publication-title: Plant physiology doi: 10.1093/plphys/kiab311 – volume: 13 start-page: 1399 issue: 1 year: 2023 ident: 10.1016/j.rhisph.2025.101151_bib39 article-title: As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network “RootDetector” publication-title: Sci. Rep. doi: 10.1038/s41598-023-28400-x – volume: 182 start-page: 977 issue: 2 year: 2020 ident: 10.1016/j.rhisph.2025.101151_bib57 article-title: Shared genetic control of root system architecture between Zea mays and Sorghum bicolor publication-title: Plant physiology doi: 10.1104/pp.19.00752 – volume: 16 start-page: 423 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib4 article-title: Corn disease detection based on deep neural network for substantiating the crop yield publication-title: Applied Mathematics & Information Sciences doi: 10.18576/amis/160304 – volume: 247 year: 2020 ident: 10.1016/j.rhisph.2025.101151_bib51 article-title: DeepCropMapping: a multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111946 – volume: 6 start-page: 175 year: 2024 ident: 10.1016/j.rhisph.2025.101151_bib7 article-title: Fast and efficient root phenotyping via pose estimation publication-title: Plant Phenomics doi: 10.34133/plantphenomics.0175 – year: 2012 ident: 10.1016/j.rhisph.2025.101151_bib11 – volume: 92 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib21 article-title: Computer-vision classification of corn seed varieties using deep convolutional neural network publication-title: J. Stored Prod. Res. doi: 10.1016/j.jspr.2021.101800 – start-page: 2261 year: 2017 ident: 10.1016/j.rhisph.2025.101151_bib16 article-title: Densely connected convolutional networks – year: 2019 ident: 10.1016/j.rhisph.2025.101151_bib28 article-title: Corn plant counting using deep learning and UAV images publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 44 start-page: 1289 year: 2020 ident: 10.1016/j.rhisph.2025.101151_bib56 article-title: High precision control and deep learning-based corn stand counting algorithms for agricultural robot publication-title: Auton. Robots doi: 10.1007/s10514-020-09915-y – year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib27 article-title: Computer-aided multiclass classification of corn from corn images integrating deep feature extraction publication-title: Comput Intell Neurosci 2022 doi: 10.1155/2022/2062944 – volume: 77 year: 2023 ident: 10.1016/j.rhisph.2025.101151_bib5 article-title: A review of deep learning techniques used in agriculture publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2023.102217 – year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib41 article-title: Complementary phenotyping of maize root system architecture by root pulling force and X-ray imaging – volume: 22 start-page: 558 issue: 1 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib36 article-title: Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages publication-title: BMC Genom. doi: 10.1186/s12864-021-07874-x – year: 2017 ident: 10.1016/j.rhisph.2025.101151_bib38 – volume: 2 start-page: 1 year: 2019 ident: 10.1016/j.rhisph.2025.101151_bib22 article-title: A comprehensive review on automation in agriculture using artificial intelligence publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2019.05.004 – volume: 497 start-page: 129 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib48 article-title: Recent advances on loss functions in deep learning for computer vision publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.127 – volume: 45 start-page: 10173 year: 2023 ident: 10.1016/j.rhisph.2025.101151_bib17 article-title: Normalization techniques in training DNNs: methodology, analysis and application publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3250241 – volume: 10 start-page: 2029 year: 2024 ident: 10.1016/j.rhisph.2025.101151_bib37 article-title: Deep learning techniques for image recognition (machine learning) publication-title: Path of Science doi: 10.22178/pos.110-8 – volume: 10 issue: 7 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib13 article-title: ChronoRoot: high-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture publication-title: GigaScience doi: 10.1093/gigascience/giab052 – volume: 31 start-page: 1 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib31 article-title: An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks publication-title: ACM Trans. Software Eng. Methodol. doi: 10.1145/3506695 – start-page: 1 year: 2016 ident: 10.1016/j.rhisph.2025.101151_bib52 article-title: Plant classification using convolutional neural networks – start-page: 770 year: 2016 ident: 10.1016/j.rhisph.2025.101151_bib15 article-title: Deep residual learning for image recognition – volume: 60 start-page: 46 year: 2018 ident: 10.1016/j.rhisph.2025.101151_bib43 article-title: Getting value from artificial intelligence in agriculture publication-title: Anim. Prod. Sci. doi: 10.1071/AN18522 – volume: 3 start-page: 131 year: 2016 ident: 10.1016/j.rhisph.2025.101151_bib30 article-title: Estimating corn yield in the United States with modis evi and machine learning methods. ISPRS Annals of the Photogrammetry publication-title: Remote Sensing and Spatial Information Sciences – volume: 15 year: 2020 ident: 10.1016/j.rhisph.2025.101151_bib32 article-title: DeepCropNet: a deep spatial-temporal learning framework for county-level corn yield estimation publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab66cb – year: 2018 ident: 10.1016/j.rhisph.2025.101151_bib40 – volume: 147 start-page: 70 year: 2018 ident: 10.1016/j.rhisph.2025.101151_bib25 article-title: Deep learning in agriculture: a survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.016 – volume: 17 start-page: 127 issue: 1 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib55 article-title: TopoRoot: a method for computing hierarchy and fine-grained traits of maize roots from 3D imaging publication-title: Plant Methods doi: 10.1186/s13007-021-00829-z – volume: 34 start-page: 20539 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib9 article-title: Deep learning approaches and interventions for futuristic engineering in agriculture publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07744-x – volume: 7 start-page: 1 year: 2018 ident: 10.1016/j.rhisph.2025.101151_bib6 article-title: Artificial intelligence in agriculture: a literature survey publication-title: Int J Sci Res Comput Sci Appl Manag Stud – start-page: 6105 year: 2019 ident: 10.1016/j.rhisph.2025.101151_bib46 article-title: Efficientnet: rethinking model scaling for convolutional neural networks – volume: 13 start-page: 5048 year: 2020 ident: 10.1016/j.rhisph.2025.101151_bib45 article-title: Multilevel deep learning network for county-level corn yield estimation in the us corn belt publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2020.3019046 – volume: 264 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib50 article-title: Towards interpreting multi-temporal deep learning models in crop mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112599 – volume: 10 start-page: 187 year: 2023 ident: 10.1016/j.rhisph.2025.101151_bib12 article-title: Automatic corn and soybean mapping based on deep learning methods (case study: Hamilton, hardin, boone, story, Dallas, polk, and jusper counties in lowa state). ISPRS annals of the photogrammetry publication-title: Remote Sensing and Spatial Information Sciences – volume: 2 start-page: 15 year: 2023 ident: 10.1016/j.rhisph.2025.101151_bib20 article-title: Understanding the potential applications of artificial intelligence in agriculture sector publication-title: Advanced Agrochem doi: 10.1016/j.aac.2022.10.001 – start-page: 117 year: 2024 ident: 10.1016/j.rhisph.2025.101151_bib19 – volume: 13 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib44 article-title: Genome-wide association study reveals the genetic basis of brace root angle and diameter in maize publication-title: Front. Genet. doi: 10.3389/fgene.2022.963852 – volume: 26 start-page: 1754 year: 2020 ident: 10.1016/j.rhisph.2025.101151_bib23 article-title: A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: a case study of the US Corn Belt at the county level publication-title: Glob Chang Biol doi: 10.1111/gcb.14885 – volume: 14 start-page: 638 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib1 article-title: A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities publication-title: Remote Sens. doi: 10.3390/rs14030638 – volume: 8 issue: 11 year: 2019 ident: 10.1016/j.rhisph.2025.101151_bib53 article-title: RootNav 2.0: deep learning for automatic navigation of complex plant root architectures publication-title: GigaScience doi: 10.1093/gigascience/giz123 – volume: 25 year: 2012 ident: 10.1016/j.rhisph.2025.101151_bib29 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 3 year: 2023 ident: 10.1016/j.rhisph.2025.101151_bib10 article-title: A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery publication-title: Smart Agricultural Technology doi: 10.1016/j.atech.2022.100108 – year: 2024 ident: 10.1016/j.rhisph.2025.101151_bib18 article-title: Fuzzy deep learning recurrent neural network algorithm to detect corn leaf disease publication-title: Int. J. Comput. Intell. Appl. doi: 10.1142/S1469026824500172 – volume: 110 start-page: 40 year: 2011 ident: 10.1016/j.rhisph.2025.101151_bib14 article-title: High-throughput phenotyping technology for maize roots publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2011.06.004 – volume: 20 start-page: 73 issue: 1 year: 2024 ident: 10.1016/j.rhisph.2025.101151_bib47 article-title: Convolutional neural networks combined with conventional filtering to semantically segment plant roots in rapidly scanned X-ray computed tomography volumes with high noise levels publication-title: Plant Methods doi: 10.1186/s13007-024-01208-0 – volume: 9 start-page: 143824 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib54 article-title: Corn leaf diseases diagnosis based on K-means clustering and deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3120379 – volume: 14 year: 2023 ident: 10.1016/j.rhisph.2025.101151_bib2 article-title: 3D segmentation of plant root systems using spatial pyramid pooling and locally adaptive field-of-view inference publication-title: Front. Plant Sci. doi: 10.3389/fpls.2023.1120189 – year: 2025 ident: 10.1016/j.rhisph.2025.101151_bib8 article-title: Fiber Bragg grating based sensing system for non-destructive root phenotyping using ResNet prediction publication-title: IEEE Photonics Technology Letters, 37(8), 473-476 doi: 10.1109/LPT.2025.3553701 – volume: 466 start-page: 21 year: 2021 ident: 10.1016/j.rhisph.2025.101151_bib34 article-title: Root anatomy and soil resource capture publication-title: Plant Soil doi: 10.1007/s11104-021-05010-y – start-page: 66 year: 2020 ident: 10.1016/j.rhisph.2025.101151_bib49 article-title: Deep learning based corn kernel classification – volume: 236 start-page: 774 issue: 2 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib42 article-title: RootPainter: deep learning segmentation of biological images with corrective annotation publication-title: New Phytol. doi: 10.1111/nph.18387 – volume: 20 start-page: 132 issue: 1 year: 2024 ident: 10.1016/j.rhisph.2025.101151_bib24 article-title: TopoRoot+: computing whorl and soil line traits of field-excavated maize roots from CT imaging publication-title: Plant Methods doi: 10.1186/s13007-024-01240-0 – volume: 110 start-page: 23 year: 2022 ident: 10.1016/j.rhisph.2025.101151_bib35 article-title: Root system architecture in cereals: progress, challenges and perspective publication-title: Plant J. doi: 10.1111/tpj.15669 |
SSID | ssj0001763563 |
Score | 2.3017395 |
Snippet | The study of corn root morphology is critical for understanding root architecture, which directly influences water and nutrient uptake, plant stability, and... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 101151 |
SubjectTerms | Crop breeding Deep learning End-to-end learning Image processing Morphological feature extraction Root phenotyping |
Title | Morphological feature extraction of corn roots using deep learning |
URI | https://dx.doi.org/10.1016/j.rhisph.2025.101151 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdmFBIECUlzywWs3TTsZSURVQu0ClbpEd26UMadSG_885dgRIiIExlk5KzvZ33-VeAHec55EQKqUZw22wkSYqhcxpyTkXLFJGtd355ws2WyZPq3TVg0lXC2PTKj32O0xv0dqvjLw2R_VmM3qxMUO8b-jitI3H4gMYRGhdgz4Mxo_Ps8XXr5a2CZuNNVsRamW6Iro202v3ttnXNjARpXYpTMPfjdQ3wzM9hiPPGMnYvdQJ9HR1CvfzLSqoAy5idNufkyDS7lylAtkago5lRZAZN3ti09vXRGldEz8nYn0Gy-nD62RG_TgEWiLLaCiLJTp7iclCISQSN6mVNrFiGimMQc8kSFRu8iQNVahZEmSljDjXpcx0XKLXFcTn0K-2lb4AwnLBhYikFnb8ecwEx8snlRCpRHog8iHQ7vuL2nW9KLp0sPfC6auw-iqcvobAOyUVP3avQGD-U_Ly35JXcGifXL7XNfSb3Ye-QYLQyFt_AD4Bluu5Ng |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoAFgQDR8vLAarV52clYKqqUPhZaqZtlx04pQxq14f9zzkOAhBhYHZ2UnO3P3-XO3wE8ch65UuqAhgynwWaaqJIqognnXDJXp7pU558vWLzyX9bBugWj5i6MLaussb_C9BKt65F-7c1-vt32X23OEPcbhjil8Jh3BB2rToXLvDOcTOPF16-WUoTN5pqtCbU2zSW6stJr_7Y95DYx4QZ2yAmc3w-pbwfP-AxOa8ZIhtVLnUPLZBfwNN-hgxrgIqkp9TkJIu2-uqlAdinBwDIjyIyLA7Hl7RuijclJ3Sdicwmr8fNyFNO6HQJNkGUUlHkKgz0_DR0pFRI3ZbRJPc0MUpgUI5OBr6M08gNHO4b5gzBRLucmUaHxEoy6Bt4VtLNdZq6BsEhyKV1lpG1_7jHJcfMpLWWgkB7IqAu0-X6RV6oXoikHexeVv4T1l6j81QXeOEn8mD2BwPynZe_flg9wHC_nMzGbLKY3cGKfVLVft9Au9h_mDslCoe7rxfAJcCK8JQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphological+feature+extraction+of+corn+roots+using+deep+learning&rft.jtitle=Rhizosphere&rft.au=Fatemi%2C+Ali&rft.au=Inanlu%2C+M.J.&rft.au=Momin%2C+Abdul&rft.au=Grift%2C+Tony&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=35&rft_id=info:doi/10.1016%2Fj.rhisph.2025.101151&rft.externalDocID=S2452219825001363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon |