Selecting Shrinkage Parameters for Effect Estimation
Abstract We present a method for improving estimation in linear regression models in samples of moderate size, using shrinkage techniques. Our work connects the theory of causal inference, which describes how variable adjustment should be performed with large samples, with shrinkage estimators such...
Saved in:
Published in | American journal of epidemiology Vol. 187; no. 2; pp. 358 - 365 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
We present a method for improving estimation in linear regression models in samples of moderate size, using shrinkage techniques. Our work connects the theory of causal inference, which describes how variable adjustment should be performed with large samples, with shrinkage estimators such as ridge regression and the least absolute shrinkage and selection operator (LASSO), which can perform better in sample sizes seen in epidemiologic practice. Shrinkage methods reduce mean squared error by trading off some amount of bias for a reduction in variance. However, when inference is the goal, there are no standard methods for choosing the penalty “tuning” parameters that govern these tradeoffs. We propose selecting the penalty parameters for these shrinkage estimators by minimizing bias and variance in future similar data sets drawn from the posterior predictive distribution. Our method provides both the point estimate of interest and corresponding standard error estimates. Through simulations, we demonstrate that it can achieve better mean squared error than using cross-validation for penalty parameter selection. We apply our method to a cross-sectional analysis of the association between smoking and carotid intima-media thickness in the Multi-Ethnic Study of Atherosclerosis (multiple US locations, 2000–2002) and compare it with similar analyses of these data. |
---|---|
AbstractList | Abstract
We present a method for improving estimation in linear regression models in samples of moderate size, using shrinkage techniques. Our work connects the theory of causal inference, which describes how variable adjustment should be performed with large samples, with shrinkage estimators such as ridge regression and the least absolute shrinkage and selection operator (LASSO), which can perform better in sample sizes seen in epidemiologic practice. Shrinkage methods reduce mean squared error by trading off some amount of bias for a reduction in variance. However, when inference is the goal, there are no standard methods for choosing the penalty “tuning” parameters that govern these tradeoffs. We propose selecting the penalty parameters for these shrinkage estimators by minimizing bias and variance in future similar data sets drawn from the posterior predictive distribution. Our method provides both the point estimate of interest and corresponding standard error estimates. Through simulations, we demonstrate that it can achieve better mean squared error than using cross-validation for penalty parameter selection. We apply our method to a cross-sectional analysis of the association between smoking and carotid intima-media thickness in the Multi-Ethnic Study of Atherosclerosis (multiple US locations, 2000–2002) and compare it with similar analyses of these data. |
Author | Keller, Joshua P Rice, Kenneth M |
Author_xml | – sequence: 1 givenname: Joshua P surname: Keller fullname: Keller, Joshua P email: jkelle46@jhu.edu organization: Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland – sequence: 2 givenname: Kenneth M surname: Rice fullname: Rice, Kenneth M organization: Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington |
BookMark | eNp9j0tLw0AUhQepYFvd-AuycSPE3juvOEsp8QEFhXYfbiYzNX0kZSai_ntH4trVWZyPw_lmbNL1nWPsGuEOwYgF7dxi__nFuTpjU5SFzjVXesKmAMBzwzW_YLMYdwCIRsGUybU7ODu03TZbv4e229PWZW8U6OgGF2Lm-5CV3ickK-PQHmlo--6SnXs6RHf1l3O2eSw3y-d89fr0snxY5RYLVDkVaJyvdUECG4vam7oxCHiPSta1JEHCUpOOSYHCSJE6ZbQiWQjlwYo5ux1nbehjDM5Xp5AehO8KofrVrZJuNeom-GaE-4_Tf9wPezJWag |
Cites_doi | 10.1093/aje/kwm355 10.1007/978-1-4614-1353-0 10.1080/01621459.2014.993077 10.1177/0962280210387717 10.1093/aje/kwv108 10.1007/978-3-642-20192-9 10.1080/00401706.1970.10488634 10.1017/CBO9780511803161 10.1093/biomet/asn015 10.1093/ije/dyw040 10.1007/s10654-009-9411-2 10.1111/biom.12315 10.1146/annurev-publhealth-031914-122559 10.1002/sim.6123 10.1007/978-0-387-84858-7 10.1093/aje/kwp035 10.1111/j.2517-6161.1996.tb02080.x 10.1080/01621459.1997.10473615 10.1080/00401706.1979.10489751 10.1093/aje/kwf113 10.1002/9780471722199 10.1093/biomet/85.1.1 10.1097/EDE.0b013e31817307dc 10.1016/j.csda.2013.09.011 10.1111/j.1541-0420.2011.01731.x |
ContentType | Journal Article |
Copyright | The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2017 |
Copyright_xml | – notice: The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2017 |
DBID | AAYXX CITATION |
DOI | 10.1093/aje/kwx225 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1476-6256 |
EndPage | 365 |
ExternalDocumentID | 10_1093_aje_kwx225 10.1093/aje/kwx225 |
GrantInformation_xml | – fundername: National Institutes of Health grantid: T32ES015459; N01-HC-95159; N01-HC-95160; N01-HC-95161; N01-HC-95162; N01-HC-95163; N01-HC-95164; N01-HC-95165; N01-HC-95166; N01-HC-95167; N01-HC-95168; N01-HC-95169; UL1-TR-000040; UL1-TR-001079 funderid: 10.13039/100000002 |
GroupedDBID | --- -DZ -E4 -~X ..I .2P .I3 .XZ .ZR 0R~ 1TH 23M 2WC 4.4 482 48X 5GY 5RE 5VS 5WA 5WD 6J9 70D 85S AABZA AACZT AAJKP AAJQQ AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWTL ABEUO ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPTD ABQLI ABSAR ABXVV ABZBJ ACGFO ACGFS ACGOD ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CS3 CZ4 DAKXR DIK DILTD D~K E3Z EBS EE~ EJD EMOBN F5P F9B FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 ML0 N9A NGC NOMLY NOYVH NU- O9- OAWHX OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RHF ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TR2 UHB UPT W8F WOQ X7H YAYTL YF5 YKOAZ YOC YROCO YSK YXANX ZKX ~91 AAYXX CITATION |
ID | FETCH-LOGICAL-c1715-a719efb67a31dc16f9bd91018154bb4a3a3cad00243139439105965a4735f0c3 |
ISSN | 0002-9262 |
IngestDate | Thu Aug 22 11:28:01 EDT 2024 Wed Aug 28 03:19:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | confounding factors (epidemiology) model selection shrinkage estimators LASSO |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1715-a719efb67a31dc16f9bd91018154bb4a3a3cad00243139439105965a4735f0c3 |
OpenAccessLink | https://academic.oup.com/aje/article-pdf/187/2/358/24330841/kwx225.pdf |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1093_aje_kwx225 oup_primary_10_1093_aje_kwx225 |
PublicationCentury | 2000 |
PublicationDate | 20180201 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 20180201 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | American journal of epidemiology |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hernán ( key 20180313123318_kwx225C1) Vittinghoff ( key 20180313123318_kwx225C27) 2012 Lefebvre ( key 20180313123318_kwx225C19) 2014; 70 Tibshirani ( key 20180313123318_kwx225C13) 1996; 58 Lefebvre ( key 20180313123318_kwx225C17) 2014; 33 Gelman ( key 20180313123318_kwx225C24) 1996; 6 Greenland ( key 20180313123318_kwx225C10) 2016; 45 Raftery ( key 20180313123318_kwx225C15) 1997; 92 Bild ( key 20180313123318_kwx225C23) 2002; 156 Weng ( key 20180313123318_kwx225C7) 2009; 169 Bühlmann ( key 20180313123318_kwx225C14) 2011 Hoerl ( key 20180313123318_kwx225C4) 1970; 12 Greenland ( key 20180313123318_kwx225C6) 2015; 36 Seber ( key 20180313123318_kwx225C3) 2003 Greenland ( key 20180313123318_kwx225C5) 2008; 167 Gelfand ( key 20180313123318_kwx225C25) 1998; 85 Walter ( key 20180313123318_kwx225C8) 2009; 24 Wang ( key 20180313123318_kwx225C16) 2012; 68 Crainiceanu ( key 20180313123318_kwx225C20) 2008; 95 Hastie ( key 20180313123318_kwx225C21) 2009 Pearl ( key 20180313123318_kwx225C2) 2009 Dominici ( key 20180313123318_kwx225C11) 2008; 19 Vansteelandt ( key 20180313123318_kwx225C9) 2012; 21 Wang ( key 20180313123318_kwx225C18) 2015; 71 Hahn ( key 20180313123318_kwx225C26) 2015; 110 Franklin ( key 20180313123318_kwx225C12) 2015; 182 Golub ( key 20180313123318_kwx225C22) 1979; 21 |
References_xml | – volume: 167 start-page: 523 issue: 5 year: 2008 ident: key 20180313123318_kwx225C5 article-title: Invited commentary: variable selection versus shrinkage in the control of multiple confounders publication-title: Am J Epidemiol doi: 10.1093/aje/kwm355 contributor: fullname: Greenland – volume-title: Regression Methods in Biostatistics year: 2012 ident: key 20180313123318_kwx225C27 doi: 10.1007/978-1-4614-1353-0 contributor: fullname: Vittinghoff – volume: 110 start-page: 435 issue: 509 year: 2015 ident: key 20180313123318_kwx225C26 article-title: Decoupling shrinkage and selection in Bayesian linear models: a posterior summary perspective publication-title: J Am Stat Assoc doi: 10.1080/01621459.2014.993077 contributor: fullname: Hahn – volume: 21 start-page: 7 issue: 1 year: 2012 ident: key 20180313123318_kwx225C9 article-title: On model selection and model misspecification in causal inference publication-title: Stat Methods Med Res doi: 10.1177/0962280210387717 contributor: fullname: Vansteelandt – volume: 6 start-page: 733 issue: 4 year: 1996 ident: key 20180313123318_kwx225C24 article-title: Posterior predictive assessment of model fitness via realized discrepancies publication-title: Stat Sin contributor: fullname: Gelman – volume: 182 start-page: 651 issue: 7 year: 2015 ident: key 20180313123318_kwx225C12 article-title: Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses publication-title: Am J Epidemiol doi: 10.1093/aje/kwv108 contributor: fullname: Franklin – volume-title: Statistics for High-Dimensional Data year: 2011 ident: key 20180313123318_kwx225C14 doi: 10.1007/978-3-642-20192-9 contributor: fullname: Bühlmann – volume: 12 start-page: 55 issue: 1 year: 1970 ident: key 20180313123318_kwx225C4 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 contributor: fullname: Hoerl – volume-title: Causality: Models, Reasoning, and Inference year: 2009 ident: key 20180313123318_kwx225C2 doi: 10.1017/CBO9780511803161 contributor: fullname: Pearl – volume: 95 start-page: 635 issue: 3 year: 2008 ident: key 20180313123318_kwx225C20 article-title: Adjustment uncertainty in effect estimation publication-title: Biometrika doi: 10.1093/biomet/asn015 contributor: fullname: Crainiceanu – volume: 45 start-page: 565 issue: 2 year: 2016 ident: key 20180313123318_kwx225C10 article-title: Outcome modelling strategies in epidemiology: traditional methods and basic alternatives publication-title: Int J Epidemiol doi: 10.1093/ije/dyw040 contributor: fullname: Greenland – volume: 24 start-page: 733 issue: 12 year: 2009 ident: key 20180313123318_kwx225C8 article-title: Variable selection: current practice in epidemiological studies publication-title: Eur J Epidemiol doi: 10.1007/s10654-009-9411-2 contributor: fullname: Walter – volume: 71 start-page: 654 issue: 3 year: 2015 ident: key 20180313123318_kwx225C18 article-title: Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models publication-title: Biometrics doi: 10.1111/biom.12315 contributor: fullname: Wang – volume: 36 start-page: 89 issue: 1 year: 2015 ident: key 20180313123318_kwx225C6 article-title: Statistical foundations for model-based adjustments publication-title: Annu Rev Public Health doi: 10.1146/annurev-publhealth-031914-122559 contributor: fullname: Greenland – volume: 33 start-page: 2797 issue: 16 year: 2014 ident: key 20180313123318_kwx225C17 article-title: Extending the Bayesian Adjustment for Confounding algorithm to binary treatment covariates to estimate the effect of smoking on carotid intima-media thickness: the Multi-Ethnic Study of Atherosclerosis publication-title: Stat Med doi: 10.1002/sim.6123 contributor: fullname: Lefebvre – volume-title: The Elements of Statistical Learning year: 2009 ident: key 20180313123318_kwx225C21 doi: 10.1007/978-0-387-84858-7 contributor: fullname: Hastie – volume: 169 start-page: 1182 issue: 10 year: 2009 ident: key 20180313123318_kwx225C7 article-title: Methods of covariate selection: directed acyclic graphs and the change-in-estimate procedure publication-title: Am J Epidemiol doi: 10.1093/aje/kwp035 contributor: fullname: Weng – volume: 58 start-page: 267 issue: 1 year: 1996 ident: key 20180313123318_kwx225C13 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc Series B Stat Methodol doi: 10.1111/j.2517-6161.1996.tb02080.x contributor: fullname: Tibshirani – volume: 92 start-page: 179 issue: 437 year: 1997 ident: key 20180313123318_kwx225C15 article-title: Bayesian model averaging for linear regression models publication-title: J Am Stat Assoc doi: 10.1080/01621459.1997.10473615 contributor: fullname: Raftery – volume: 21 start-page: 215 issue: 2 year: 1979 ident: key 20180313123318_kwx225C22 article-title: Generalized cross-validation as a method for choosing a good ridge parameter publication-title: Technometrics doi: 10.1080/00401706.1979.10489751 contributor: fullname: Golub – volume: 156 start-page: 871 issue: 9 year: 2002 ident: key 20180313123318_kwx225C23 article-title: Multi-Ethnic Study of Atherosclerosis: objectives and design publication-title: Am J Epidemiol doi: 10.1093/aje/kwf113 contributor: fullname: Bild – volume-title: Linear Regression Analysis year: 2003 ident: key 20180313123318_kwx225C3 doi: 10.1002/9780471722199 contributor: fullname: Seber – volume: 85 start-page: 1 issue: 1 year: 1998 ident: key 20180313123318_kwx225C25 article-title: Model choice: a minimum posterior predictive loss approach publication-title: Biometrika doi: 10.1093/biomet/85.1.1 contributor: fullname: Gelfand – volume-title: Causal Inference ident: key 20180313123318_kwx225C1 contributor: fullname: Hernán – volume: 19 start-page: 558 issue: 4 year: 2008 ident: key 20180313123318_kwx225C11 article-title: Model selection and health effect estimation in environmental epidemiology publication-title: Epidemiology doi: 10.1097/EDE.0b013e31817307dc contributor: fullname: Dominici – volume: 70 start-page: 227 year: 2014 ident: key 20180313123318_kwx225C19 article-title: The effect of the prior distribution in the Bayesian Adjustment for Confounding algorithm publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.09.011 contributor: fullname: Lefebvre – volume: 68 start-page: 661 issue: 3 year: 2012 ident: key 20180313123318_kwx225C16 article-title: Bayesian effect estimation accounting for adjustment uncertainty publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01731.x contributor: fullname: Wang |
SSID | ssj0011950 |
Score | 2.2914305 |
Snippet | Abstract
We present a method for improving estimation in linear regression models in samples of moderate size, using shrinkage techniques. Our work connects... |
SourceID | crossref oup |
SourceType | Aggregation Database Publisher |
StartPage | 358 |
Title | Selecting Shrinkage Parameters for Effect Estimation |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA06QQQRnYrzMgL6Wrc2abs-imyOwXzQCXsraZoxFDeZG15-vV9uvTiR6UtpS1O2nPbLl_Q75yB0AWEXsgoWOC1feA6FAcFhzcSFQxoRxsOmUFyY_m3QfaC9oT-0Hu6GXTJPLvnnj7yS_6AK5wBXyZL9A7LZTeEE7AO-sAWEYbsSxvfKxEZpao9nMKlU9TdMlltJzUxVQWjUidvwJj_nIFjZWfu5pqAfIXLL2I88GlvCYG_6Ol6wnBR2Z0zjDb3HrK2aVQS3ZQuPS5FRagfqcUEHQxoGDsyPgnK0DAuPhVeIfURrsJthlGgLiKUIrdWr2CP8uM7T27unac9lIexvA1RWNqg_mJMYWse67Tra8CDCyNB2M8xqe5S3rZ33yD9ldWkj0oC2Dd22lIlIdmMhsRjsoh0zI8BXGt49tCYmVbTZNzUPVbStV1axJoztI5qhjjPUcY46BtSxRh3nqB-gQac9uO46xvvC4W7o-g4L3UiMkiBkxE25G4yiJI2UuppPk4QywghnqdKThBxe0qelj5LPpJP0qMnJIapMphNxhDChkKN4ScA4D-D9o0xQ2BeE05aXcu7V0LnthvhFK5zEyx1dQ3XooV8uOF7pNidoK3_6TlFlPluIM8jq5kldIfgF4etNSA |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+Shrinkage+Parameters+for+Effect+Estimation&rft.jtitle=American+journal+of+epidemiology&rft.au=Keller%2C+Joshua+P&rft.au=Rice%2C+Kenneth+M&rft.date=2018-02-01&rft.issn=0002-9262&rft.eissn=1476-6256&rft.volume=187&rft.issue=2&rft.spage=358&rft.epage=365&rft_id=info:doi/10.1093%2Faje%2Fkwx225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_aje_kwx225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9262&client=summon |