A non-invasive continuous glucose monitoring method based on the Bergman minimal model
Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant in...
Saved in:
Published in | Medical & biological engineering & computing |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
05.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring. CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100. |
---|---|
AbstractList | Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring. CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100. Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring. CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100.Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring. CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100. |
Author | Wu, Chenyang Tang, Fei Li, Ang Zhao, Long Geng, Zhanxiao Yang, Lihui |
Author_xml | – sequence: 1 givenname: Ang surname: Li fullname: Li, Ang – sequence: 2 givenname: Long surname: Zhao fullname: Zhao, Long – sequence: 3 givenname: Chenyang surname: Wu fullname: Wu, Chenyang – sequence: 4 givenname: Zhanxiao surname: Geng fullname: Geng, Zhanxiao – sequence: 5 givenname: Lihui surname: Yang fullname: Yang, Lihui – sequence: 6 givenname: Fei orcidid: 0000-0001-8155-1178 surname: Tang fullname: Tang, Fei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40762748$$D View this record in MEDLINE/PubMed |
BookMark | eNo90D1PwzAQgGELgaAU_gAD8shiOH_ETsaC-JKQWIDVcpxLG5TYECdV-fcEWphueXS6e4_JfogBCTnjcMkBzFXiPOOGgcgYSCUE2-yRGTeKM1BK7ZMZcAUMOM-PyHFK7wCCZ0IdkiMFRguj8hl5W9BpK2vC2qVmjdTHMDRhjGOiy3b0MSHtYmiG2DdhSTscVrGipUtY0RjosEJ6jf2yc4F2TWg61068wvaEHNSuTXi6m3Pyenf7cvPAnp7vH28WT8xzwweW1WUNqAsnUCvvS6hAZ7nWhUDFi1rWuUZfOGdUqUBU0mOhCjP5DKU2UMo5udju_ejj54hpsF2TPLatCzj9YKWQWudCimKi5zs6lh1W9qOfzu2_7F-LCYgt8H1Mqcf6n3CwP8HtNridgtvf4HYjvwFWM3M6 |
Cites_doi | 10.1038/s41378-022-00355-5 10.1152/ajpendo.00319.2003 10.1089/dia.2013.0355 10.1016/j.cmet.2019.02.007 10.1056/NEJMoa1111732 10.1038/s41598-020-62926-8 10.1007/978-1-4612-0745-0 10.2337/dc21-S002 10.1364/BOE.7.004313 10.1001/jama.282.19.1839 10.1038/207833a0 10.2337/diabetes.52.8.2168 10.2337/dc18-Sint01 10.1126/sciadv.1601314 10.1136/bmjdrc-2016-000320 10.1373/clinchem.2004.036954 10.1021/ac504300n 10.1016/j.jconrel.2016.12.007 10.1109/TASSP.1978.1163055 10.1080/21556660.2018.1423987 10.3390/s8053335 10.1109/TSP.2007.896269 10.1007/s11071-013-1206-z 10.2337/dc18-S006 10.1039/C9AN02354B 10.1109/10.995680 10.1021/acs.analchem.8b05928 10.3390/s19040800 10.2337/db19-391-P 10.3390/s17010182 10.3390/IECB2023-14593 10.1159/000368924 |
ContentType | Journal Article |
Copyright | 2025. International Federation for Medical and Biological Engineering. |
Copyright_xml | – notice: 2025. International Federation for Medical and Biological Engineering. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1007/s11517-025-03422-x |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
ExternalDocumentID | 40762748 10_1007_s11517_025_03422_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 82060158 |
GroupedDBID | --- -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 40D 40E 5GY 5RE 5VS 67Z 6NX 7RV 7WY 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ATHPR AXYYD AYFIA AZFZN B-. BA0 BBNVY BENPR BGNMA BHPHI BMSDO BSONS CITATION CS3 CSCUP DDRTE DNIVK DPUIP DU5 EAP EBLON EBR EBS EBU EDO EHE EIOEI EMB ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KDC KOV L7B LLZTM M43 M4Y M7P MA- N9A NAPCQ NB0 NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9P PF0 PT4 PT5 QOK QOR QOS QWB R89 R9I RHV ROL RPX RSV RXW S16 S1Z S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ZOVNA ~EX ~KM ACUHS ALIPV NPM 7X8 |
ID | FETCH-LOGICAL-c171t-5fbf0e69a2e64ccb0d06586692e419f3f86ec9aa74b402d3ce949769a5e3670b3 |
ISSN | 0140-0118 1741-0444 |
IngestDate | Wed Aug 06 16:24:16 EDT 2025 Wed Aug 06 16:35:34 EDT 2025 Wed Aug 20 07:42:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Subgroup analysis Non-invasive continuous glucose monitoring Neural network Metabolic characteristics input Bergman minimal model |
Language | English |
License | 2025. International Federation for Medical and Biological Engineering. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c171t-5fbf0e69a2e64ccb0d06586692e419f3f86ec9aa74b402d3ce949769a5e3670b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8155-1178 |
PMID | 40762748 |
PQID | 3236682329 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3236682329 pubmed_primary_40762748 crossref_primary_10_1007_s11517_025_03422_x |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug-05 |
PublicationDateYYYYMMDD | 2025-08-05 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2025 |
References | G Xiong (3422_CR34) 2014; 76 T Terada (3422_CR10) 2014; 16 3422_CR20 3422_CR21 TK Giri (3422_CR16) 2017; 246 3422_CR9 RN Bergman (3422_CR23) 1979; 236 RN Bergman (3422_CR24) 2003; 52 3422_CR25 EV Karpova (3422_CR19) 2019; 91 3422_CR7 JA Tamada (3422_CR13) 1999; 282 3422_CR5 3422_CR2 3422_CR1 W Villena Gonzales (3422_CR22) 2019; 19 OK Cho (3422_CR26) 2004; 50 M Fokkert (3422_CR8) 2017; 5 S Rassel (3422_CR3) 2020; 145 C Dalla Man (3422_CR27) 2004; 287 C Chen (3422_CR12) 2017; 17 3422_CR30 H Wendt (3422_CR33) 2007; 55 3422_CR35 F Tang (3422_CR29) 2008; 8 3422_CR11 CD Man (3422_CR28) 2002; 49 H Okada (3422_CR32) 2020; 10 3422_CR17 AJ Bandodkar (3422_CR15) 2015; 87 E Latres (3422_CR6) 2019; 29 H Sakoe (3422_CR36) 2003; 26 T Lin (3422_CR18) 2018; 7 Tierney M, Tamada J, Potts R, Jovanovic L, Garg S, Team CR (3422_CR14) 2001; 16 IH de Boer (3422_CR4) 2011; 365 J Liu (3422_CR31) 2016; 7 |
References_xml | – ident: 3422_CR17 doi: 10.1038/s41378-022-00355-5 – volume: 287 start-page: E637 issue: 4 year: 2004 ident: 3422_CR27 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00319.2003 – volume: 16 start-page: 491 issue: 8 year: 2014 ident: 3422_CR10 publication-title: Diabetes Technol Ther doi: 10.1089/dia.2013.0355 – volume: 29 start-page: 545 issue: 3 year: 2019 ident: 3422_CR6 publication-title: Cell Metab doi: 10.1016/j.cmet.2019.02.007 – volume: 365 start-page: 2366 issue: 25 year: 2011 ident: 3422_CR4 publication-title: N Engl J Med doi: 10.1056/NEJMoa1111732 – volume: 10 start-page: 6054 issue: 1 year: 2020 ident: 3422_CR32 publication-title: Sci Rep doi: 10.1038/s41598-020-62926-8 – ident: 3422_CR35 doi: 10.1007/978-1-4612-0745-0 – ident: 3422_CR1 doi: 10.2337/dc21-S002 – volume: 7 start-page: 4313 issue: 10 year: 2016 ident: 3422_CR31 publication-title: Biomed Opt Express doi: 10.1364/BOE.7.004313 – volume: 282 start-page: 1839 issue: 19 year: 1999 ident: 3422_CR13 publication-title: JAMA doi: 10.1001/jama.282.19.1839 – ident: 3422_CR25 doi: 10.1038/207833a0 – volume: 52 start-page: 2168 issue: 8 year: 2003 ident: 3422_CR24 publication-title: Diabetes doi: 10.2337/diabetes.52.8.2168 – ident: 3422_CR5 doi: 10.2337/dc18-Sint01 – ident: 3422_CR20 doi: 10.1126/sciadv.1601314 – volume: 5 issue: 1 year: 2017 ident: 3422_CR8 publication-title: BMJ Open Diabetes Res Care doi: 10.1136/bmjdrc-2016-000320 – volume: 236 start-page: 667 issue: 6 year: 1979 ident: 3422_CR23 publication-title: Quantitative estimation of insulin sensitivity – volume: 50 start-page: 1894 issue: 10 year: 2004 ident: 3422_CR26 publication-title: Clin Chem doi: 10.1373/clinchem.2004.036954 – volume: 87 start-page: 394 issue: 1 year: 2015 ident: 3422_CR15 publication-title: Anal Chem doi: 10.1021/ac504300n – volume: 246 start-page: 30 year: 2017 ident: 3422_CR16 publication-title: J Control Release doi: 10.1016/j.jconrel.2016.12.007 – volume: 26 start-page: 43 issue: 1 year: 2003 ident: 3422_CR36 publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/TASSP.1978.1163055 – volume: 7 start-page: 1 issue: 1 year: 2018 ident: 3422_CR18 publication-title: J Drug Assess doi: 10.1080/21556660.2018.1423987 – volume: 8 start-page: 3335 issue: 5 year: 2008 ident: 3422_CR29 publication-title: Sensors (Basel) doi: 10.3390/s8053335 – volume: 55 start-page: 4811 issue: 10 year: 2007 ident: 3422_CR33 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2007.896269 – volume: 76 start-page: 1225 issue: 2 year: 2014 ident: 3422_CR34 publication-title: Nonlinear Dyn doi: 10.1007/s11071-013-1206-z – ident: 3422_CR7 doi: 10.2337/dc18-S006 – volume: 145 start-page: 2441 issue: 7 year: 2020 ident: 3422_CR3 publication-title: Analyst doi: 10.1039/C9AN02354B – volume: 49 start-page: 419 issue: 5 year: 2002 ident: 3422_CR28 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.995680 – volume: 91 start-page: 3778 issue: 6 year: 2019 ident: 3422_CR19 publication-title: Anal Chem doi: 10.1021/acs.analchem.8b05928 – volume: 19 start-page: 800 issue: 4 year: 2019 ident: 3422_CR22 publication-title: Sensors (Basel) doi: 10.3390/s19040800 – volume: 16 start-page: 621 issue: 9–12 year: 2001 ident: 3422_CR14 publication-title: Biosens Bioelectron – ident: 3422_CR2 – ident: 3422_CR9 doi: 10.2337/db19-391-P – volume: 17 start-page: 182 issue: 1 year: 2017 ident: 3422_CR12 publication-title: Sensors doi: 10.3390/s17010182 – ident: 3422_CR21 doi: 10.3390/IECB2023-14593 – ident: 3422_CR30 – ident: 3422_CR11 doi: 10.1159/000368924 |
SSID | ssj0021524 |
Score | 2.4315434 |
SecondaryResourceType | online_first |
Snippet | Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
Title | A non-invasive continuous glucose monitoring method based on the Bergman minimal model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40762748 https://www.proquest.com/docview/3236682329 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqTkK8IH5TBshIvFVBqWM7yWOLGBNie9pg4iXYzoX1YSmaWrTx13NnO0k3bRLjJWov0tXyfT3f2d-dGXunZF7nTWqTglp9SlBNUprUJXmGyYKCQpa-jvvgUO8fy88n6mQ0-rHFWtqs7Xv358a6kv-xKsrQrlQlewfL9kpRgJ_RvvhEC-Pzn2w8n2Lynizb38aT0Il2vmw3RGrtmOhn_i_rOXbhrugpLVt1PCKYLuD8J23iU4ORM6ojoXtxtuPV7hyHABL6NfmvMHQx9K-cvxuiWwWJ37MMbMle8P3U-E3ZL6tB9m0TDvyhvTSD9BME90Nb2RdLs9relxDKs-LUla1KorxF7wrBvWL8klCHuhuddxqLmTEIyROvMZOYKl8MS1V3PH9tBet5hUMPZtJRoY7K66AsY0dgIiHGbGe-t1gc9kk5xi-yp7niaGNhVSivvD6Sq8HLLRmJj0yOHrIHMaXg84CPR2wE7WN27yCSJp6wr3O-DRM-wIRHmPABJjzAhHuY8FXLESY8woRHmHAPk6fseO_j0Yf9JF6nkbhZPlsnqrFNCro0ArR0zqY1hZ9alwLkrGyyptDgSmNyaWUq6sxBKTFYLY0C6vJns2dsjMOFF4yrJtcWfX2qGyOVsMaKVFvn8npmFQBM2LSbp-pX6JpS3W6bCXvbTWWFzo1OrEwLOAtVJjKtCwz6ywl7Hua41yfTnO6NKl7e6bd22f0BrK_YeH2-gdcYVq7tm4iMv53bdA0 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-invasive+continuous+glucose+monitoring+method+based+on+the+Bergman+minimal+model&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Li%2C+Ang&rft.au=Zhao%2C+Long&rft.au=Wu%2C+Chenyang&rft.au=Geng%2C+Zhanxiao&rft.date=2025-08-05&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007%2Fs11517-025-03422-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_025_03422_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |