The data recovery strategy on machine learning against false data injection attacks in power cyber physical systems

During the transmission of power measurement data through communication networks from remote terminal unit (RTU) to the state estimator in Supervisory Control and Data Acquisition (SCADA), power cyber-physical systems (PCPSs) are more susceptible to cyber-attacks. To mitigate that threat, this paper...

Full description

Saved in:
Bibliographic Details
Published inMeasurement and control (London)
Main Authors Li, Qinxue, Yang, Xiaofen, Xie, Xuhuan, Liu, Guiyun
Format Journal Article
LanguageEnglish
Published 31.08.2024
Online AccessGet full text

Cover

Loading…
Abstract During the transmission of power measurement data through communication networks from remote terminal unit (RTU) to the state estimator in Supervisory Control and Data Acquisition (SCADA), power cyber-physical systems (PCPSs) are more susceptible to cyber-attacks. To mitigate that threat, this paper is concerned with a new data recovery strategy on machine learning against false data injection attacks (FDIAs) in PCPSs. Firstly, in view of the limited resources (such as limited energy) of adversaries and system protections, a sparse target false data injection attack (FDIA) is constructed. Then, the FDIA detection problem is transformed into a tripartite separation problem, and the alternating direction method of multipliers on proximal exchange (ADMM-PE) is adopted to complete the intrusion detection of FDIAs. In addition, with the help of reliable mask information and real incomplete measurement data provided by the FDIA detection, a similar supervised generative adversarial imputation networks (GAIN) is proposed to complete the measurement data recovery after FDIAs. Specifically, the pseudo labels generated by data analysis methods such as k-means clustering and support vector machine (SVM) to improve the accuracy of measurement data recovery. Finally, the experimental results of PCPSs show the effectiveness and superiority of the proposed data recovery strategy against FDIAs.
AbstractList During the transmission of power measurement data through communication networks from remote terminal unit (RTU) to the state estimator in Supervisory Control and Data Acquisition (SCADA), power cyber-physical systems (PCPSs) are more susceptible to cyber-attacks. To mitigate that threat, this paper is concerned with a new data recovery strategy on machine learning against false data injection attacks (FDIAs) in PCPSs. Firstly, in view of the limited resources (such as limited energy) of adversaries and system protections, a sparse target false data injection attack (FDIA) is constructed. Then, the FDIA detection problem is transformed into a tripartite separation problem, and the alternating direction method of multipliers on proximal exchange (ADMM-PE) is adopted to complete the intrusion detection of FDIAs. In addition, with the help of reliable mask information and real incomplete measurement data provided by the FDIA detection, a similar supervised generative adversarial imputation networks (GAIN) is proposed to complete the measurement data recovery after FDIAs. Specifically, the pseudo labels generated by data analysis methods such as k-means clustering and support vector machine (SVM) to improve the accuracy of measurement data recovery. Finally, the experimental results of PCPSs show the effectiveness and superiority of the proposed data recovery strategy against FDIAs.
Author Yang, Xiaofen
Liu, Guiyun
Xie, Xuhuan
Li, Qinxue
Author_xml – sequence: 1
  givenname: Qinxue
  orcidid: 0000-0001-8791-4056
  surname: Li
  fullname: Li, Qinxue
  organization: Department of Electrical Engineering, Guangzhou Maritime University, Guangzhou, China
– sequence: 2
  givenname: Xiaofen
  surname: Yang
  fullname: Yang, Xiaofen
  organization: School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, China
– sequence: 3
  givenname: Xuhuan
  orcidid: 0000-0002-8494-3094
  surname: Xie
  fullname: Xie, Xuhuan
  organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Guiyun
  orcidid: 0000-0002-4830-8878
  surname: Liu
  fullname: Liu, Guiyun
  organization: School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, China
BookMark eNplkM1OwzAQhH0oEqX0Abj5BQL-i90cUcWfVIlLOUebjZO6tE7ltUB5e1LojT3MSp9m5jA3bBaH6Bm7k-JeSucehFBCVUYoI5VdGWNmbH5mxRlesyXRXky3stYqO2e03XneQgaePA5fPo2ccoLs-5EPkR8BdyF6fvCQYog9hx5CpMw7ONAlGOLeYw6TG3IG_KSJ8NPw7RPHsZn0tBspIBw4jZT9kW7Z1W98efkL9vH8tF2_Fpv3l7f146ZA6UQuXGk0utbqRiNaUzllbWdKWKFvGwVCoWyk1daWUneVltBZ8KZpoCqd67DVCyb_ejENRMl39SmFI6SxlqI-j1X_G0v_AM56Yj0
Cites_doi 10.1109/TII.2018.2875529
10.1016/j.jfranklin.2018.10.022
10.1561/2200000016
10.1016/j.neunet.2021.05.033
10.1016/j.jss.2012.05.073
10.1109/ACCESS.2021.3059042
10.1109/TSG.2022.3164874
10.1109/TSG.2021.3109628
10.1109/JIOT.2021.3113900
10.1038/s41598-018-24271-9
10.1109/TVT.2020.2978263
10.1109/TIM.2023.3267372
10.1109/TSG.2020.3010510
10.1109/TSG.2022.3204796
10.1007/s00521-023-08840-2
10.1109/LSP.2022.3224880
10.1016/j.epsr.2022.108975
10.1561/2400000003
10.1109/TSG.2019.2949998
10.1016/j.rser.2022.112423
10.1109/TMECH.2022.3214314
10.1109/CAC57257.2022.10055697
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1177/00202940241268444
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1177_00202940241268444
GroupedDBID -~X
01A
0R~
54M
AARDL
AATBZ
AAYXX
ABAWP
ABQXT
ABVFX
ACARO
ACDXX
ACGFS
ACGZU
ACSIQ
ADBBV
ADOGD
AEDFJ
AERKM
AEUHG
AEUIJ
AEWDL
AEWHI
AFCOW
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
BCNDV
BDDNI
BENPR
BSEHC
CCPQU
CITATION
DV7
EBS
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
J8X
K.F
OK1
P.B
PIMPY
Q1R
ROL
SFC
UCJ
ID FETCH-LOGICAL-c170t-7543c7d63b3cc6497266f45a8cedb2a02c1b16366513f931af6ae4bba9577fcd3
ISSN 0020-2940
IngestDate Wed Sep 04 12:40:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c170t-7543c7d63b3cc6497266f45a8cedb2a02c1b16366513f931af6ae4bba9577fcd3
ORCID 0000-0002-4830-8878
0000-0002-8494-3094
0000-0001-8791-4056
OpenAccessLink https://doi.org/10.1177/00202940241268444
ParticipantIDs crossref_primary_10_1177_00202940241268444
PublicationCentury 2000
PublicationDate 2024-08-31
PublicationDateYYYYMMDD 2024-08-31
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-31
  day: 31
PublicationDecade 2020
PublicationTitle Measurement and control (London)
PublicationYear 2024
References bibr12-00202940241268444
bibr25-00202940241268444
bibr22-00202940241268444
Liu L (bibr19-00202940241268444) 2014; 5
bibr28-00202940241268444
bibr7-00202940241268444
bibr2-00202940241268444
bibr5-00202940241268444
bibr10-00202940241268444
bibr26-00202940241268444
bibr13-00202940241268444
Liu Y (bibr18-00202940241268444) 2011; 14
bibr23-00202940241268444
bibr9-00202940241268444
bibr6-00202940241268444
Lu KD (bibr3-00202940241268444) 2022; 69
Cao W (bibr16-00202940241268444) 2018; 31
bibr21-00202940241268444
bibr1-00202940241268444
bibr8-00202940241268444
bibr17-00202940241268444
bibr27-00202940241268444
bibr4-00202940241268444
Yoon J (bibr15-00202940241268444) 2018
Hao J (bibr20-00202940241268444) 2015; 11
bibr24-00202940241268444
bibr11-00202940241268444
bibr14-00202940241268444
References_xml – ident: bibr7-00202940241268444
  doi: 10.1109/TII.2018.2875529
– ident: bibr22-00202940241268444
  doi: 10.1016/j.jfranklin.2018.10.022
– ident: bibr23-00202940241268444
  doi: 10.1561/2200000016
– ident: bibr27-00202940241268444
  doi: 10.1016/j.neunet.2021.05.033
– ident: bibr28-00202940241268444
  doi: 10.1016/j.jss.2012.05.073
– ident: bibr2-00202940241268444
  doi: 10.1109/ACCESS.2021.3059042
– volume: 69
  start-page: 3924
  issue: 9
  year: 2022
  ident: bibr3-00202940241268444
  publication-title: IEEE Trans Circuits Syst II Express Briefs
  contributor:
    fullname: Lu KD
– ident: bibr21-00202940241268444
  doi: 10.1109/TSG.2022.3164874
– ident: bibr10-00202940241268444
  doi: 10.1109/TSG.2021.3109628
– ident: bibr12-00202940241268444
  doi: 10.1109/JIOT.2021.3113900
– ident: bibr17-00202940241268444
  doi: 10.1038/s41598-018-24271-9
– ident: bibr24-00202940241268444
  doi: 10.1109/TVT.2020.2978263
– volume: 14
  start-page: 1
  issue: 1
  year: 2011
  ident: bibr18-00202940241268444
  publication-title: ACM T Inf Syst Se
  contributor:
    fullname: Liu Y
– ident: bibr13-00202940241268444
  doi: 10.1109/TIM.2023.3267372
– ident: bibr9-00202940241268444
  doi: 10.1109/TSG.2020.3010510
– volume: 5
  start-page: 612
  issue: 2
  year: 2014
  ident: bibr19-00202940241268444
  publication-title: IEEE T
  contributor:
    fullname: Liu L
– ident: bibr11-00202940241268444
  doi: 10.1109/TSG.2022.3204796
– ident: bibr26-00202940241268444
  doi: 10.1007/s00521-023-08840-2
– ident: bibr14-00202940241268444
  doi: 10.1109/LSP.2022.3224880
– ident: bibr1-00202940241268444
  doi: 10.1016/j.epsr.2022.108975
– volume: 11
  start-page: 1
  issue: 5
  year: 2015
  ident: bibr20-00202940241268444
  publication-title: IEEE T
  contributor:
    fullname: Hao J
– volume: 31
  start-page: 6775
  year: 2018
  ident: bibr16-00202940241268444
  publication-title: Adv Neural Inform Process Syst
  contributor:
    fullname: Cao W
– ident: bibr25-00202940241268444
  doi: 10.1561/2400000003
– ident: bibr5-00202940241268444
  doi: 10.1109/TSG.2019.2949998
– start-page: 5689
  volume-title: Proceedings of the 35th international conference on machine learning
  year: 2018
  ident: bibr15-00202940241268444
  contributor:
    fullname: Yoon J
– ident: bibr6-00202940241268444
  doi: 10.1016/j.rser.2022.112423
– ident: bibr4-00202940241268444
  doi: 10.1109/TMECH.2022.3214314
– ident: bibr8-00202940241268444
  doi: 10.1109/CAC57257.2022.10055697
SSID ssj0000866626
Score 2.3581457
Snippet During the transmission of power measurement data through communication networks from remote terminal unit (RTU) to the state estimator in Supervisory Control...
SourceID crossref
SourceType Aggregation Database
Title The data recovery strategy on machine learning against false data injection attacks in power cyber physical systems
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFA5OX7aHofvBdCp52NNK5bbND_sooog4Qbmy7kmSNHEV7BVvC7v76z1Jk7ZeN5h7CbchDeF-H-nJyTnfQeiLlZFShNCYlzSPCS95LFJ4ZHlJEk2Mnmib4PztnJ1ckdOCFkMor8suaeSe-v3HvJL_QRX6AFebJfsCZPtJoQN-A77QAsLQ_jPGNsQzssdaWP0imndiswt7B3Dn4iR1KAxxE4kbUYE1GBlYmH-xqm-1LxbeNDbd3kWV28ppkVpIaO8DjvORtHmoADX4F316XBf2PqoS0rsZzlzUwEVV_2p7Kv3wvuqiEjMzpKQV3ZVJ0f5sRwFDVetc-G21aOuxqyIlwfc6bL9wVk3zTp_p-d7tbo_tGDsELAsrRNOJQz7VyV76fvVRhUmQLl-e4hVaS2Efgg1w7eD48vu0d8LBeY4xV5KvX5q_-XaiXMvzjGyXkREyXUdv_ekBH3RU2EArun6H3ow0Jd-jOZACW2xxIAUOpMCzGntS4EAK7EmBHSm6F3tSYE8K6MGOFNiRAgdSYE-KD-jq-Gh6eBL7yhqxSvikiTklmeIly2SmFCM5BzPNECr2lS5lKiapSiQY6ozRJDN5lgjDhCZSipxyblSZfUSr9azWnxDmicnhTAqGtCqJ5hO5nxqmDGdaU8mo3ERfw392fd8JqFz_Faitlwz-jF4PJNtGq81Dq3fAQmzkrsd513lYHgGLQGXC
link.rule.ids 315,783,787,867,27936,27937
linkProvider SAGE Publications
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+data+recovery+strategy+on+machine+learning+against+false+data+injection+attacks+in+power+cyber+physical+systems&rft.jtitle=Measurement+and+control+%28London%29&rft.au=Li%2C+Qinxue&rft.au=Yang%2C+Xiaofen&rft.au=Xie%2C+Xuhuan&rft.au=Liu%2C+Guiyun&rft.date=2024-08-31&rft.issn=0020-2940&rft_id=info:doi/10.1177%2F00202940241268444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00202940241268444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-2940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-2940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-2940&client=summon