A non-invasive continuous glucose monitoring method based on the Bergman minimal model

Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant in...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing
Main Authors Li, Ang, Zhao, Long, Wu, Chenyang, Geng, Zhanxiao, Yang, Lihui, Tang, Fei
Format Journal Article
LanguageEnglish
Published United States 05.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring.   CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100.
AbstractList Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring.   CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100.
Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring. CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100.Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches predominantly depend on statistical models to predict blood glucose levels, which often suffer from limited data samples. This leads to significant individual differences in non-invasive continuous glucose monitoring, limiting its scope and promotion. We propose a neural network that uses metabolic characteristics as inputs to predict the rate of insulin-facilitated glucose uptake by cells and postprandial glucose gradient changes (glucose gradient: the rate of change of blood glucose concentration within a unit of time (dG/dt), with the unit of mg/(dL × min), reflects the dynamic change trend of blood glucose levels). This neural network utilises non-invasive continuous glucose monitoring method based on the Bergman minimal model (BM-NCGM) while considering the effects of the glucose gradient, insulin action, and the digestion process on glucose changes, achieving non-invasive continuous glucose monitoring. This work involved 161 subjects in a controlled clinical trial, collecting over 15,000 valid data sets. The predictive results of BM-NCGM for glucose showed that the CEG A area accounted for 77.58% and the A + B area for 99.57%. The correlation coefficient (0.85), RMSE (1.48 mmol/L), and MARD (11.51%) showed an improvement of over 32% compared to the non-use of BM-NCGM. The dynamic time warping algorithm was used to calculate the distance between the predicted blood glucose spectrum and the reference blood glucose spectrum, with an average distance of 21.80, demonstrating the excellent blood glucose spectrum tracking ability of BM-NCGM. This study is the first to apply the Bergman minimum model to non-invasive continuous blood glucose monitoring research, supported by a large amount of clinical trial data, bringing non-invasive continuous blood glucose monitoring closer to its true application in daily blood glucose monitoring. CLINICAL TRIAL REGISTRY NUMBER: ChiCTR1900028100.
Author Wu, Chenyang
Tang, Fei
Li, Ang
Zhao, Long
Geng, Zhanxiao
Yang, Lihui
Author_xml – sequence: 1
  givenname: Ang
  surname: Li
  fullname: Li, Ang
– sequence: 2
  givenname: Long
  surname: Zhao
  fullname: Zhao, Long
– sequence: 3
  givenname: Chenyang
  surname: Wu
  fullname: Wu, Chenyang
– sequence: 4
  givenname: Zhanxiao
  surname: Geng
  fullname: Geng, Zhanxiao
– sequence: 5
  givenname: Lihui
  surname: Yang
  fullname: Yang, Lihui
– sequence: 6
  givenname: Fei
  orcidid: 0000-0001-8155-1178
  surname: Tang
  fullname: Tang, Fei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40762748$$D View this record in MEDLINE/PubMed
BookMark eNo90D1PwzAQgGELgaAU_gAD8shiOH_ETsaC-JKQWIDVcpxLG5TYECdV-fcEWphueXS6e4_JfogBCTnjcMkBzFXiPOOGgcgYSCUE2-yRGTeKM1BK7ZMZcAUMOM-PyHFK7wCCZ0IdkiMFRguj8hl5W9BpK2vC2qVmjdTHMDRhjGOiy3b0MSHtYmiG2DdhSTscVrGipUtY0RjosEJ6jf2yc4F2TWg61068wvaEHNSuTXi6m3Pyenf7cvPAnp7vH28WT8xzwweW1WUNqAsnUCvvS6hAZ7nWhUDFi1rWuUZfOGdUqUBU0mOhCjP5DKU2UMo5udju_ejj54hpsF2TPLatCzj9YKWQWudCimKi5zs6lh1W9qOfzu2_7F-LCYgt8H1Mqcf6n3CwP8HtNridgtvf4HYjvwFWM3M6
Cites_doi 10.1038/s41378-022-00355-5
10.1152/ajpendo.00319.2003
10.1089/dia.2013.0355
10.1016/j.cmet.2019.02.007
10.1056/NEJMoa1111732
10.1038/s41598-020-62926-8
10.1007/978-1-4612-0745-0
10.2337/dc21-S002
10.1364/BOE.7.004313
10.1001/jama.282.19.1839
10.1038/207833a0
10.2337/diabetes.52.8.2168
10.2337/dc18-Sint01
10.1126/sciadv.1601314
10.1136/bmjdrc-2016-000320
10.1373/clinchem.2004.036954
10.1021/ac504300n
10.1016/j.jconrel.2016.12.007
10.1109/TASSP.1978.1163055
10.1080/21556660.2018.1423987
10.3390/s8053335
10.1109/TSP.2007.896269
10.1007/s11071-013-1206-z
10.2337/dc18-S006
10.1039/C9AN02354B
10.1109/10.995680
10.1021/acs.analchem.8b05928
10.3390/s19040800
10.2337/db19-391-P
10.3390/s17010182
10.3390/IECB2023-14593
10.1159/000368924
ContentType Journal Article
Copyright 2025. International Federation for Medical and Biological Engineering.
Copyright_xml – notice: 2025. International Federation for Medical and Biological Engineering.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s11517-025-03422-x
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
ExternalDocumentID 40762748
10_1007_s11517_025_03422_x
Genre Journal Article
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 82060158
GroupedDBID ---
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
40D
40E
5GY
5RE
5VS
67Z
6NX
7RV
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ATHPR
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BENPR
BGNMA
BHPHI
BMSDO
BSONS
CITATION
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EAP
EBLON
EBR
EBS
EBU
EDO
EHE
EIOEI
EMB
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KDC
KOV
L7B
LLZTM
M43
M4Y
M7P
MA-
N9A
NAPCQ
NB0
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOR
QOS
QWB
R89
R9I
RHV
ROL
RPX
RSV
RXW
S16
S1Z
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZOVNA
~EX
~KM
ACUHS
ALIPV
NPM
7X8
ID FETCH-LOGICAL-c171t-5fbf0e69a2e64ccb0d06586692e419f3f86ec9aa74b402d3ce949769a5e3670b3
ISSN 0140-0118
1741-0444
IngestDate Wed Aug 06 16:24:16 EDT 2025
Wed Aug 06 16:35:34 EDT 2025
Wed Aug 20 07:42:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Subgroup analysis
Non-invasive continuous glucose monitoring
Neural network
Metabolic characteristics input
Bergman minimal model
Language English
License 2025. International Federation for Medical and Biological Engineering.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c171t-5fbf0e69a2e64ccb0d06586692e419f3f86ec9aa74b402d3ce949769a5e3670b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8155-1178
PMID 40762748
PQID 3236682329
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3236682329
pubmed_primary_40762748
crossref_primary_10_1007_s11517_025_03422_x
PublicationCentury 2000
PublicationDate 2025-Aug-05
PublicationDateYYYYMMDD 2025-08-05
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical & biological engineering & computing
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2025
References G Xiong (3422_CR34) 2014; 76
T Terada (3422_CR10) 2014; 16
3422_CR20
3422_CR21
TK Giri (3422_CR16) 2017; 246
3422_CR9
RN Bergman (3422_CR23) 1979; 236
RN Bergman (3422_CR24) 2003; 52
3422_CR25
EV Karpova (3422_CR19) 2019; 91
3422_CR7
JA Tamada (3422_CR13) 1999; 282
3422_CR5
3422_CR2
3422_CR1
W Villena Gonzales (3422_CR22) 2019; 19
OK Cho (3422_CR26) 2004; 50
M Fokkert (3422_CR8) 2017; 5
S Rassel (3422_CR3) 2020; 145
C Dalla Man (3422_CR27) 2004; 287
C Chen (3422_CR12) 2017; 17
3422_CR30
H Wendt (3422_CR33) 2007; 55
3422_CR35
F Tang (3422_CR29) 2008; 8
3422_CR11
CD Man (3422_CR28) 2002; 49
H Okada (3422_CR32) 2020; 10
3422_CR17
AJ Bandodkar (3422_CR15) 2015; 87
E Latres (3422_CR6) 2019; 29
H Sakoe (3422_CR36) 2003; 26
T Lin (3422_CR18) 2018; 7
Tierney M, Tamada J, Potts R, Jovanovic L, Garg S, Team CR (3422_CR14) 2001; 16
IH de Boer (3422_CR4) 2011; 365
J Liu (3422_CR31) 2016; 7
References_xml – ident: 3422_CR17
  doi: 10.1038/s41378-022-00355-5
– volume: 287
  start-page: E637
  issue: 4
  year: 2004
  ident: 3422_CR27
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00319.2003
– volume: 16
  start-page: 491
  issue: 8
  year: 2014
  ident: 3422_CR10
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2013.0355
– volume: 29
  start-page: 545
  issue: 3
  year: 2019
  ident: 3422_CR6
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2019.02.007
– volume: 365
  start-page: 2366
  issue: 25
  year: 2011
  ident: 3422_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1111732
– volume: 10
  start-page: 6054
  issue: 1
  year: 2020
  ident: 3422_CR32
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-62926-8
– ident: 3422_CR35
  doi: 10.1007/978-1-4612-0745-0
– ident: 3422_CR1
  doi: 10.2337/dc21-S002
– volume: 7
  start-page: 4313
  issue: 10
  year: 2016
  ident: 3422_CR31
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.7.004313
– volume: 282
  start-page: 1839
  issue: 19
  year: 1999
  ident: 3422_CR13
  publication-title: JAMA
  doi: 10.1001/jama.282.19.1839
– ident: 3422_CR25
  doi: 10.1038/207833a0
– volume: 52
  start-page: 2168
  issue: 8
  year: 2003
  ident: 3422_CR24
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.8.2168
– ident: 3422_CR5
  doi: 10.2337/dc18-Sint01
– ident: 3422_CR20
  doi: 10.1126/sciadv.1601314
– volume: 5
  issue: 1
  year: 2017
  ident: 3422_CR8
  publication-title: BMJ Open Diabetes Res Care
  doi: 10.1136/bmjdrc-2016-000320
– volume: 236
  start-page: 667
  issue: 6
  year: 1979
  ident: 3422_CR23
  publication-title: Quantitative estimation of insulin sensitivity
– volume: 50
  start-page: 1894
  issue: 10
  year: 2004
  ident: 3422_CR26
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2004.036954
– volume: 87
  start-page: 394
  issue: 1
  year: 2015
  ident: 3422_CR15
  publication-title: Anal Chem
  doi: 10.1021/ac504300n
– volume: 246
  start-page: 30
  year: 2017
  ident: 3422_CR16
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2016.12.007
– volume: 26
  start-page: 43
  issue: 1
  year: 2003
  ident: 3422_CR36
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/TASSP.1978.1163055
– volume: 7
  start-page: 1
  issue: 1
  year: 2018
  ident: 3422_CR18
  publication-title: J Drug Assess
  doi: 10.1080/21556660.2018.1423987
– volume: 8
  start-page: 3335
  issue: 5
  year: 2008
  ident: 3422_CR29
  publication-title: Sensors (Basel)
  doi: 10.3390/s8053335
– volume: 55
  start-page: 4811
  issue: 10
  year: 2007
  ident: 3422_CR33
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2007.896269
– volume: 76
  start-page: 1225
  issue: 2
  year: 2014
  ident: 3422_CR34
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-013-1206-z
– ident: 3422_CR7
  doi: 10.2337/dc18-S006
– volume: 145
  start-page: 2441
  issue: 7
  year: 2020
  ident: 3422_CR3
  publication-title: Analyst
  doi: 10.1039/C9AN02354B
– volume: 49
  start-page: 419
  issue: 5
  year: 2002
  ident: 3422_CR28
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.995680
– volume: 91
  start-page: 3778
  issue: 6
  year: 2019
  ident: 3422_CR19
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.8b05928
– volume: 19
  start-page: 800
  issue: 4
  year: 2019
  ident: 3422_CR22
  publication-title: Sensors (Basel)
  doi: 10.3390/s19040800
– volume: 16
  start-page: 621
  issue: 9–12
  year: 2001
  ident: 3422_CR14
  publication-title: Biosens Bioelectron
– ident: 3422_CR2
– ident: 3422_CR9
  doi: 10.2337/db19-391-P
– volume: 17
  start-page: 182
  issue: 1
  year: 2017
  ident: 3422_CR12
  publication-title: Sensors
  doi: 10.3390/s17010182
– ident: 3422_CR21
  doi: 10.3390/IECB2023-14593
– ident: 3422_CR30
– ident: 3422_CR11
  doi: 10.1159/000368924
SSID ssj0021524
Score 2.4315434
SecondaryResourceType online_first
Snippet Currently, non-invasive continuous blood glucose monitoring technology remains insufficient in terms of clinical validation data. Existing approaches...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title A non-invasive continuous glucose monitoring method based on the Bergman minimal model
URI https://www.ncbi.nlm.nih.gov/pubmed/40762748
https://www.proquest.com/docview/3236682329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqTkK8IH5TBshIvFVBqWM7yWOLGBNie9pg4iXYzoX1YSmaWrTx13NnO0k3bRLjJWov0tXyfT3f2d-dGXunZF7nTWqTglp9SlBNUprUJXmGyYKCQpa-jvvgUO8fy88n6mQ0-rHFWtqs7Xv358a6kv-xKsrQrlQlewfL9kpRgJ_RvvhEC-Pzn2w8n2Lynizb38aT0Il2vmw3RGrtmOhn_i_rOXbhrugpLVt1PCKYLuD8J23iU4ORM6ojoXtxtuPV7hyHABL6NfmvMHQx9K-cvxuiWwWJ37MMbMle8P3U-E3ZL6tB9m0TDvyhvTSD9BME90Nb2RdLs9relxDKs-LUla1KorxF7wrBvWL8klCHuhuddxqLmTEIyROvMZOYKl8MS1V3PH9tBet5hUMPZtJRoY7K66AsY0dgIiHGbGe-t1gc9kk5xi-yp7niaGNhVSivvD6Sq8HLLRmJj0yOHrIHMaXg84CPR2wE7WN27yCSJp6wr3O-DRM-wIRHmPABJjzAhHuY8FXLESY8woRHmHAPk6fseO_j0Yf9JF6nkbhZPlsnqrFNCro0ArR0zqY1hZ9alwLkrGyyptDgSmNyaWUq6sxBKTFYLY0C6vJns2dsjMOFF4yrJtcWfX2qGyOVsMaKVFvn8npmFQBM2LSbp-pX6JpS3W6bCXvbTWWFzo1OrEwLOAtVJjKtCwz6ywl7Hua41yfTnO6NKl7e6bd22f0BrK_YeH2-gdcYVq7tm4iMv53bdA0
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-invasive+continuous+glucose+monitoring+method+based+on+the+Bergman+minimal+model&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Li%2C+Ang&rft.au=Zhao%2C+Long&rft.au=Wu%2C+Chenyang&rft.au=Geng%2C+Zhanxiao&rft.date=2025-08-05&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007%2Fs11517-025-03422-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_025_03422_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon