Hierarchical feature distillation model via dual-stage projections and graph embedding label propagation for emotion recognition

In multi-source domain adaptation, challenges include negative transfer caused by feature coupling and the inefficiency of pseudo-label generation. This paper develops a multi-source domain adaptive framework for EEG-based recognition (MSGELP), which integrates a two-stage projection matrix decoupli...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 171; p. 112143
Main Authors Ren, Chao, Chen, Jinbo, Li, Rui, Chen, Yijiang, Wang, Tianzhi, Zheng, Weihao, Zhang, Xiaowei, Hu, Bin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2026
Subjects
Online AccessGet full text
ISSN0031-3203
DOI10.1016/j.patcog.2025.112143

Cover

Loading…
Abstract In multi-source domain adaptation, challenges include negative transfer caused by feature coupling and the inefficiency of pseudo-label generation. This paper develops a multi-source domain adaptive framework for EEG-based recognition (MSGELP), which integrates a two-stage projection matrix decoupling mechanism and graph-embedded label propagation. The method employs a dynamic source selection mechanism that adaptively selects the top-K most similar source domains based on similarity evaluation across target-source domain pairs, while eliminating latent sources of negative transfer. At the feature decoupling level, a learnable two-stage projection matrix, including a global projection matrix and an alignment projection matrix, is designed to explicitly separate cross-domain knowledge: the global projection matrix extracts common feature spanning multiple domains, while the alignment projection matrix captures domain-specific feature of source-target pairs, preserving discriminative information while avoiding feature entanglement. Furthermore, by constructing a similarity graph of source-target domain pairs and iteratively propagating labels, graph embedding techniques, along with iterative updates to the projection matrices, achieve continuous cross-domain knowledge distillation, effectively improving pseudo-label generation accuracy. Finally, rigorous testing of the cross-subject leave-one-subject-out cross-validation strategy on the SEED-IV and SEED-V datasets achieved classification accuracies of 68.70 % and 63.09 %, respectively. Experimental results indicate that the MSGELP effectively learns a shared subspace, mitigates the negative transfer problem, and outperforms state-of-the-art methods. The code is available at https://github.com/czihan1022/MSGELP/.
AbstractList In multi-source domain adaptation, challenges include negative transfer caused by feature coupling and the inefficiency of pseudo-label generation. This paper develops a multi-source domain adaptive framework for EEG-based recognition (MSGELP), which integrates a two-stage projection matrix decoupling mechanism and graph-embedded label propagation. The method employs a dynamic source selection mechanism that adaptively selects the top-K most similar source domains based on similarity evaluation across target-source domain pairs, while eliminating latent sources of negative transfer. At the feature decoupling level, a learnable two-stage projection matrix, including a global projection matrix and an alignment projection matrix, is designed to explicitly separate cross-domain knowledge: the global projection matrix extracts common feature spanning multiple domains, while the alignment projection matrix captures domain-specific feature of source-target pairs, preserving discriminative information while avoiding feature entanglement. Furthermore, by constructing a similarity graph of source-target domain pairs and iteratively propagating labels, graph embedding techniques, along with iterative updates to the projection matrices, achieve continuous cross-domain knowledge distillation, effectively improving pseudo-label generation accuracy. Finally, rigorous testing of the cross-subject leave-one-subject-out cross-validation strategy on the SEED-IV and SEED-V datasets achieved classification accuracies of 68.70 % and 63.09 %, respectively. Experimental results indicate that the MSGELP effectively learns a shared subspace, mitigates the negative transfer problem, and outperforms state-of-the-art methods. The code is available at https://github.com/czihan1022/MSGELP/.
