Biocoating of Electropolished and Ultra-Hydrophilic Titanium and Cobalt Chromium Molybdenum Alloy Surfaces with Proteins
Bone morphogenetic proteins (BMPs) play a decisive role in bone development and osteogenesis. In the past they have been the subject of widespread research and clinical trials as stimulants of bone growth. Although recently recombinant human BMP‐2 (rhBMP‐2) has been chemically immobilized on implant...
Saved in:
Published in | Materialwissenschaft und Werkstofftechnik Vol. 33; no. 12; pp. 720 - 727 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.12.2002
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0933-5137 1521-4052 |
DOI | 10.1002/mawe.200290002 |
Cover
Abstract | Bone morphogenetic proteins (BMPs) play a decisive role in bone development and osteogenesis. In the past they have been the subject of widespread research and clinical trials as stimulants of bone growth. Although recently recombinant human BMP‐2 (rhBMP‐2) has been chemically immobilized on implant surfaces leading to enhanced bone growth and accelerated integration in vivo, the non‐covalent immobilization of proteins on metal surfaces is still poorly understood, since the oxide layers on metals like titanium, stainless steel or cobalt chromium alloys are poor adsorbents of proteins. Protein binding surfaces could either be generated by linking ionic groups (ion‐exchange surface) or by coupling hydrophobic residues (hydrophobic interacting surface, HIS) to the surface. In this paper the preparation of protein adsorbing surfaces on titanium and cobalt chromium molybdenum alloy for the adsorption of rhBMP‐2 and ubiquitin will be described. rhBMP‐2 and ubiquitin are bound extremely tight to surfaces containing propyl or hexyl groups of a certain surface concentration and are slowly released over a range of at least 24–100 days making such surfaces applicable as long‐term drug delivery devices for enhancing bone growth or implant integration.
Biologisierung von elektropolierten und ultra‐hydrophilen Titan‐ und Cobalt‐Chrom‐Molybdänlegierungs‐Oberflächen mit Proteinen
Knochenmorphogenetische Proteine (BMPs) spielen eine entscheidende Rolle in der Entwicklung der Organismen und der Osteogenese. In der Vergangenheit waren sie in der Stimulierung des Knochenwachstums Thema zahlreicher Untersuchungen und klinischer Studien. Obwohl kürzlich rekombinantes humanes BMP‐2 (rhBMP‐2), das auf Implantatoberflächen chemisch immobilisiert wurde zu verstärktem Knochenwachstum und zur beschleunigten Integration in vivo führten, ist die nicht‐kovalante Immobilisierung von Proteinen auf metallischen Oberflächen bisher nur wenig verstanden, da die Oxidschichten auf Metallen wie Titan, rostfreiem Stahl oder Kobalt‐Chrom‐Legierungen Proteine nur schlecht adsorbieren. Proteinbindende Oberflächen können entweder durch die Kopplung von geladenen Molekülen (Ionenaustauscheroberfläche) oder von hydrophoben Resten (hydrophob interagierende Oberflächen, HIS) an die Oberfläche hergestellt werden. In dieser Arbeit wird die Herstellung von Protein adsorbierenden Oberflächen auf Titan und einer Kobalt‐Chrom‐Molybdän Legierung für die Adsorption von rhBMP‐2 und Ubiquitin beschrieben. RhBMP‐2 und Ubiquitin werden außerordentlich stark an Oberflächen gebunden, die Propyl‐ oder Hexylgruppen bestimmter Oberflächenkonzentration tragen und werden langsam über einen Zeitraum von 24–100 Tagen von den Oberflächen wieder freigesetzt, so daß sich diese als langzeit “drug delivery devices” zur Anregung des Knochenwachstums und zur Beschleunigung der Implantatintegration eignen. |
---|---|
AbstractList | Bone morphogenetic proteins (BMPs) play a decisive role in bone development and osteogenesis. In the past they have been the subject of widespread research and clinical trials as stimulants of bone growth. Although recently recombinant human BMP‐2 (rhBMP‐2) has been chemically immobilized on implant surfaces leading to enhanced bone growth and accelerated integration in vivo, the non‐covalent immobilization of proteins on metal surfaces is still poorly understood, since the oxide layers on metals like titanium, stainless steel or cobalt chromium alloys are poor adsorbents of proteins. Protein binding surfaces could either be generated by linking ionic groups (ion‐exchange surface) or by coupling hydrophobic residues (hydrophobic interacting surface, HIS) to the surface. In this paper the preparation of protein adsorbing surfaces on titanium and cobalt chromium molybdenum alloy for the adsorption of rhBMP‐2 and ubiquitin will be described. rhBMP‐2 and ubiquitin are bound extremely tight to surfaces containing propyl or hexyl groups of a certain surface concentration and are slowly released over a range of at least 24–100 days making such surfaces applicable as long‐term drug delivery devices for enhancing bone growth or implant integration.
Biologisierung von elektropolierten und ultra‐hydrophilen Titan‐ und Cobalt‐Chrom‐Molybdänlegierungs‐Oberflächen mit Proteinen
Knochenmorphogenetische Proteine (BMPs) spielen eine entscheidende Rolle in der Entwicklung der Organismen und der Osteogenese. In der Vergangenheit waren sie in der Stimulierung des Knochenwachstums Thema zahlreicher Untersuchungen und klinischer Studien. Obwohl kürzlich rekombinantes humanes BMP‐2 (rhBMP‐2), das auf Implantatoberflächen chemisch immobilisiert wurde zu verstärktem Knochenwachstum und zur beschleunigten Integration in vivo führten, ist die nicht‐kovalante Immobilisierung von Proteinen auf metallischen Oberflächen bisher nur wenig verstanden, da die Oxidschichten auf Metallen wie Titan, rostfreiem Stahl oder Kobalt‐Chrom‐Legierungen Proteine nur schlecht adsorbieren. Proteinbindende Oberflächen können entweder durch die Kopplung von geladenen Molekülen (Ionenaustauscheroberfläche) oder von hydrophoben Resten (hydrophob interagierende Oberflächen, HIS) an die Oberfläche hergestellt werden. In dieser Arbeit wird die Herstellung von Protein adsorbierenden Oberflächen auf Titan und einer Kobalt‐Chrom‐Molybdän Legierung für die Adsorption von rhBMP‐2 und Ubiquitin beschrieben. RhBMP‐2 und Ubiquitin werden außerordentlich stark an Oberflächen gebunden, die Propyl‐ oder Hexylgruppen bestimmter Oberflächenkonzentration tragen und werden langsam über einen Zeitraum von 24–100 Tagen von den Oberflächen wieder freigesetzt, so daß sich diese als langzeit “drug delivery devices” zur Anregung des Knochenwachstums und zur Beschleunigung der Implantatintegration eignen. |
Author | Jennissen, H. P. Laub, M. Chatzinikolaidou, M. Rumpf, H. |
Author_xml | – sequence: 1 givenname: M. surname: Chatzinikolaidou fullname: Chatzinikolaidou, M. organization: Institut für Physiologische Chemie, Universtität Essen, Hufelandstr. 55, D-45122 Essen, Germany – sequence: 2 givenname: M. surname: Laub fullname: Laub, M. organization: Institut für Physiologische Chemie, Universtität Essen, Hufelandstr. 55, D-45122 Essen, Germany – sequence: 3 givenname: H. surname: Rumpf fullname: Rumpf, H. organization: Institut für Physiologische Chemie, Universtität Essen, Hufelandstr. 55, D-45122 Essen, Germany – sequence: 4 givenname: H. P. surname: Jennissen fullname: Jennissen, H. P. organization: Institut für Physiologische Chemie, Universtität Essen, Hufelandstr. 55, D-45122 Essen, Germany |
BookMark | eNqFkE1rGzEQhkVJoI7ba8_6A-vqcxUdXePGAbsJ1KmhF6HVamsl8ipICvb--8p1CKEQcpkZZuZ5mXkvwFkfegvAF4wmGCHydaf3dkJKJVEJH8AIc4Irhjg5AyMkKa04puIjuEjpvmxIKfgIHL65YILOrv8DQwfn3pocw2PwLm1tC3Xfwjufo64WQ1v6W-edgWuXde-edv_Gs9Bon-FsG8Pu2FsFPzSt7Us59T4M8OdT7LSxCe5d3sLbGLJ1ffoEzjvtk_38nMdg_X2-ni2q5c3V9Wy6rAwWhFS6ZoKZum0tYw0THeOc1FY2-pJfClFkuaZ1w2rWGCMolazmtcQUcUS7hgg6Buwka2JIKdpOmXJ8dqEvTzmvMFJH89TRPPViXsEm_2GP0e10HN4G5AnYO2-Hd7bVarqZv2arE-tStocXVscHVQsquNr8uFK_CBG_JREK078QvZU- |
CitedBy_id | crossref_primary_10_11648_j_ijmea_20251301_12 crossref_primary_10_1002_masy_202200079 crossref_primary_10_1080_10837450601166619 crossref_primary_10_1002_mawe_201000705 crossref_primary_10_1002_mawe_200300714 crossref_primary_10_1016_j_surfcoat_2013_04_028 crossref_primary_10_1002_adhm_201600226 crossref_primary_10_1016_j_actbio_2010_12_028 crossref_primary_10_1016_j_micromeso_2009_11_040 crossref_primary_10_1016_j_colsurfb_2016_10_027 crossref_primary_10_1002_mawe_200500978 crossref_primary_10_3389_fbioe_2023_1226649 crossref_primary_10_1016_j_addr_2012_03_004 crossref_primary_10_1002_mawe_200800416 crossref_primary_10_1007_s10856_011_4252_4 crossref_primary_10_1021_acsbiomaterials_9b01300 crossref_primary_10_1186_s13018_018_0915_x crossref_primary_10_1002_jbm_a_30428 crossref_primary_10_1039_c3ra44734k |
Cites_doi | 10.1016/S0021-9673(00)81387-4 10.1111/j.1462-5822.2007.00901.x 10.1016/S0021-9258(19)52451-6 10.1002/1521-4052(200112)32:12<926::AID-MAWE926>3.0.CO;2-1 10.1002/1521-4052(200112)32:12<931::AID-MAWE931>3.0.CO;2-H 10.1016/0021-9673(90)85060-9 10.1515/BIOMAT.2001.2.1.45 10.1007/978-1-4684-8610-0_7 10.1016/S0039-6028(98)00918-2 10.1002/(SICI)1521-4052(199912)30:12<838::AID-MAWE838>3.0.CO;2-W 10.1111/j.1749-6632.2002.tb03067.x 10.1016/0022-2836(82)90515-0 |
ContentType | Journal Article |
Copyright | Copyright © 2002 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2002 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/mawe.200290002 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4052 |
EndPage | 727 |
ExternalDocumentID | 10_1002_mawe_200290002 MAWE200290002 ark_67375_WNG_V227Z927_1 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWM RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XV2 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION |
ID | FETCH-LOGICAL-c1722-a6474c6dde44b47f45526e9ba85877ace5a36b464bcc733946569130503fb273 |
IEDL.DBID | DR2 |
ISSN | 0933-5137 |
IngestDate | Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 02:58:33 EDT 2025 Wed Aug 20 07:25:11 EDT 2025 Wed Oct 30 09:51:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1722-a6474c6dde44b47f45526e9ba85877ace5a36b464bcc733946569130503fb273 |
Notes | ark:/67375/WNG-V227Z927-1 ArticleID:MAWE200290002 istex:AC9D35C01702C46C07D1ED2E9606284D5B70B8D0 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1002_mawe_200290002 crossref_primary_10_1002_mawe_200290002 wiley_primary_10_1002_mawe_200290002_MAWE200290002 istex_primary_ark_67375_WNG_V227Z927_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-12 December 2002 2002-12-00 |
PublicationDateYYYYMMDD | 2002-12-01 |
PublicationDate_xml | – month: 12 year: 2002 text: 2002-12 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Materialwissenschaft und Werkstofftechnik |
PublicationTitleAlternate | Mat.-wiss. u. Werkstofftech |
PublicationYear | 2002 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | Jennissen, H. P. , Zumbrink, T. , Chatzinikolaidou, M. , Steppuhn, J. , Biocoating of Implants with Mediator Molecules: Surface Enhancement of Metals by Treatment with Chromosulfuric Acid. Materialwiss. Werkstofftech. 30, (1999), 838- 845. Laub, M. , Seul, T. , Schmachtenberg, E. , Jennissen, H. P. , Molecular Modelling of Bone Morphogenetic Protein 2 (BMP-2) by 3D-Rapid Prototyping. Materialwiss. Werkstofftech. 32, (2001), 926- 930. Demirolgou, A. , Jennissen, H. P. , Synthesis and protein-binding properties of spacer-free thioalkyl agaroses. J. Chromatogr. 521, (1990), 1- 17. Jennissen, H. P. , Hydrophobic Interaction Chromatography: The critical Hydrophobicity Approach. Int. J. Bio-Chromatography 5, (2000), 131- 163. Jennissen, H. P. , Accelerated and Improved Osteointegration of Implants Biocoated with Bone Morphogenetic Protein 2 (BMP-2). Annals N. Y. Acad. Sci. 961, (2002), 139- 142. Martina, D. S. , Weightmana, P. , Gauntlett, J. T. , The adsorption of n-dodecane and n-pentane onto highly oriented pyrolytic graphite studied by atomic force microscopy. Surface Science 424, (1999), 187- 198. Laemmli, U. K. , Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature 227, (1970), 680- 685. Wiemann, M. , Rumpf, H. M. , Bingmann, D. , Jennissen, H. P. , The Binding of rhBMP-2 to the Receptors of viable MC3T3 Cells and the Question of Cooperativity. Materialwiss. Werkstofftech. 32, (2001), 931- 936. Lowry, O. H. , Rosebrough, N. J. , Farr, A. L. , Randall, R. J. , Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 193, (1951), 265- 275. Jennissen, H. P. , Ultra-Hydrophile metallische Biomaterialien. Biomaterialien 2, (2001), 45- 53. Jennissen, H. P. , Immobilization of residues on agarose gels: Effects on protein adsorption isotherms and chromatographic parameters. J. Chromatogr. 215, (1981), 73- 85. Kyte, J. , Doolittle, R. F. , A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157, (1982), 105- 132. (2002); 961 (1999); 30 (2001); 32 (1951); 193 (1990); 521 (1982); 157 (2000); 5 (1970); 227 (1999); 424 (2001); 2 (1981); 215 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 Jennissen H. P. (e_1_2_1_10_2) 2000; 5 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Jennissen, H. P. , Immobilization of residues on agarose gels: Effects on protein adsorption isotherms and chromatographic parameters. J. Chromatogr. 215, (1981), 73- 85. – reference: Demirolgou, A. , Jennissen, H. P. , Synthesis and protein-binding properties of spacer-free thioalkyl agaroses. J. Chromatogr. 521, (1990), 1- 17. – reference: Jennissen, H. P. , Zumbrink, T. , Chatzinikolaidou, M. , Steppuhn, J. , Biocoating of Implants with Mediator Molecules: Surface Enhancement of Metals by Treatment with Chromosulfuric Acid. Materialwiss. Werkstofftech. 30, (1999), 838- 845. – reference: Jennissen, H. P. , Accelerated and Improved Osteointegration of Implants Biocoated with Bone Morphogenetic Protein 2 (BMP-2). Annals N. Y. Acad. Sci. 961, (2002), 139- 142. – reference: Jennissen, H. P. , Ultra-Hydrophile metallische Biomaterialien. Biomaterialien 2, (2001), 45- 53. – reference: Wiemann, M. , Rumpf, H. M. , Bingmann, D. , Jennissen, H. P. , The Binding of rhBMP-2 to the Receptors of viable MC3T3 Cells and the Question of Cooperativity. Materialwiss. Werkstofftech. 32, (2001), 931- 936. – reference: Jennissen, H. P. , Hydrophobic Interaction Chromatography: The critical Hydrophobicity Approach. Int. J. Bio-Chromatography 5, (2000), 131- 163. – reference: Laemmli, U. K. , Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature 227, (1970), 680- 685. – reference: Laub, M. , Seul, T. , Schmachtenberg, E. , Jennissen, H. P. , Molecular Modelling of Bone Morphogenetic Protein 2 (BMP-2) by 3D-Rapid Prototyping. Materialwiss. Werkstofftech. 32, (2001), 926- 930. – reference: Kyte, J. , Doolittle, R. F. , A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157, (1982), 105- 132. – reference: Lowry, O. H. , Rosebrough, N. J. , Farr, A. L. , Randall, R. J. , Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 193, (1951), 265- 275. – reference: Martina, D. S. , Weightmana, P. , Gauntlett, J. T. , The adsorption of n-dodecane and n-pentane onto highly oriented pyrolytic graphite studied by atomic force microscopy. Surface Science 424, (1999), 187- 198. – volume: 424 start-page: 187 year: (1999) end-page: 198 article-title: The adsorption of n‐dodecane and n‐pentane onto highly oriented pyrolytic graphite studied by atomic force microscopy publication-title: Surface Science – volume: 32 start-page: 926 year: (2001) end-page: 930 article-title: Molecular Modelling of Bone Morphogenetic Protein 2 (BMP‐2) by 3D‐Rapid Prototyping publication-title: Materialwiss. Werkstofftech. – volume: 157 start-page: 105 year: (1982) end-page: 132 article-title: A simple method for displaying the hydrophobic character of a protein publication-title: J. Mol. Biol. – volume: 2 start-page: 45 year: (2001) end-page: 53 article-title: Ultra‐Hydrophile metallische Biomaterialien publication-title: Biomaterialien – volume: 32 start-page: 931 year: (2001) end-page: 936 article-title: The Binding of rhBMP‐2 to the Receptors of viable MC3T3 Cells and the Question of Cooperativity publication-title: Materialwiss. Werkstofftech. – volume: 193 start-page: 265 year: (1951) end-page: 275 article-title: Protein Measurement with the Folin Phenol Reagent publication-title: J. Biol. Chem. – volume: 30 start-page: 838 year: (1999) end-page: 845 article-title: Biocoating of Implants with Mediator Molecules: Surface Enhancement of Metals by Treatment with Chromosulfuric Acid publication-title: Materialwiss. Werkstofftech. – volume: 5 start-page: 131 year: (2000) end-page: 163 article-title: Hydrophobic Interaction Chromatography: The critical Hydrophobicity Approach publication-title: Int. J. Bio‐Chromatography – volume: 521 start-page: 1 year: (1990) end-page: 17 article-title: Synthesis and protein‐binding properties of spacer‐free thioalkyl agaroses publication-title: J. Chromatogr. – volume: 961 start-page: 139 year: (2002) end-page: 142 article-title: Accelerated and Improved Osteointegration of Implants Biocoated with Bone Morphogenetic Protein 2 (BMP‐2) publication-title: Annals N. Y. Acad. Sci. – volume: 215 start-page: 73 year: (1981) end-page: 85 article-title: Immobilization of residues on agarose gels: Effects on protein adsorption isotherms and chromatographic parameters publication-title: J. Chromatogr. – volume: 227 start-page: 680 year: (1970) end-page: 685 article-title: Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4 publication-title: Nature – ident: e_1_2_1_8_2 doi: 10.1016/S0021-9673(00)81387-4 – ident: e_1_2_1_13_2 doi: 10.1111/j.1462-5822.2007.00901.x – ident: e_1_2_1_12_2 doi: 10.1016/S0021-9258(19)52451-6 – ident: e_1_2_1_17_2 doi: 10.1002/1521-4052(200112)32:12<926::AID-MAWE926>3.0.CO;2-1 – ident: e_1_2_1_7_2 doi: 10.1002/1521-4052(200112)32:12<931::AID-MAWE931>3.0.CO;2-H – ident: e_1_2_1_9_2 doi: 10.1016/0021-9673(90)85060-9 – ident: e_1_2_1_3_2 – ident: e_1_2_1_5_2 doi: 10.1515/BIOMAT.2001.2.1.45 – ident: e_1_2_1_11_2 doi: 10.1007/978-1-4684-8610-0_7 – ident: e_1_2_1_16_2 doi: 10.1016/S0039-6028(98)00918-2 – ident: e_1_2_1_6_2 – ident: e_1_2_1_15_2 – volume: 5 start-page: 131 year: 2000 ident: e_1_2_1_10_2 article-title: Hydrophobic Interaction Chromatography: The critical Hydrophobicity Approach publication-title: Int. J. Bio‐Chromatography – ident: e_1_2_1_2_2 doi: 10.1002/(SICI)1521-4052(199912)30:12<838::AID-MAWE838>3.0.CO;2-W – ident: e_1_2_1_14_2 doi: 10.1111/j.1749-6632.2002.tb03067.x – ident: e_1_2_1_4_2 – ident: e_1_2_1_18_2 doi: 10.1016/0022-2836(82)90515-0 |
SSID | ssj0009975 |
Score | 1.5564883 |
Snippet | Bone morphogenetic proteins (BMPs) play a decisive role in bone development and osteogenesis. In the past they have been the subject of widespread research and... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 720 |
SubjectTerms | Alkylsilane bioaktive Oberflächen biocoating Biologisierung BMP-2 desorption drug release Funktionalisierung hydrocarbon coating hydrophobicity Hydrophobizität implants protein adsorption Proteindesorption surface engineering |
Title | Biocoating of Electropolished and Ultra-Hydrophilic Titanium and Cobalt Chromium Molybdenum Alloy Surfaces with Proteins |
URI | https://api.istex.fr/ark:/67375/WNG-V227Z927-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmawe.200290002 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT9swFMetCV62h3HZppWb_IC2J0Pj-FI_FiirJhVNWxloL5HtJKIiTVCbCsoTH4HPyCfBx2kDnYQmscckx1bi6z8nJ7-D0K5RiROiVpA4bjHC3GwiRnJLmAlVqhIltAZ_R-9EdE_Z93N-_uwv_ooPUTvcYGb49RomuDbj_Sdo6FBfe8wlhbSXsAgHoQB4_tHPJ36UUp60C2_thAehnFMbm3R_sfjCrrQMDXyzqFb9dnO8gvT8Rqsok8u9SWn27O1fDMf_eZJV9H6mRXG7Gjxr6E2Sr6N3zwiFH9DtwaCwhYbYaFykuFMlzYHMDuOLJMY6j_FpVo70w919dxq7K-Cfsbg_cJpzMBl6g0NAjpQYMLxDONcrsqmJIQQft7OsmOJfk1EKkWEYnML4B5AjBvn4I-ofd_qHXTJL10CsU0GUaMEks8Ktl4wZJlPGORWJMrrFW1K6argOhWGCGWtlGCogtSm3hfJmmBqnoj6hpbzIk88IO8VvaWKUMFID0MykJraBSFP_mUjTBiLz3orsDGUOGTWyqIIw0wiaNKqbtIG-1vZXFcTjRcsvvvNrMz26hNA3yaOzk2_Rb0rlH0VlFDQQ9V36j_qiXvusUx9tvKbQJno7z0DTDLbQUjmaJNtOCJVmxw_2R0WiAQ0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMcttD0AD4NxEd0G8wOCJ2-t40v92I2OAmuFoGOIF8t2ElEtTaYuFeue9hH4jHwSfJwmo0gICR6THEeJr3-fnPwOQs-tSrwQdYLEcZcR5kcTsZI7wmykUpUoYQz4O4YjMThhbz_zOpoQ_oWp-BCNww1GRpivYYCDQ3r_hho6Nd8C55JC3ks_C68zrzZg__Xqww1BSqnA2oV9O-GdSNbcxjbdXy2_si6tQxVfrurVsOAc3UO2ftQqzuRsb17aPXf1G8Xxv97lPtpYylHcq_rPJrqV5A_Q3V8ghQ_R1cGkcIWB8GhcpLhf5c2B5A4XX5MYmzzGJ1k5Mz-uvw8Wsb8CLhqHxxMvOyfzaTA4BOpIiYHEO4VzwyJb2Bii8HEvy4oF_jifpRAchsEvjN8DPGKSXzxC46P--HBAlhkbiPNCiBIjmGRO-CmTMctkyjinIlHWdHlXSn8bbiJhmWDWORlFCmBtyq-ivB2l1gupx2gtL_LkCcJe9DuaWCWsNMA0s6mNXUekafhSZGgLkbq5tFvSzCGpRqYrDjPVUKW6qdIWetnYn1ccjz9avgit35iZ2RlEv0muT0ev9SdK5RdFpe60EA1t-pf76WHvtN8cbf1LoV10ezAeHuvjN6N32-hOnZCm3dlBa-Vsnjz1uqi0z0LP_wlgrgUs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMcttEkIHrijlasfEDx5ax1f6scyWsql1QQdm3ixbCcW1dJk6lJB98RH4DPySfBx2mxFQkjwmOTYSnz95-TkdxB6ZlUWhKgTJE27jLAwm4iV3BFmE-VVpoQx4O8YjcXwkL095seX_uKv-RCNww1mRlyvYYKfpn7vAho6M18j5pJC2suwCG8zEeQEyKIPFwAppSJqF17bCe8kco1tbNO9zfIb29I2tPC3Tbka95vBTWTWd1qHmZzsLiq7685_gzj-z6PcQjdWYhT36tFzG13Jijvo-iVE4V10_nJautJAcDQuPe7XWXMgtcPZlyzFpkjxYV7Nzc_vP4bLNFwBB43Dk2kQndPFLBrsA3OkwsDhncG5UZkvbQox-LiX5-USf1zMPYSGYfAK4wNAR0yLs3toMuhP9odkla-BuCCDKDGCSeZEWDAZs0x6xjkVmbKmy7tShmq4SYRlglnnZJIoQLWpsIfyduJtkFH30VZRFtkOwkHyO5pZJaw0QDSz3qauI7yP34kMbSGy7i3tVixzSKmR65rCTDU0qW6atIVeNPanNcXjj5bPY-c3ZmZ-ArFvkuuj8Wv9iVL5WVGpOy1EY5f-pT496h31m6MH_1LoKbp68Gqg378Zv3uIrq2z0bQ7j9BWNV9kj4MoquyTOO5_AUr2A9s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biocoating+of+Electropolished+and+Ultra%E2%80%90Hydrophilic+Titanium+and+Cobalt+Chromium+Molybdenum+Alloy+Surfaces+with+Proteins&rft.jtitle=Materialwissenschaft+und+Werkstofftechnik&rft.au=Chatzinikolaidou%2C+M.&rft.au=Laub%2C+M.&rft.au=Rumpf%2C+H.&rft.au=Jennissen%2C+H.+P.&rft.date=2002-12-01&rft.issn=0933-5137&rft.eissn=1521-4052&rft.volume=33&rft.issue=12&rft.spage=720&rft.epage=727&rft_id=info:doi/10.1002%2Fmawe.200290002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mawe_200290002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-5137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-5137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-5137&client=summon |