Selecting Shrinkage Parameters for Effect Estimation

Abstract We present a method for improving estimation in linear regression models in samples of moderate size, using shrinkage techniques. Our work connects the theory of causal inference, which describes how variable adjustment should be performed with large samples, with shrinkage estimators such...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of epidemiology Vol. 187; no. 2; pp. 358 - 365
Main Authors Keller, Joshua P, Rice, Kenneth M
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract We present a method for improving estimation in linear regression models in samples of moderate size, using shrinkage techniques. Our work connects the theory of causal inference, which describes how variable adjustment should be performed with large samples, with shrinkage estimators such as ridge regression and the least absolute shrinkage and selection operator (LASSO), which can perform better in sample sizes seen in epidemiologic practice. Shrinkage methods reduce mean squared error by trading off some amount of bias for a reduction in variance. However, when inference is the goal, there are no standard methods for choosing the penalty “tuning” parameters that govern these tradeoffs. We propose selecting the penalty parameters for these shrinkage estimators by minimizing bias and variance in future similar data sets drawn from the posterior predictive distribution. Our method provides both the point estimate of interest and corresponding standard error estimates. Through simulations, we demonstrate that it can achieve better mean squared error than using cross-validation for penalty parameter selection. We apply our method to a cross-sectional analysis of the association between smoking and carotid intima-media thickness in the Multi-Ethnic Study of Atherosclerosis (multiple US locations, 2000–2002) and compare it with similar analyses of these data.
AbstractList Abstract We present a method for improving estimation in linear regression models in samples of moderate size, using shrinkage techniques. Our work connects the theory of causal inference, which describes how variable adjustment should be performed with large samples, with shrinkage estimators such as ridge regression and the least absolute shrinkage and selection operator (LASSO), which can perform better in sample sizes seen in epidemiologic practice. Shrinkage methods reduce mean squared error by trading off some amount of bias for a reduction in variance. However, when inference is the goal, there are no standard methods for choosing the penalty “tuning” parameters that govern these tradeoffs. We propose selecting the penalty parameters for these shrinkage estimators by minimizing bias and variance in future similar data sets drawn from the posterior predictive distribution. Our method provides both the point estimate of interest and corresponding standard error estimates. Through simulations, we demonstrate that it can achieve better mean squared error than using cross-validation for penalty parameter selection. We apply our method to a cross-sectional analysis of the association between smoking and carotid intima-media thickness in the Multi-Ethnic Study of Atherosclerosis (multiple US locations, 2000–2002) and compare it with similar analyses of these data.
Author Keller, Joshua P
Rice, Kenneth M
Author_xml – sequence: 1
  givenname: Joshua P
  surname: Keller
  fullname: Keller, Joshua P
  email: jkelle46@jhu.edu
  organization: Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
– sequence: 2
  givenname: Kenneth M
  surname: Rice
  fullname: Rice, Kenneth M
  organization: Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
BookMark eNp9j0tLw0AUhQepYFvd-AuycSPE3juvOEsp8QEFhXYfbiYzNX0kZSai_ntH4trVWZyPw_lmbNL1nWPsGuEOwYgF7dxi__nFuTpjU5SFzjVXesKmAMBzwzW_YLMYdwCIRsGUybU7ODu03TZbv4e229PWZW8U6OgGF2Lm-5CV3ickK-PQHmlo--6SnXs6RHf1l3O2eSw3y-d89fr0snxY5RYLVDkVaJyvdUECG4vam7oxCHiPSta1JEHCUpOOSYHCSJE6ZbQiWQjlwYo5ux1nbehjDM5Xp5AehO8KofrVrZJuNeom-GaE-4_Tf9wPezJWag
Cites_doi 10.1093/aje/kwm355
10.1007/978-1-4614-1353-0
10.1080/01621459.2014.993077
10.1177/0962280210387717
10.1093/aje/kwv108
10.1007/978-3-642-20192-9
10.1080/00401706.1970.10488634
10.1017/CBO9780511803161
10.1093/biomet/asn015
10.1093/ije/dyw040
10.1007/s10654-009-9411-2
10.1111/biom.12315
10.1146/annurev-publhealth-031914-122559
10.1002/sim.6123
10.1007/978-0-387-84858-7
10.1093/aje/kwp035
10.1111/j.2517-6161.1996.tb02080.x
10.1080/01621459.1997.10473615
10.1080/00401706.1979.10489751
10.1093/aje/kwf113
10.1002/9780471722199
10.1093/biomet/85.1.1
10.1097/EDE.0b013e31817307dc
10.1016/j.csda.2013.09.011
10.1111/j.1541-0420.2011.01731.x
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2017
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2017
DBID AAYXX
CITATION
DOI 10.1093/aje/kwx225
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1476-6256
EndPage 365
ExternalDocumentID 10_1093_aje_kwx225
10.1093/aje/kwx225
GrantInformation_xml – fundername: National Institutes of Health
  grantid: T32ES015459; N01-HC-95159; N01-HC-95160; N01-HC-95161; N01-HC-95162; N01-HC-95163; N01-HC-95164; N01-HC-95165; N01-HC-95166; N01-HC-95167; N01-HC-95168; N01-HC-95169; UL1-TR-000040; UL1-TR-001079
  funderid: 10.13039/100000002
GroupedDBID ---
-DZ
-E4
-~X
..I
.2P
.I3
.XZ
.ZR
0R~
1TH
23M
2WC
4.4
482
48X
5GY
5RE
5VS
5WA
5WD
6J9
70D
85S
AABZA
AACZT
AAJKP
AAJQQ
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWTL
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABSAR
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
ML0
N9A
NGC
NOMLY
NOYVH
NU-
O9-
OAWHX
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RHF
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TR2
UHB
UPT
W8F
WOQ
X7H
YAYTL
YF5
YKOAZ
YOC
YROCO
YSK
YXANX
ZKX
~91
AAYXX
CITATION
ID FETCH-LOGICAL-c1715-a719efb67a31dc16f9bd91018154bb4a3a3cad00243139439105965a4735f0c3
ISSN 0002-9262
IngestDate Thu Aug 22 11:28:01 EDT 2024
Wed Aug 28 03:19:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords confounding factors (epidemiology)
model selection
shrinkage estimators
LASSO
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1715-a719efb67a31dc16f9bd91018154bb4a3a3cad00243139439105965a4735f0c3
OpenAccessLink https://academic.oup.com/aje/article-pdf/187/2/358/24330841/kwx225.pdf
PageCount 8
ParticipantIDs crossref_primary_10_1093_aje_kwx225
oup_primary_10_1093_aje_kwx225
PublicationCentury 2000
PublicationDate 20180201
2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 20180201
  day: 01
PublicationDecade 2010
PublicationTitle American journal of epidemiology
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hernán ( key 20180313123318_kwx225C1)
Vittinghoff ( key 20180313123318_kwx225C27) 2012
Lefebvre ( key 20180313123318_kwx225C19) 2014; 70
Tibshirani ( key 20180313123318_kwx225C13) 1996; 58
Lefebvre ( key 20180313123318_kwx225C17) 2014; 33
Gelman ( key 20180313123318_kwx225C24) 1996; 6
Greenland ( key 20180313123318_kwx225C10) 2016; 45
Raftery ( key 20180313123318_kwx225C15) 1997; 92
Bild ( key 20180313123318_kwx225C23) 2002; 156
Weng ( key 20180313123318_kwx225C7) 2009; 169
Bühlmann ( key 20180313123318_kwx225C14) 2011
Hoerl ( key 20180313123318_kwx225C4) 1970; 12
Greenland ( key 20180313123318_kwx225C6) 2015; 36
Seber ( key 20180313123318_kwx225C3) 2003
Greenland ( key 20180313123318_kwx225C5) 2008; 167
Gelfand ( key 20180313123318_kwx225C25) 1998; 85
Walter ( key 20180313123318_kwx225C8) 2009; 24
Wang ( key 20180313123318_kwx225C16) 2012; 68
Crainiceanu ( key 20180313123318_kwx225C20) 2008; 95
Hastie ( key 20180313123318_kwx225C21) 2009
Pearl ( key 20180313123318_kwx225C2) 2009
Dominici ( key 20180313123318_kwx225C11) 2008; 19
Vansteelandt ( key 20180313123318_kwx225C9) 2012; 21
Wang ( key 20180313123318_kwx225C18) 2015; 71
Hahn ( key 20180313123318_kwx225C26) 2015; 110
Franklin ( key 20180313123318_kwx225C12) 2015; 182
Golub ( key 20180313123318_kwx225C22) 1979; 21
References_xml – volume: 167
  start-page: 523
  issue: 5
  year: 2008
  ident: key 20180313123318_kwx225C5
  article-title: Invited commentary: variable selection versus shrinkage in the control of multiple confounders
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwm355
  contributor:
    fullname: Greenland
– volume-title: Regression Methods in Biostatistics
  year: 2012
  ident: key 20180313123318_kwx225C27
  doi: 10.1007/978-1-4614-1353-0
  contributor:
    fullname: Vittinghoff
– volume: 110
  start-page: 435
  issue: 509
  year: 2015
  ident: key 20180313123318_kwx225C26
  article-title: Decoupling shrinkage and selection in Bayesian linear models: a posterior summary perspective
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2014.993077
  contributor:
    fullname: Hahn
– volume: 21
  start-page: 7
  issue: 1
  year: 2012
  ident: key 20180313123318_kwx225C9
  article-title: On model selection and model misspecification in causal inference
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280210387717
  contributor:
    fullname: Vansteelandt
– volume: 6
  start-page: 733
  issue: 4
  year: 1996
  ident: key 20180313123318_kwx225C24
  article-title: Posterior predictive assessment of model fitness via realized discrepancies
  publication-title: Stat Sin
  contributor:
    fullname: Gelman
– volume: 182
  start-page: 651
  issue: 7
  year: 2015
  ident: key 20180313123318_kwx225C12
  article-title: Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwv108
  contributor:
    fullname: Franklin
– volume-title: Statistics for High-Dimensional Data
  year: 2011
  ident: key 20180313123318_kwx225C14
  doi: 10.1007/978-3-642-20192-9
  contributor:
    fullname: Bühlmann
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: key 20180313123318_kwx225C4
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
  contributor:
    fullname: Hoerl
– volume-title: Causality: Models, Reasoning, and Inference
  year: 2009
  ident: key 20180313123318_kwx225C2
  doi: 10.1017/CBO9780511803161
  contributor:
    fullname: Pearl
– volume: 95
  start-page: 635
  issue: 3
  year: 2008
  ident: key 20180313123318_kwx225C20
  article-title: Adjustment uncertainty in effect estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/asn015
  contributor:
    fullname: Crainiceanu
– volume: 45
  start-page: 565
  issue: 2
  year: 2016
  ident: key 20180313123318_kwx225C10
  article-title: Outcome modelling strategies in epidemiology: traditional methods and basic alternatives
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyw040
  contributor:
    fullname: Greenland
– volume: 24
  start-page: 733
  issue: 12
  year: 2009
  ident: key 20180313123318_kwx225C8
  article-title: Variable selection: current practice in epidemiological studies
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-009-9411-2
  contributor:
    fullname: Walter
– volume: 71
  start-page: 654
  issue: 3
  year: 2015
  ident: key 20180313123318_kwx225C18
  article-title: Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models
  publication-title: Biometrics
  doi: 10.1111/biom.12315
  contributor:
    fullname: Wang
– volume: 36
  start-page: 89
  issue: 1
  year: 2015
  ident: key 20180313123318_kwx225C6
  article-title: Statistical foundations for model-based adjustments
  publication-title: Annu Rev Public Health
  doi: 10.1146/annurev-publhealth-031914-122559
  contributor:
    fullname: Greenland
– volume: 33
  start-page: 2797
  issue: 16
  year: 2014
  ident: key 20180313123318_kwx225C17
  article-title: Extending the Bayesian Adjustment for Confounding algorithm to binary treatment covariates to estimate the effect of smoking on carotid intima-media thickness: the Multi-Ethnic Study of Atherosclerosis
  publication-title: Stat Med
  doi: 10.1002/sim.6123
  contributor:
    fullname: Lefebvre
– volume-title: The Elements of Statistical Learning
  year: 2009
  ident: key 20180313123318_kwx225C21
  doi: 10.1007/978-0-387-84858-7
  contributor:
    fullname: Hastie
– volume: 169
  start-page: 1182
  issue: 10
  year: 2009
  ident: key 20180313123318_kwx225C7
  article-title: Methods of covariate selection: directed acyclic graphs and the change-in-estimate procedure
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp035
  contributor:
    fullname: Weng
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: key 20180313123318_kwx225C13
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: Tibshirani
– volume: 92
  start-page: 179
  issue: 437
  year: 1997
  ident: key 20180313123318_kwx225C15
  article-title: Bayesian model averaging for linear regression models
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1997.10473615
  contributor:
    fullname: Raftery
– volume: 21
  start-page: 215
  issue: 2
  year: 1979
  ident: key 20180313123318_kwx225C22
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489751
  contributor:
    fullname: Golub
– volume: 156
  start-page: 871
  issue: 9
  year: 2002
  ident: key 20180313123318_kwx225C23
  article-title: Multi-Ethnic Study of Atherosclerosis: objectives and design
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwf113
  contributor:
    fullname: Bild
– volume-title: Linear Regression Analysis
  year: 2003
  ident: key 20180313123318_kwx225C3
  doi: 10.1002/9780471722199
  contributor:
    fullname: Seber
– volume: 85
  start-page: 1
  issue: 1
  year: 1998
  ident: key 20180313123318_kwx225C25
  article-title: Model choice: a minimum posterior predictive loss approach
  publication-title: Biometrika
  doi: 10.1093/biomet/85.1.1
  contributor:
    fullname: Gelfand
– volume-title: Causal Inference
  ident: key 20180313123318_kwx225C1
  contributor:
    fullname: Hernán
– volume: 19
  start-page: 558
  issue: 4
  year: 2008
  ident: key 20180313123318_kwx225C11
  article-title: Model selection and health effect estimation in environmental epidemiology
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31817307dc
  contributor:
    fullname: Dominici
– volume: 70
  start-page: 227
  year: 2014
  ident: key 20180313123318_kwx225C19
  article-title: The effect of the prior distribution in the Bayesian Adjustment for Confounding algorithm
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.09.011
  contributor:
    fullname: Lefebvre
– volume: 68
  start-page: 661
  issue: 3
  year: 2012
  ident: key 20180313123318_kwx225C16
  article-title: Bayesian effect estimation accounting for adjustment uncertainty
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01731.x
  contributor:
    fullname: Wang
SSID ssj0011950
Score 2.2914305
Snippet Abstract We present a method for improving estimation in linear regression models in samples of moderate size, using shrinkage techniques. Our work connects...
SourceID crossref
oup
SourceType Aggregation Database
Publisher
StartPage 358
Title Selecting Shrinkage Parameters for Effect Estimation
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA06QQQRnYrzMgL6Wrc2abs-imyOwXzQCXsraZoxFDeZG15-vV9uvTiR6UtpS1O2nPbLl_Q75yB0AWEXsgoWOC1feA6FAcFhzcSFQxoRxsOmUFyY_m3QfaC9oT-0Hu6GXTJPLvnnj7yS_6AK5wBXyZL9A7LZTeEE7AO-sAWEYbsSxvfKxEZpao9nMKlU9TdMlltJzUxVQWjUidvwJj_nIFjZWfu5pqAfIXLL2I88GlvCYG_6Ol6wnBR2Z0zjDb3HrK2aVQS3ZQuPS5FRagfqcUEHQxoGDsyPgnK0DAuPhVeIfURrsJthlGgLiKUIrdWr2CP8uM7T27unac9lIexvA1RWNqg_mJMYWse67Tra8CDCyNB2M8xqe5S3rZ33yD9ldWkj0oC2Dd22lIlIdmMhsRjsoh0zI8BXGt49tCYmVbTZNzUPVbStV1axJoztI5qhjjPUcY46BtSxRh3nqB-gQac9uO46xvvC4W7o-g4L3UiMkiBkxE25G4yiJI2UuppPk4QywghnqdKThBxe0qelj5LPpJP0qMnJIapMphNxhDChkKN4ScA4D-D9o0xQ2BeE05aXcu7V0LnthvhFK5zEyx1dQ3XooV8uOF7pNidoK3_6TlFlPluIM8jq5kldIfgF4etNSA
link.rule.ids 315,783,787,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+Shrinkage+Parameters+for+Effect+Estimation&rft.jtitle=American+journal+of+epidemiology&rft.au=Keller%2C+Joshua+P&rft.au=Rice%2C+Kenneth+M&rft.date=2018-02-01&rft.issn=0002-9262&rft.eissn=1476-6256&rft.volume=187&rft.issue=2&rft.spage=358&rft.epage=365&rft_id=info:doi/10.1093%2Faje%2Fkwx225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_aje_kwx225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9262&client=summon