ArticleNumber 112143
Author Wang, Tianzhi
Zheng, Weihao
Ren, Chao
Zhang, Xiaowei
Hu, Bin
Li, Rui
Chen, Jinbo
Chen, Yijiang
Author_xml – sequence: 1
  givenname: Chao
  surname: Ren
  fullname: Ren, Chao
  email: renc@lzu.edu.cn
– sequence: 2
  givenname: Jinbo
  surname: Chen
  fullname: Chen, Jinbo
  email: chenjb2023@lzu.edu.cn
– sequence: 3
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  email: ruili@lzu.edu.cn
– sequence: 4
  givenname: Yijiang
  surname: Chen
  fullname: Chen, Yijiang
  email: chyijiang2024@lzu.edu.cn
– sequence: 5
  givenname: Tianzhi
  orcidid: 0009-0007-6418-2404
  surname: Wang
  fullname: Wang, Tianzhi
  email: wangtzh2024@lzu.edu.cn
– sequence: 6
  givenname: Weihao
  orcidid: 0000-0003-2996-5909
  surname: Zheng
  fullname: Zheng, Weihao
  email: zhengweihao@lzu.edu.cn
– sequence: 7
  givenname: Xiaowei
  surname: Zhang
  fullname: Zhang, Xiaowei
  email: zhangxw@lzu.edu.cn
– sequence: 8
  givenname: Bin
  surname: Hu
  fullname: Hu, Bin
  email: bh@lzu.edu.cn
BookMark eNp9kM1OwzAQhH0oEm3hDTj4BRJsx_m7IKGKP6kSFzhbG3udOkrjyE4rcePRSQlnTjvS7oxmvw1ZDX5AQu44SznjxX2XjjBp36aCiTzlXHCZrciasYwnmWDZNdnE2DHGSy7Fmny_OgwQ9MFp6KlFmE4BqXFxcn0Pk_MDPXqDPT07oOYEfRInaJGOwXeoL_tIYTC0DTAeKB4bNMYNLe2hmU3z1QjtEmN9mPf-VwecGw7uom_IlYU-4u3f3JLP56eP3Wuyf3952z3uE81LMSXcWKiaQrJCoLRVzW1Wl3leSSlqlHld55lsTCnKykBeiAxQFihkLrUVUNg82xK55OrgYwxo1RjcEcKX4kxdyKlOLeTUhZxayM22h8WGc7fzzEpF7XDQaNz8xKSMd_8H_AD3Ln-a
Cites_doi 10.1109/TAFFC.2024.3433470
10.1016/j.knosys.2024.112669
10.1023/A:1018628609742
10.1007/s11517-023-02956-2
10.1016/j.inffus.2023.102019
10.1109/ACCESS.2024.3454082
10.1016/S0003-2670(01)95359-0
10.1109/TETC.2021.3087174
10.1109/TCSS.2023.3314508
10.1109/TCDS.2021.3071170
10.1109/TAFFC.2021.3137857
10.1109/TIM.2023.3277985
10.1109/TIM.2023.3302938
10.1109/TAFFC.2024.3371540
10.1109/TSMC.2024.3458949
10.1109/TNN.2010.2091281
10.1109/TNSRE.2023.3246989
10.1016/j.patcog.2024.110358
10.1109/TCYB.2018.2797176
10.1109/TAFFC.2022.3189222
10.1109/TNSRE.2022.3175464
10.1016/j.patcog.2023.109794
10.1109/TCSS.2024.3406988
10.1109/JAS.2023.123318
10.1109/TNSRE.2020.2985996
10.1016/j.jksuci.2023.101648
10.1109/TII.2022.3217120
10.1109/ACCESS.2023.3328951
10.3389/fnins.2021.778488
10.1016/j.knosys.2023.110372
10.1016/j.patcog.2024.111135
10.1109/TAFFC.2023.3288118
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2025.112143
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2025_112143
S0031320325008039
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
ID FETCH-LOGICAL-c172t-1dfa8b64062e4f891f3975584429e4599534bd7278da5623ae46e2454cf2a6f53
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Jul 31 00:32:06 EDT 2025
Sat Aug 16 17:00:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Label propagation
Transfer learning
EEG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c172t-1dfa8b64062e4f891f3975584429e4599534bd7278da5623ae46e2454cf2a6f53
ORCID 0009-0007-6418-2404
0000-0003-2996-5909
ParticipantIDs crossref_primary_10_1016_j_patcog_2025_112143
elsevier_sciencedirect_doi_10_1016_j_patcog_2025_112143
PublicationCentury 2000
PublicationDate March 2026
2026-03-00
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: March 2026
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tang, Xie, Li, Wang (bib0005) 2025; 159
Teng, Zheng, Wu, Teng, Zhang (bib0018) 2023; 10
Chen, Jin, Li, Fan, Li, He (bib0039) 2021; 15
Jiménez-Guarneros, Fuentes-Pineda (bib0008) 2023; 72
Peng, Jin, Kong, Nie, Lu, Cichocki (bib0028) 2022; 30
Shen, Zhu, Liu, Wu, Wang, Dong (bib0003) 2024; 11
Li, Li, Chen, Yang, Li, Wan, Cao, Yao, Lu, Xu (bib0020) 2024; 54
Ye, Zhang, Teng, Zhang, Wang, Ni, Li, Xu, Liang (bib0037) 2025; 16
Ren, Chen, Li, Zheng, Chen, Yang, Zhang, Hu (bib0002) 2024; 305
Zhang, Zhou, Zhao, Hou, Wei, Zhang, Yang, Cui (bib0009) 2024; 11
Peng, Wang, Kong, Nie, Lu, Cichocki (bib0022) 2022; 13
Mockus (bib0031) 2005
Khare, Blanes-Vidal, Nadimi, Acharya (bib0001) 2024; 102
Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0024) 2007; 19
Coomans, Massart (bib0032) 1982; 136
Chen, Sun, Li, Yu, Li, Li, Hu (bib0006) 2021; 14
Cai, He, Han, Huang (bib0026) 2010; 33
Zhu, Yu, Huang, Ying, Zhang (bib0036) 2024; 62
Huang, Fan, Chou (bib0004) 2023; 143
Peng, Liu, Kong, Nie, Lu, Cichocki (bib0014) 2022; 19
Li, Qiu, Shen, Liu, He (bib0010) 2019; 50
Zhou, Zhang, Fu, Zhang, Li, Huang, Li, Yang, Dong, Zhang (bib0038) 2024; 15
Zhang, Wu (bib0017) 2020; 28
Naiem, Khedr, Idrees, Marie (bib0034) 2023; 11
Sartipi, Cetin (bib0015) 2024
She, Zhang, Fang, Ma, Zhang (bib0016) 2023; 72
Zhu, Ghahramani, Lafferty (bib0027) 2003
Suykens, Vandewalle (bib0033) 1999; 9
Tao, Yan, He (bib0023) 2024; 12
Demšar (bib0040) 2006; 7
Jin, Peng, Qin, Li, Kong (bib0013) 2023; 35
Liu, Qiu, Zheng, Lu (bib0030) 2021; 14
Liu, Wang, An, Zhao, Zhao, Zhang (bib0011) 2023; 265
Zheng, Liu, Lu, Lu, Cichocki (bib0029) 2018; 49
Song, Zheng, Liu, Zong, Cui, Li (bib0019) 2021; 10
Long, Wang, Ding, Sun, Yu (bib0025) 2013
Gong, Wang, Zhou, Zhang (bib0012) 2023; 31
Du, Zhang, Zhang, Wu, Wu, Li (bib0021) 2024; 150
Pan, Tsang, Kwok, Yang (bib0035) 2010; 22
Chen, Chen, Zhang (bib0007) 2024; 15
Chen (10.1016/j.patcog.2025.112143_bib0007) 2024; 15
Demšar (10.1016/j.patcog.2025.112143_bib0040) 2006; 7
Mockus (10.1016/j.patcog.2025.112143_bib0031) 2005
Zhang (10.1016/j.patcog.2025.112143_bib0009) 2024; 11
Ren (10.1016/j.patcog.2025.112143_bib0002) 2024; 305
Song (10.1016/j.patcog.2025.112143_bib0019) 2021; 10
Suykens (10.1016/j.patcog.2025.112143_bib0033) 1999; 9
Zhu (10.1016/j.patcog.2025.112143_bib0036) 2024; 62
Sartipi (10.1016/j.patcog.2025.112143_bib0015) 2024
Peng (10.1016/j.patcog.2025.112143_bib0014) 2022; 19
Peng (10.1016/j.patcog.2025.112143_bib0022) 2022; 13
Teng (10.1016/j.patcog.2025.112143_bib0018) 2023; 10
Liu (10.1016/j.patcog.2025.112143_bib0030) 2021; 14
Jiménez-Guarneros (10.1016/j.patcog.2025.112143_bib0008) 2023; 72
Zhou (10.1016/j.patcog.2025.112143_bib0038) 2024; 15
Gretton (10.1016/j.patcog.2025.112143_bib0024) 2007; 19
Li (10.1016/j.patcog.2025.112143_bib0020) 2024; 54
Ye (10.1016/j.patcog.2025.112143_bib0037) 2025; 16
Cai (10.1016/j.patcog.2025.112143_bib0026) 2010; 33
She (10.1016/j.patcog.2025.112143_bib0016) 2023; 72
Jin (10.1016/j.patcog.2025.112143_bib0013) 2023; 35
Khare (10.1016/j.patcog.2025.112143_bib0001) 2024; 102
Coomans (10.1016/j.patcog.2025.112143_bib0032) 1982; 136
Li (10.1016/j.patcog.2025.112143_bib0010) 2019; 50
Long (10.1016/j.patcog.2025.112143_bib0025) 2013
Peng (10.1016/j.patcog.2025.112143_bib0028) 2022; 30
Chen (10.1016/j.patcog.2025.112143_bib0039) 2021; 15
Gong (10.1016/j.patcog.2025.112143_bib0012) 2023; 31
Tao (10.1016/j.patcog.2025.112143_bib0023) 2024; 12
Du (10.1016/j.patcog.2025.112143_bib0021) 2024; 150
Shen (10.1016/j.patcog.2025.112143_bib0003) 2024; 11
Tang (10.1016/j.patcog.2025.112143_bib0005) 2025; 159
Zhang (10.1016/j.patcog.2025.112143_bib0017) 2020; 28
Chen (10.1016/j.patcog.2025.112143_bib0006) 2021; 14
Zheng (10.1016/j.patcog.2025.112143_bib0029) 2018; 49
Huang (10.1016/j.patcog.2025.112143_bib0004) 2023; 143
Liu (10.1016/j.patcog.2025.112143_bib0011) 2023; 265
Zhu (10.1016/j.patcog.2025.112143_bib0027) 2003
Pan (10.1016/j.patcog.2025.112143_bib0035) 2010; 22
Naiem (10.1016/j.patcog.2025.112143_bib0034) 2023; 11
References_xml – volume: 143
  year: 2023
  ident: bib0004
  article-title: Graph-based learning of nonlinear physiological interactions for classification of emotions
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 1440
  year: 2023
  end-page: 1450
  ident: bib0012
  article-title: A spiking neural network with adaptive graph convolution and LSTM for EEG-based brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 22
  start-page: 199
  year: 2010
  end-page: 210
  ident: bib0035
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 19
  start-page: 513
  year: 2007
  end-page: 520
  ident: bib0024
  article-title: A kernel method for the two-sample-problem
  publication-title: Adva. Neural Inf. Process. Syst.
– volume: 11
  start-page: 7299
  year: 2024
  end-page: 7308
  ident: bib0003
  article-title: Tensor correlation fusion for multimodal physiological signal emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 14
  start-page: 2077
  year: 2021
  end-page: 2088
  ident: bib0006
  article-title: Personal-zscore: eliminating individual difference for EEG-based cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 11
  start-page: 2918
  year: 2024
  end-page: 2929
  ident: bib0009
  article-title: Discriminative joint knowledge transfer with online updating mechanism for EEG-Based emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 11
  start-page: 124597
  year: 2023
  end-page: 124608
  ident: bib0034
  article-title: Enhancing the efficiency of Gaussian Naïve Bayes machine learning classifier in the detection of DDOS in cloud computing
  publication-title: IEEE Access
– volume: 72
  year: 2023
  ident: bib0016
  article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 72
  year: 2023
  ident: bib0008
  article-title: Cross-subject EEG-based emotion recognition via semi-supervised multi-source joint distribution adaptation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 28
  start-page: 1117
  year: 2020
  end-page: 1127
  ident: bib0017
  article-title: Manifold embedded knowledge transfer for brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 159
  year: 2025
  ident: bib0005
  article-title: Riding feeling recognition based on multi-head self-attention LSTM for driverless automobile
  publication-title: Pattern Recognit.
– volume: 13
  start-page: 1941
  year: 2022
  end-page: 1958
  ident: bib0022
  article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 150
  year: 2024
  ident: bib0021
  article-title: Semi-supervised imbalanced multi-label classification with label propagation
  publication-title: Pattern Recognit.
– volume: 265
  year: 2023
  ident: bib0011
  article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
  publication-title: Knowl.-Based Syst.
– volume: 10
  start-page: 2094
  year: 2023
  end-page: 2107
  ident: bib0018
  article-title: Adaptive graph embedding with consistency and specificity for domain adaptation
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 35
  year: 2023
  ident: bib0013
  article-title: Graph adaptive semi-supervised discriminative subspace learning for EEG emotion recognition
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– start-page: 2086
  year: 2024
  end-page: 2090
  ident: bib0015
  article-title: Multi-source domain adaptation with transformer-based feature generation for subject-independent EEG-based emotion recognition
  publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 49
  start-page: 1110
  year: 2018
  end-page: 1122
  ident: bib0029
  article-title: Emotionmeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– volume: 136
  start-page: 15
  year: 1982
  end-page: 27
  ident: bib0032
  article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-Nearest neighbour classification by using alternative voting rules
  publication-title: Anal. Chim. Acta
– volume: 102
  year: 2024
  ident: bib0001
  article-title: Emotion recognition and artificial intelligence: a systematic review (2014–2023) and research recommendations
  publication-title: Inf. Fusion
– volume: 50
  start-page: 3281
  year: 2019
  end-page: 3293
  ident: bib0010
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 33
  start-page: 1548
  year: 2010
  end-page: 1560
  ident: bib0026
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 15
  start-page: 1739
  year: 2024
  end-page: 1753
  ident: bib0007
  article-title: GDDN: graph domain disentanglement network for generalizable EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 30
  start-page: 1288
  year: 2022
  end-page: 1297
  ident: bib0028
  article-title: OGSSL: a semi-supervised classification model coupled with optimal graph learning for EEG emotion recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib0033
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 305
  year: 2024
  ident: bib0002
  article-title: Semi-supervised pairwise transfer learning based on multi-source domain adaptation: a case study on EEG-based emotion recognition
  publication-title: Knowl.-Based Syst.
– volume: 12
  start-page: 126774
  year: 2024
  end-page: 126792
  ident: bib0023
  article-title: Domain-Invariant Adaptive graph regularized label propagation for EEG-based emotion recognition
  publication-title: IEEE Access
– volume: 19
  start-page: 8104
  year: 2022
  end-page: 8115
  ident: bib0014
  article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition
  publication-title: IEEE Trans. Ind. Inf.
– volume: 54
  start-page: 7794
  year: 2024
  end-page: 7808
  ident: bib0020
  article-title: Brain network manifold learned by cognition-inspired graph embedding model for emotion recognition
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– start-page: 912
  year: 2003
  end-page: 919
  ident: bib0027
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proceedings of the 20th International Conference on Machine Learning (ICML-03)
– start-page: 2200
  year: 2013
  end-page: 2207
  ident: bib0025
  article-title: Transfer feature learning with joint distribution adaptation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 15
  year: 2021
  ident: bib0039
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
– volume: 14
  start-page: 715
  year: 2021
  end-page: 729
  ident: bib0030
  article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition
  publication-title: IEEE Trans. Cognit. Dev. Syst.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0040
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 290
  year: 2025
  end-page: 305
  ident: bib0037
  article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject eeg-based emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 10
  start-page: 1399
  year: 2021
  end-page: 1413
  ident: bib0019
  article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition
  publication-title: IEEE Tran. Emerg. Top. Comput.
– volume: 15
  start-page: 657
  year: 2024
  end-page: 670
  ident: bib0038
  article-title: PR-PL: A novel prototypical representation based pairwise learning framework for emotion recognition using EEG signals
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 473
  year: 2005
  end-page: 481
  ident: bib0031
  article-title: The Bayesian approach to global optimization
  publication-title: System Modeling and Optimization: Proceedings of the 10th IFIP Conference New York City, USA, August 31–September 4, 1981
– volume: 62
  start-page: 479
  year: 2024
  end-page: 493
  ident: bib0036
  article-title: Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition
  publication-title: Med. Biol. Eng. Comput.
– volume: 16
  start-page: 290
  issue: 1
  year: 2025
  ident: 10.1016/j.patcog.2025.112143_bib0037
  article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject eeg-based emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2024.3433470
– volume: 305
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0002
  article-title: Semi-supervised pairwise transfer learning based on multi-source domain adaptation: a case study on EEG-based emotion recognition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.112669
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.patcog.2025.112143_bib0033
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 62
  start-page: 479
  issue: 2
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0036
  article-title: Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-023-02956-2
– volume: 19
  start-page: 513
  year: 2007
  ident: 10.1016/j.patcog.2025.112143_bib0024
  article-title: A kernel method for the two-sample-problem
  publication-title: Adva. Neural Inf. Process. Syst.
– volume: 102
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0001
  article-title: Emotion recognition and artificial intelligence: a systematic review (2014–2023) and research recommendations
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102019
– volume: 12
  start-page: 126774
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0023
  article-title: Domain-Invariant Adaptive graph regularized label propagation for EEG-based emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3454082
– volume: 33
  start-page: 1548
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2025.112143_bib0026
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 136
  start-page: 15
  year: 1982
  ident: 10.1016/j.patcog.2025.112143_bib0032
  article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: Part 1. k-Nearest neighbour classification by using alternative voting rules
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)95359-0
– volume: 50
  start-page: 3281
  issue: 7
  year: 2019
  ident: 10.1016/j.patcog.2025.112143_bib0010
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 1399
  issue: 3
  year: 2021
  ident: 10.1016/j.patcog.2025.112143_bib0019
  article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition
  publication-title: IEEE Tran. Emerg. Top. Comput.
  doi: 10.1109/TETC.2021.3087174
– volume: 11
  start-page: 2918
  issue: 2
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0009
  article-title: Discriminative joint knowledge transfer with online updating mechanism for EEG-Based emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2023.3314508
– start-page: 473
  year: 2005
  ident: 10.1016/j.patcog.2025.112143_bib0031
  article-title: The Bayesian approach to global optimization
– volume: 14
  start-page: 715
  issue: 2
  year: 2021
  ident: 10.1016/j.patcog.2025.112143_bib0030
  article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2021.3071170
– volume: 14
  start-page: 2077
  issue: 3
  year: 2021
  ident: 10.1016/j.patcog.2025.112143_bib0006
  article-title: Personal-zscore: eliminating individual difference for EEG-based cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2021.3137857
– volume: 72
  year: 2023
  ident: 10.1016/j.patcog.2025.112143_bib0016
  article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3277985
– volume: 72
  year: 2023
  ident: 10.1016/j.patcog.2025.112143_bib0008
  article-title: Cross-subject EEG-based emotion recognition via semi-supervised multi-source joint distribution adaptation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3302938
– volume: 15
  start-page: 1739
  issue: 3
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0007
  article-title: GDDN: graph domain disentanglement network for generalizable EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2024.3371540
– volume: 54
  start-page: 7794
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0020
  article-title: Brain network manifold learned by cognition-inspired graph embedding model for emotion recognition
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2024.3458949
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.patcog.2025.112143_bib0035
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 31
  start-page: 1440
  year: 2023
  ident: 10.1016/j.patcog.2025.112143_bib0012
  article-title: A spiking neural network with adaptive graph convolution and LSTM for EEG-based brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3246989
– volume: 150
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0021
  article-title: Semi-supervised imbalanced multi-label classification with label propagation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2024.110358
– start-page: 912
  year: 2003
  ident: 10.1016/j.patcog.2025.112143_bib0027
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: 10.1016/j.patcog.2025.112143_bib0029
  article-title: Emotionmeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– start-page: 2086
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0015
  article-title: Multi-source domain adaptation with transformer-based feature generation for subject-independent EEG-based emotion recognition
– volume: 13
  start-page: 1941
  issue: 4
  year: 2022
  ident: 10.1016/j.patcog.2025.112143_bib0022
  article-title: Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3189222
– volume: 30
  start-page: 1288
  year: 2022
  ident: 10.1016/j.patcog.2025.112143_bib0028
  article-title: OGSSL: a semi-supervised classification model coupled with optimal graph learning for EEG emotion recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3175464
– volume: 143
  year: 2023
  ident: 10.1016/j.patcog.2025.112143_bib0004
  article-title: Graph-based learning of nonlinear physiological interactions for classification of emotions
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109794
– volume: 11
  start-page: 7299
  issue: 6
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0003
  article-title: Tensor correlation fusion for multimodal physiological signal emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2024.3406988
– volume: 10
  start-page: 2094
  issue: 11
  year: 2023
  ident: 10.1016/j.patcog.2025.112143_bib0018
  article-title: Adaptive graph embedding with consistency and specificity for domain adaptation
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2023.123318
– volume: 28
  start-page: 1117
  issue: 5
  year: 2020
  ident: 10.1016/j.patcog.2025.112143_bib0017
  article-title: Manifold embedded knowledge transfer for brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2985996
– volume: 35
  issue: 8
  year: 2023
  ident: 10.1016/j.patcog.2025.112143_bib0013
  article-title: Graph adaptive semi-supervised discriminative subspace learning for EEG emotion recognition
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2023.101648
– volume: 19
  start-page: 8104
  issue: 7
  year: 2022
  ident: 10.1016/j.patcog.2025.112143_bib0014
  article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3217120
– volume: 11
  start-page: 124597
  year: 2023
  ident: 10.1016/j.patcog.2025.112143_bib0034
  article-title: Enhancing the efficiency of Gaussian Naïve Bayes machine learning classifier in the detection of DDOS in cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3328951
– volume: 15
  year: 2021
  ident: 10.1016/j.patcog.2025.112143_bib0039
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.778488
– start-page: 2200
  year: 2013
  ident: 10.1016/j.patcog.2025.112143_bib0025
  article-title: Transfer feature learning with joint distribution adaptation
– volume: 265
  year: 2023
  ident: 10.1016/j.patcog.2025.112143_bib0011
  article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110372
– volume: 159
  year: 2025
  ident: 10.1016/j.patcog.2025.112143_bib0005
  article-title: Riding feeling recognition based on multi-head self-attention LSTM for driverless automobile
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2024.111135
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.patcog.2025.112143_bib0040
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 657
  issue: 2
  year: 2024
  ident: 10.1016/j.patcog.2025.112143_bib0038
  article-title: PR-PL: A novel prototypical representation based pairwise learning framework for emotion recognition using EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2023.3288118
SSID ssj0017142
Score 2.4902024
Snippet In multi-source domain adaptation, challenges include negative transfer caused by feature coupling and the inefficiency of pseudo-label generation. This paper...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112143
SubjectTerms EEG
Emotion recognition
Label propagation
Transfer learning
Title Hierarchical feature distillation model via dual-stage projections and graph embedding label propagation for emotion recognition
URI https://dx.doi.org/10.1016/j.patcog.2025.112143
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sBqShM7cceqogogOlGpW-RnVVTSChVGxE_nzk4qkBADYxI7is7nu8_Rfd8RcpVzabQ0nllIFnBAEYYpDxtPpImH00HSd0FI-3GcFRN-PxXTFhk2XBgsq6xjf4zpIVrXd7q1Nbur-Rw5vig7eJNCEgfYkyKJD9XrwKevPzZlHtjfOyqGpz2Goxv6XKjxWkG4W87glJgI5NIE7s5v6elbyhntk90aK9JB_JwD0nLVIdlr-jDQelsekc9ijjTi0NVkQb0LWp3U4u5dxFI3Ghre0Pe5osi9YgAJZ47Wf2HQ8aiqLA3i1dS9aGcxo1FwEJgEoyDoxNcAwoXnofEP3ZQeLatjMhndPg0LVndWYAbsv2Y965XUGSTzxHEv-z0PsEQAFuG4OKhBlnJtAdpIqxAgKcczl3DBjU9U5kV6QraqZeVOCZV5XypU7PFacpN5ldtMcMuNNYBEtG4T1hi0XEUBjbKpLHsu4wKUuABlXIA2yRurlz8coYQY_-fMs3_PPCc7cJXF0rILsrV-fXOXgDXWuhOcqUO2B3cPxfgLAObVoA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45sC1Gm3T13GamDr2OG3SblHSJNPQ6CY0OPPTcZJ2Aglx4NrUVWU79pfW_gzwkNC0EGmhPYnJAg8oUeFxjRsvCgONp4MgU5ZIezyJ8xl9nkfzBvTqXhhTVlnFfhfTbbSurnQqbXY2y6Xp8TW0g48hJnGEPWG2By3DTkWb0OoOhvlk9zMh8akjDQ99zwjUHXS2zGuDEW-9wINiEJl2Gtu-81uG-pZ1-sdwWMFF0nVvdAINVZ7CUT2KgVQ78ww-86XpJLaDTVZEK0vXSaTZwCtX7UbszBvyseTEtF95iAoXilQfYozvEV5KYvmriXoVSpqkRtBHUAjvwrjjHoMgF9ft7B-yqz5al-cw6z9Ne7lXDVfwCjTB1vOl5qmIMZ8Hiuo08zUikwjhCDX2MTRkIRUS0U0qucFIXNFYBajgQgc81lF4Ac1yXapLIGmSpdyQ9miR0iLWPJFxRCUtZIFgRIg2eLVC2cZxaLC6uOyFOQMwYwDmDNCGpNY6--ELDMP8n5JX_5a8h_18Oh6x0WAyvIYDXIldpdkNNLdv7-oWocdW3FWu9QVbINhR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+feature+distillation+model+via+dual-stage+projections+and+graph+embedding+label+propagation+for+emotion+recognition&rft.jtitle=Pattern+recognition&rft.au=Ren%2C+Chao&rft.au=Chen%2C+Jinbo&rft.au=Li%2C+Rui&rft.au=Chen%2C+Yijiang&rft.date=2026-03-01&rft.issn=0031-3203&rft.volume=171&rft.spage=112143&rft_id=info:doi/10.1016%2Fj.patcog.2025.112143&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2025_112143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon