Hierarchical feature distillation model via dual-stage projections and graph embedding label propagation for emotion recognition
In multi-source domain adaptation, challenges include negative transfer caused by feature coupling and the inefficiency of pseudo-label generation. This paper develops a multi-source domain adaptive framework for EEG-based recognition (MSGELP), which integrates a two-stage projection matrix decoupli...
Saved in:
Published in | Pattern recognition Vol. 171; p. 112143 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2026
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 |
DOI | 10.1016/j.patcog.2025.112143 |
Cover
Loading…
Abstract | In multi-source domain adaptation, challenges include negative transfer caused by feature coupling and the inefficiency of pseudo-label generation. This paper develops a multi-source domain adaptive framework for EEG-based recognition (MSGELP), which integrates a two-stage projection matrix decoupling mechanism and graph-embedded label propagation. The method employs a dynamic source selection mechanism that adaptively selects the top-K most similar source domains based on similarity evaluation across target-source domain pairs, while eliminating latent sources of negative transfer. At the feature decoupling level, a learnable two-stage projection matrix, including a global projection matrix and an alignment projection matrix, is designed to explicitly separate cross-domain knowledge: the global projection matrix extracts common feature spanning multiple domains, while the alignment projection matrix captures domain-specific feature of source-target pairs, preserving discriminative information while avoiding feature entanglement. Furthermore, by constructing a similarity graph of source-target domain pairs and iteratively propagating labels, graph embedding techniques, along with iterative updates to the projection matrices, achieve continuous cross-domain knowledge distillation, effectively improving pseudo-label generation accuracy. Finally, rigorous testing of the cross-subject leave-one-subject-out cross-validation strategy on the SEED-IV and SEED-V datasets achieved classification accuracies of 68.70 % and 63.09 %, respectively. Experimental results indicate that the MSGELP effectively learns a shared subspace, mitigates the negative transfer problem, and outperforms state-of-the-art methods. The code is available at https://github.com/czihan1022/MSGELP/. |
---|---|
AbstractList | In multi-source domain adaptation, challenges include negative transfer caused by feature coupling and the inefficiency of pseudo-label generation. This paper develops a multi-source domain adaptive framework for EEG-based recognition (MSGELP), which integrates a two-stage projection matrix decoupling mechanism and graph-embedded label propagation. The method employs a dynamic source selection mechanism that adaptively selects the top-K most similar source domains based on similarity evaluation across target-source domain pairs, while eliminating latent sources of negative transfer. At the feature decoupling level, a learnable two-stage projection matrix, including a global projection matrix and an alignment projection matrix, is designed to explicitly separate cross-domain knowledge: the global projection matrix extracts common feature spanning multiple domains, while the alignment projection matrix captures domain-specific feature of source-target pairs, preserving discriminative information while avoiding feature entanglement. Furthermore, by constructing a similarity graph of source-target domain pairs and iteratively propagating labels, graph embedding techniques, along with iterative updates to the projection matrices, achieve continuous cross-domain knowledge distillation, effectively improving pseudo-label generation accuracy. Finally, rigorous testing of the cross-subject leave-one-subject-out cross-validation strategy on the SEED-IV and SEED-V datasets achieved classification accuracies of 68.70 % and 63.09 %, respectively. Experimental results indicate that the MSGELP effectively learns a shared subspace, mitigates the negative transfer problem, and outperforms state-of-the-art methods. The code is available at https://github.com/czihan1022/MSGELP/. |
ArticleNumber | 112143 |
Author | Wang, Tianzhi Zheng, Weihao Ren, Chao Zhang, Xiaowei Hu, Bin Li, Rui Chen, Jinbo Chen, Yijiang |
Author_xml | – sequence: 1 givenname: Chao surname: Ren fullname: Ren, Chao email: renc@lzu.edu.cn – sequence: 2 givenname: Jinbo surname: Chen fullname: Chen, Jinbo email: chenjb2023@lzu.edu.cn – sequence: 3 givenname: Rui surname: Li fullname: Li, Rui email: ruili@lzu.edu.cn – sequence: 4 givenname: Yijiang surname: Chen fullname: Chen, Yijiang email: chyijiang2024@lzu.edu.cn – sequence: 5 givenname: Tianzhi orcidid: 0009-0007-6418-2404 surname: Wang fullname: Wang, Tianzhi email: wangtzh2024@lzu.edu.cn – sequence: 6 givenname: Weihao orcidid: 0000-0003-2996-5909 surname: Zheng fullname: Zheng, Weihao email: zhengweihao@lzu.edu.cn – sequence: 7 givenname: Xiaowei surname: Zhang fullname: Zhang, Xiaowei email: zhangxw@lzu.edu.cn – sequence: 8 givenname: Bin surname: Hu fullname: Hu, Bin email: bh@lzu.edu.cn |
BookMark | eNp9kM1OwzAQhH0oEm3hDTj4BRJsx_m7IKGKP6kSFzhbG3udOkrjyE4rcePRSQlnTjvS7oxmvw1ZDX5AQu44SznjxX2XjjBp36aCiTzlXHCZrciasYwnmWDZNdnE2DHGSy7Fmny_OgwQ9MFp6KlFmE4BqXFxcn0Pk_MDPXqDPT07oOYEfRInaJGOwXeoL_tIYTC0DTAeKB4bNMYNLe2hmU3z1QjtEmN9mPf-VwecGw7uom_IlYU-4u3f3JLP56eP3Wuyf3952z3uE81LMSXcWKiaQrJCoLRVzW1Wl3leSSlqlHld55lsTCnKykBeiAxQFihkLrUVUNg82xK55OrgYwxo1RjcEcKX4kxdyKlOLeTUhZxayM22h8WGc7fzzEpF7XDQaNz8xKSMd_8H_AD3Ln-a |
Cites_doi | 10.1109/TAFFC.2024.3433470 10.1016/j.knosys.2024.112669 10.1023/A:1018628609742 10.1007/s11517-023-02956-2 10.1016/j.inffus.2023.102019 10.1109/ACCESS.2024.3454082 10.1016/S0003-2670(01)95359-0 10.1109/TETC.2021.3087174 10.1109/TCSS.2023.3314508 10.1109/TCDS.2021.3071170 10.1109/TAFFC.2021.3137857 10.1109/TIM.2023.3277985 10.1109/TIM.2023.3302938 10.1109/TAFFC.2024.3371540 10.1109/TSMC.2024.3458949 10.1109/TNN.2010.2091281 10.1109/TNSRE.2023.3246989 10.1016/j.patcog.2024.110358 10.1109/TCYB.2018.2797176 10.1109/TAFFC.2022.3189222 10.1109/TNSRE.2022.3175464 10.1016/j.patcog.2023.109794 10.1109/TCSS.2024.3406988 10.1109/JAS.2023.123318 10.1109/TNSRE.2020.2985996 10.1016/j.jksuci.2023.101648 10.1109/TII.2022.3217120 10.1109/ACCESS.2023.3328951 10.3389/fnins.2021.778488 10.1016/j.knosys.2023.110372 10.1016/j.patcog.2024.111135 10.1109/TAFFC.2023.3288118 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2025.112143 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_patcog_2025_112143 S0031320325008039 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABWVN ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADMXK ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AAYXX AFXIZ AGRNS BNPGV CITATION |
ID | FETCH-LOGICAL-c172t-1dfa8b64062e4f891f3975584429e4599534bd7278da5623ae46e2454cf2a6f53 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Jul 31 00:32:06 EDT 2025 Sat Aug 16 17:00:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Emotion recognition Label propagation Transfer learning EEG |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c172t-1dfa8b64062e4f891f3975584429e4599534bd7278da5623ae46e2454cf2a6f53 |
ORCID | 0009-0007-6418-2404 0000-0003-2996-5909 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2025_112143 elsevier_sciencedirect_doi_10_1016_j_patcog_2025_112143 |
PublicationCentury | 2000 |
PublicationDate | March 2026 2026-03-00 |
PublicationDateYYYYMMDD | 2026-03-01 |
PublicationDate_xml | – month: 03 year: 2026 text: March 2026 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2026 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tang, Xie, Li, Wang (bib0005) 2025; 159 Teng, Zheng, Wu, Teng, Zhang (bib0018) 2023; 10 Chen, Jin, Li, Fan, Li, He (bib0039) 2021; 15 Jiménez-Guarneros, Fuentes-Pineda (bib0008) 2023; 72 Peng, Jin, Kong, Nie, Lu, Cichocki (bib0028) 2022; 30 Shen, Zhu, Liu, Wu, Wang, Dong (bib0003) 2024; 11 Li, Li, Chen, Yang, Li, Wan, Cao, Yao, Lu, Xu (bib0020) 2024; 54 Ye, Zhang, Teng, Zhang, Wang, Ni, Li, Xu, Liang (bib0037) 2025; 16 Ren, Chen, Li, Zheng, Chen, Yang, Zhang, Hu (bib0002) 2024; 305 Zhang, Zhou, Zhao, Hou, Wei, Zhang, Yang, Cui (bib0009) 2024; 11 Peng, Wang, Kong, Nie, Lu, Cichocki (bib0022) 2022; 13 Mockus (bib0031) 2005 Khare, Blanes-Vidal, Nadimi, Acharya (bib0001) 2024; 102 Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0024) 2007; 19 Coomans, Massart (bib0032) 1982; 136 Chen, Sun, Li, Yu, Li, Li, Hu (bib0006) 2021; 14 Cai, He, Han, Huang (bib0026) 2010; 33 Zhu, Yu, Huang, Ying, Zhang (bib0036) 2024; 62 Huang, Fan, Chou (bib0004) 2023; 143 Peng, Liu, Kong, Nie, Lu, Cichocki (bib0014) 2022; 19 Li, Qiu, Shen, Liu, He (bib0010) 2019; 50 Zhou, Zhang, Fu, Zhang, Li, Huang, Li, Yang, Dong, Zhang (bib0038) 2024; 15 Zhang, Wu (bib0017) 2020; 28 Naiem, Khedr, Idrees, Marie (bib0034) 2023; 11 Sartipi, Cetin (bib0015) 2024 She, Zhang, Fang, Ma, Zhang (bib0016) 2023; 72 Zhu, Ghahramani, Lafferty (bib0027) 2003 Suykens, Vandewalle (bib0033) 1999; 9 Tao, Yan, He (bib0023) 2024; 12 Demšar (bib0040) 2006; 7 Jin, Peng, Qin, Li, Kong (bib0013) 2023; 35 Liu, Qiu, Zheng, Lu (bib0030) 2021; 14 Liu, Wang, An, Zhao, Zhao, Zhang (bib0011) 2023; 265 Zheng, Liu, Lu, Lu, Cichocki (bib0029) 2018; 49 Song, Zheng, Liu, Zong, Cui, Li (bib0019) 2021; 10 Long, Wang, Ding, Sun, Yu (bib0025) 2013 Gong, Wang, Zhou, Zhang (bib0012) 2023; 31 Du, Zhang, Zhang, Wu, Wu, Li (bib0021) 2024; 150 Pan, Tsang, Kwok, Yang (bib0035) 2010; 22 Chen, Chen, Zhang (bib0007) 2024; 15 Chen (10.1016/j.patcog.2025.112143_bib0007) 2024; 15 Demšar (10.1016/j.patcog.2025.112143_bib0040) 2006; 7 Mockus (10.1016/j.patcog.2025.112143_bib0031) 2005 Zhang (10.1016/j.patcog.2025.112143_bib0009) 2024; 11 Ren (10.1016/j.patcog.2025.112143_bib0002) 2024; 305 Song (10.1016/j.patcog.2025.112143_bib0019) 2021; 10 Suykens (10.1016/j.patcog.2025.112143_bib0033) 1999; 9 Zhu (10.1016/j.patcog.2025.112143_bib0036) 2024; 62 Sartipi (10.1016/j.patcog.2025.112143_bib0015) 2024 Peng (10.1016/j.patcog.2025.112143_bib0014) 2022; 19 Peng (10.1016/j.patcog.2025.112143_bib0022) 2022; 13 Teng (10.1016/j.patcog.2025.112143_bib0018) 2023; 10 Liu (10.1016/j.patcog.2025.112143_bib0030) 2021; 14 Jiménez-Guarneros (10.1016/j.patcog.2025.112143_bib0008) 2023; 72 Zhou (10.1016/j.patcog.2025.112143_bib0038) 2024; 15 Gretton (10.1016/j.patcog.2025.112143_bib0024) 2007; 19 Li (10.1016/j.patcog.2025.112143_bib0020) 2024; 54 Ye (10.1016/j.patcog.2025.112143_bib0037) 2025; 16 Cai (10.1016/j.patcog.2025.112143_bib0026) 2010; 33 She (10.1016/j.patcog.2025.112143_bib0016) 2023; 72 Jin (10.1016/j.patcog.2025.112143_bib0013) 2023; 35 Khare (10.1016/j.patcog.2025.112143_bib0001) 2024; 102 Coomans (10.1016/j.patcog.2025.112143_bib0032) 1982; 136 Li (10.1016/j.patcog.2025.112143_bib0010) 2019; 50 Long (10.1016/j.patcog.2025.112143_bib0025) 2013 Peng (10.1016/j.patcog.2025.112143_bib0028) 2022; 30 Chen (10.1016/j.patcog.2025.112143_bib0039) 2021; 15 Gong (10.1016/j.patcog.2025.112143_bib0012) 2023; 31 Tao (10.1016/j.patcog.2025.112143_bib0023) 2024; 12 Du (10.1016/j.patcog.2025.112143_bib0021) 2024; 150 Shen (10.1016/j.patcog.2025.112143_bib0003) 2024; 11 Tang (10.1016/j.patcog.2025.112143_bib0005) 2025; 159 Zhang (10.1016/j.patcog.2025.112143_bib0017) 2020; 28 Chen (10.1016/j.patcog.2025.112143_bib0006) 2021; 14 Zheng (10.1016/j.patcog.2025.112143_bib0029) 2018; 49 Huang (10.1016/j.patcog.2025.112143_bib0004) 2023; 143 Liu (10.1016/j.patcog.2025.112143_bib0011) 2023; 265 Zhu (10.1016/j.patcog.2025.112143_bib0027) 2003 Pan (10.1016/j.patcog.2025.112143_bib0035) 2010; 22 Naiem (10.1016/j.patcog.2025.112143_bib0034) 2023; 11 |
References_xml | – volume: 143 year: 2023 ident: bib0004 article-title: Graph-based learning of nonlinear physiological interactions for classification of emotions publication-title: Pattern Recognit. – volume: 31 start-page: 1440 year: 2023 end-page: 1450 ident: bib0012 article-title: A spiking neural network with adaptive graph convolution and LSTM for EEG-based brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 22 start-page: 199 year: 2010 end-page: 210 ident: bib0035 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. – volume: 19 start-page: 513 year: 2007 end-page: 520 ident: bib0024 article-title: A kernel method for the two-sample-problem publication-title: Adva. Neural Inf. Process. Syst. – volume: 11 start-page: 7299 year: 2024 end-page: 7308 ident: bib0003 article-title: Tensor correlation fusion for multimodal physiological signal emotion recognition publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 14 start-page: 2077 year: 2021 end-page: 2088 ident: bib0006 article-title: Personal-zscore: eliminating individual difference for EEG-based cross-subject emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 11 start-page: 2918 year: 2024 end-page: 2929 ident: bib0009 article-title: Discriminative joint knowledge transfer with online updating mechanism for EEG-Based emotion recognition publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 11 start-page: 124597 year: 2023 end-page: 124608 ident: bib0034 article-title: Enhancing the efficiency of Gaussian Naïve Bayes machine learning classifier in the detection of DDOS in cloud computing publication-title: IEEE Access – volume: 72 year: 2023 ident: bib0016 article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition publication-title: IEEE Trans. Instrum. Meas. – volume: 72 year: 2023 ident: bib0008 article-title: Cross-subject EEG-based emotion recognition via semi-supervised multi-source joint distribution adaptation publication-title: IEEE Trans. Instrum. Meas. – volume: 28 start-page: 1117 year: 2020 end-page: 1127 ident: bib0017 article-title: Manifold embedded knowledge transfer for brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 159 year: 2025 ident: bib0005 article-title: Riding feeling recognition based on multi-head self-attention LSTM for driverless automobile publication-title: Pattern Recognit. – volume: 13 start-page: 1941 year: 2022 end-page: 1958 ident: bib0022 article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. – volume: 150 year: 2024 ident: bib0021 article-title: Semi-supervised imbalanced multi-label classification with label propagation publication-title: Pattern Recognit. – volume: 265 year: 2023 ident: bib0011 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl.-Based Syst. – volume: 10 start-page: 2094 year: 2023 end-page: 2107 ident: bib0018 article-title: Adaptive graph embedding with consistency and specificity for domain adaptation publication-title: IEEE/CAA J. Autom. Sin. – volume: 35 year: 2023 ident: bib0013 article-title: Graph adaptive semi-supervised discriminative subspace learning for EEG emotion recognition publication-title: J. King Saud Univ.-Comput. Inf. Sci. – start-page: 2086 year: 2024 end-page: 2090 ident: bib0015 article-title: Multi-source domain adaptation with transformer-based feature generation for subject-independent EEG-based emotion recognition publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 49 start-page: 1110 year: 2018 end-page: 1122 ident: bib0029 article-title: Emotionmeter: a multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – volume: 136 start-page: 15 year: 1982 end-page: 27 ident: bib0032 article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-Nearest neighbour classification by using alternative voting rules publication-title: Anal. Chim. Acta – volume: 102 year: 2024 ident: bib0001 article-title: Emotion recognition and artificial intelligence: a systematic review (2014–2023) and research recommendations publication-title: Inf. Fusion – volume: 50 start-page: 3281 year: 2019 end-page: 3293 ident: bib0010 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – volume: 33 start-page: 1548 year: 2010 end-page: 1560 ident: bib0026 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 15 start-page: 1739 year: 2024 end-page: 1753 ident: bib0007 article-title: GDDN: graph domain disentanglement network for generalizable EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 30 start-page: 1288 year: 2022 end-page: 1297 ident: bib0028 article-title: OGSSL: a semi-supervised classification model coupled with optimal graph learning for EEG emotion recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib0033 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 305 year: 2024 ident: bib0002 article-title: Semi-supervised pairwise transfer learning based on multi-source domain adaptation: a case study on EEG-based emotion recognition publication-title: Knowl.-Based Syst. – volume: 12 start-page: 126774 year: 2024 end-page: 126792 ident: bib0023 article-title: Domain-Invariant Adaptive graph regularized label propagation for EEG-based emotion recognition publication-title: IEEE Access – volume: 19 start-page: 8104 year: 2022 end-page: 8115 ident: bib0014 article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition publication-title: IEEE Trans. Ind. Inf. – volume: 54 start-page: 7794 year: 2024 end-page: 7808 ident: bib0020 article-title: Brain network manifold learned by cognition-inspired graph embedding model for emotion recognition publication-title: IEEE Trans. Syst. Man Cybern. Syst. – start-page: 912 year: 2003 end-page: 919 ident: bib0027 article-title: Semi-supervised learning using Gaussian fields and harmonic functions publication-title: Proceedings of the 20th International Conference on Machine Learning (ICML-03) – start-page: 2200 year: 2013 end-page: 2207 ident: bib0025 article-title: Transfer feature learning with joint distribution adaptation publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 15 year: 2021 ident: bib0039 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. – volume: 14 start-page: 715 year: 2021 end-page: 729 ident: bib0030 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Trans. Cognit. Dev. Syst. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0040 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 290 year: 2025 end-page: 305 ident: bib0037 article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject eeg-based emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 10 start-page: 1399 year: 2021 end-page: 1413 ident: bib0019 article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition publication-title: IEEE Tran. Emerg. Top. Comput. – volume: 15 start-page: 657 year: 2024 end-page: 670 ident: bib0038 article-title: PR-PL: A novel prototypical representation based pairwise learning framework for emotion recognition using EEG signals publication-title: IEEE Trans. Affect. Comput. – start-page: 473 year: 2005 end-page: 481 ident: bib0031 article-title: The Bayesian approach to global optimization publication-title: System Modeling and Optimization: Proceedings of the 10th IFIP Conference New York City, USA, August 31–September 4, 1981 – volume: 62 start-page: 479 year: 2024 end-page: 493 ident: bib0036 article-title: Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition publication-title: Med. Biol. Eng. Comput. – volume: 16 start-page: 290 issue: 1 year: 2025 ident: 10.1016/j.patcog.2025.112143_bib0037 article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject eeg-based emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2024.3433470 – volume: 305 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0002 article-title: Semi-supervised pairwise transfer learning based on multi-source domain adaptation: a case study on EEG-based emotion recognition publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.112669 – volume: 9 start-page: 293 year: 1999 ident: 10.1016/j.patcog.2025.112143_bib0033 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 62 start-page: 479 issue: 2 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0036 article-title: Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-023-02956-2 – volume: 19 start-page: 513 year: 2007 ident: 10.1016/j.patcog.2025.112143_bib0024 article-title: A kernel method for the two-sample-problem publication-title: Adva. Neural Inf. Process. Syst. – volume: 102 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0001 article-title: Emotion recognition and artificial intelligence: a systematic review (2014–2023) and research recommendations publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102019 – volume: 12 start-page: 126774 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0023 article-title: Domain-Invariant Adaptive graph regularized label propagation for EEG-based emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3454082 – volume: 33 start-page: 1548 issue: 8 year: 2010 ident: 10.1016/j.patcog.2025.112143_bib0026 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 136 start-page: 15 year: 1982 ident: 10.1016/j.patcog.2025.112143_bib0032 article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-Nearest neighbour classification by using alternative voting rules publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)95359-0 – volume: 50 start-page: 3281 issue: 7 year: 2019 ident: 10.1016/j.patcog.2025.112143_bib0010 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – volume: 10 start-page: 1399 issue: 3 year: 2021 ident: 10.1016/j.patcog.2025.112143_bib0019 article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition publication-title: IEEE Tran. Emerg. Top. Comput. doi: 10.1109/TETC.2021.3087174 – volume: 11 start-page: 2918 issue: 2 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0009 article-title: Discriminative joint knowledge transfer with online updating mechanism for EEG-Based emotion recognition publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2023.3314508 – start-page: 473 year: 2005 ident: 10.1016/j.patcog.2025.112143_bib0031 article-title: The Bayesian approach to global optimization – volume: 14 start-page: 715 issue: 2 year: 2021 ident: 10.1016/j.patcog.2025.112143_bib0030 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Trans. Cognit. Dev. Syst. doi: 10.1109/TCDS.2021.3071170 – volume: 14 start-page: 2077 issue: 3 year: 2021 ident: 10.1016/j.patcog.2025.112143_bib0006 article-title: Personal-zscore: eliminating individual difference for EEG-based cross-subject emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2021.3137857 – volume: 72 year: 2023 ident: 10.1016/j.patcog.2025.112143_bib0016 article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3277985 – volume: 72 year: 2023 ident: 10.1016/j.patcog.2025.112143_bib0008 article-title: Cross-subject EEG-based emotion recognition via semi-supervised multi-source joint distribution adaptation publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3302938 – volume: 15 start-page: 1739 issue: 3 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0007 article-title: GDDN: graph domain disentanglement network for generalizable EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2024.3371540 – volume: 54 start-page: 7794 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0020 article-title: Brain network manifold learned by cognition-inspired graph embedding model for emotion recognition publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2024.3458949 – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.patcog.2025.112143_bib0035 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 31 start-page: 1440 year: 2023 ident: 10.1016/j.patcog.2025.112143_bib0012 article-title: A spiking neural network with adaptive graph convolution and LSTM for EEG-based brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3246989 – volume: 150 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0021 article-title: Semi-supervised imbalanced multi-label classification with label propagation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2024.110358 – start-page: 912 year: 2003 ident: 10.1016/j.patcog.2025.112143_bib0027 article-title: Semi-supervised learning using Gaussian fields and harmonic functions – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: 10.1016/j.patcog.2025.112143_bib0029 article-title: Emotionmeter: a multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – start-page: 2086 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0015 article-title: Multi-source domain adaptation with transformer-based feature generation for subject-independent EEG-based emotion recognition – volume: 13 start-page: 1941 issue: 4 year: 2022 ident: 10.1016/j.patcog.2025.112143_bib0022 article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3189222 – volume: 30 start-page: 1288 year: 2022 ident: 10.1016/j.patcog.2025.112143_bib0028 article-title: OGSSL: a semi-supervised classification model coupled with optimal graph learning for EEG emotion recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3175464 – volume: 143 year: 2023 ident: 10.1016/j.patcog.2025.112143_bib0004 article-title: Graph-based learning of nonlinear physiological interactions for classification of emotions publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109794 – volume: 11 start-page: 7299 issue: 6 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0003 article-title: Tensor correlation fusion for multimodal physiological signal emotion recognition publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2024.3406988 – volume: 10 start-page: 2094 issue: 11 year: 2023 ident: 10.1016/j.patcog.2025.112143_bib0018 article-title: Adaptive graph embedding with consistency and specificity for domain adaptation publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2023.123318 – volume: 28 start-page: 1117 issue: 5 year: 2020 ident: 10.1016/j.patcog.2025.112143_bib0017 article-title: Manifold embedded knowledge transfer for brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2985996 – volume: 35 issue: 8 year: 2023 ident: 10.1016/j.patcog.2025.112143_bib0013 article-title: Graph adaptive semi-supervised discriminative subspace learning for EEG emotion recognition publication-title: J. King Saud Univ.-Comput. Inf. Sci. doi: 10.1016/j.jksuci.2023.101648 – volume: 19 start-page: 8104 issue: 7 year: 2022 ident: 10.1016/j.patcog.2025.112143_bib0014 article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2022.3217120 – volume: 11 start-page: 124597 year: 2023 ident: 10.1016/j.patcog.2025.112143_bib0034 article-title: Enhancing the efficiency of Gaussian Naïve Bayes machine learning classifier in the detection of DDOS in cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3328951 – volume: 15 year: 2021 ident: 10.1016/j.patcog.2025.112143_bib0039 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.778488 – start-page: 2200 year: 2013 ident: 10.1016/j.patcog.2025.112143_bib0025 article-title: Transfer feature learning with joint distribution adaptation – volume: 265 year: 2023 ident: 10.1016/j.patcog.2025.112143_bib0011 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110372 – volume: 159 year: 2025 ident: 10.1016/j.patcog.2025.112143_bib0005 article-title: Riding feeling recognition based on multi-head self-attention LSTM for driverless automobile publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2024.111135 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.patcog.2025.112143_bib0040 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 657 issue: 2 year: 2024 ident: 10.1016/j.patcog.2025.112143_bib0038 article-title: PR-PL: A novel prototypical representation based pairwise learning framework for emotion recognition using EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2023.3288118 |
SSID | ssj0017142 |
Score | 2.4902024 |
Snippet | In multi-source domain adaptation, challenges include negative transfer caused by feature coupling and the inefficiency of pseudo-label generation. This paper... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112143 |
SubjectTerms | EEG Emotion recognition Label propagation Transfer learning |
Title | Hierarchical feature distillation model via dual-stage projections and graph embedding label propagation for emotion recognition |
URI | https://dx.doi.org/10.1016/j.patcog.2025.112143 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sBqShM7cceqogogOlGpW-RnVVTSChVGxE_nzk4qkBADYxI7is7nu8_Rfd8RcpVzabQ0nllIFnBAEYYpDxtPpImH00HSd0FI-3GcFRN-PxXTFhk2XBgsq6xjf4zpIVrXd7q1Nbur-Rw5vig7eJNCEgfYkyKJD9XrwKevPzZlHtjfOyqGpz2Goxv6XKjxWkG4W87glJgI5NIE7s5v6elbyhntk90aK9JB_JwD0nLVIdlr-jDQelsekc9ijjTi0NVkQb0LWp3U4u5dxFI3Ghre0Pe5osi9YgAJZ47Wf2HQ8aiqLA3i1dS9aGcxo1FwEJgEoyDoxNcAwoXnofEP3ZQeLatjMhndPg0LVndWYAbsv2Y965XUGSTzxHEv-z0PsEQAFuG4OKhBlnJtAdpIqxAgKcczl3DBjU9U5kV6QraqZeVOCZV5XypU7PFacpN5ldtMcMuNNYBEtG4T1hi0XEUBjbKpLHsu4wKUuABlXIA2yRurlz8coYQY_-fMs3_PPCc7cJXF0rILsrV-fXOXgDXWuhOcqUO2B3cPxfgLAObVoA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45sC1Gm3T13GamDr2OG3SblHSJNPQ6CY0OPPTcZJ2Aglx4NrUVWU79pfW_gzwkNC0EGmhPYnJAg8oUeFxjRsvCgONp4MgU5ZIezyJ8xl9nkfzBvTqXhhTVlnFfhfTbbSurnQqbXY2y6Xp8TW0g48hJnGEPWG2By3DTkWb0OoOhvlk9zMh8akjDQ99zwjUHXS2zGuDEW-9wINiEJl2Gtu-81uG-pZ1-sdwWMFF0nVvdAINVZ7CUT2KgVQ78ww-86XpJLaDTVZEK0vXSaTZwCtX7UbszBvyseTEtF95iAoXilQfYozvEV5KYvmriXoVSpqkRtBHUAjvwrjjHoMgF9ft7B-yqz5al-cw6z9Ne7lXDVfwCjTB1vOl5qmIMZ8Hiuo08zUikwjhCDX2MTRkIRUS0U0qucFIXNFYBajgQgc81lF4Ac1yXapLIGmSpdyQ9miR0iLWPJFxRCUtZIFgRIg2eLVC2cZxaLC6uOyFOQMwYwDmDNCGpNY6--ELDMP8n5JX_5a8h_18Oh6x0WAyvIYDXIldpdkNNLdv7-oWocdW3FWu9QVbINhR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+feature+distillation+model+via+dual-stage+projections+and+graph+embedding+label+propagation+for+emotion+recognition&rft.jtitle=Pattern+recognition&rft.au=Ren%2C+Chao&rft.au=Chen%2C+Jinbo&rft.au=Li%2C+Rui&rft.au=Chen%2C+Yijiang&rft.date=2026-03-01&rft.issn=0031-3203&rft.volume=171&rft.spage=112143&rft_id=info:doi/10.1016%2Fj.patcog.2025.112143&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2025_112143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |