The data recovery strategy on machine learning against false data injection attacks in power cyber physical systems
During the transmission of power measurement data through communication networks from remote terminal unit (RTU) to the state estimator in Supervisory Control and Data Acquisition (SCADA), power cyber-physical systems (PCPSs) are more susceptible to cyber-attacks. To mitigate that threat, this paper...
Saved in:
Published in | Measurement and control (London) |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
31.08.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | During the transmission of power measurement data through communication networks from remote terminal unit (RTU) to the state estimator in Supervisory Control and Data Acquisition (SCADA), power cyber-physical systems (PCPSs) are more susceptible to cyber-attacks. To mitigate that threat, this paper is concerned with a new data recovery strategy on machine learning against false data injection attacks (FDIAs) in PCPSs. Firstly, in view of the limited resources (such as limited energy) of adversaries and system protections, a sparse target false data injection attack (FDIA) is constructed. Then, the FDIA detection problem is transformed into a tripartite separation problem, and the alternating direction method of multipliers on proximal exchange (ADMM-PE) is adopted to complete the intrusion detection of FDIAs. In addition, with the help of reliable mask information and real incomplete measurement data provided by the FDIA detection, a similar supervised generative adversarial imputation networks (GAIN) is proposed to complete the measurement data recovery after FDIAs. Specifically, the pseudo labels generated by data analysis methods such as k-means clustering and support vector machine (SVM) to improve the accuracy of measurement data recovery. Finally, the experimental results of PCPSs show the effectiveness and superiority of the proposed data recovery strategy against FDIAs. |
---|---|
AbstractList | During the transmission of power measurement data through communication networks from remote terminal unit (RTU) to the state estimator in Supervisory Control and Data Acquisition (SCADA), power cyber-physical systems (PCPSs) are more susceptible to cyber-attacks. To mitigate that threat, this paper is concerned with a new data recovery strategy on machine learning against false data injection attacks (FDIAs) in PCPSs. Firstly, in view of the limited resources (such as limited energy) of adversaries and system protections, a sparse target false data injection attack (FDIA) is constructed. Then, the FDIA detection problem is transformed into a tripartite separation problem, and the alternating direction method of multipliers on proximal exchange (ADMM-PE) is adopted to complete the intrusion detection of FDIAs. In addition, with the help of reliable mask information and real incomplete measurement data provided by the FDIA detection, a similar supervised generative adversarial imputation networks (GAIN) is proposed to complete the measurement data recovery after FDIAs. Specifically, the pseudo labels generated by data analysis methods such as k-means clustering and support vector machine (SVM) to improve the accuracy of measurement data recovery. Finally, the experimental results of PCPSs show the effectiveness and superiority of the proposed data recovery strategy against FDIAs. |
Author | Yang, Xiaofen Liu, Guiyun Xie, Xuhuan Li, Qinxue |
Author_xml | – sequence: 1 givenname: Qinxue orcidid: 0000-0001-8791-4056 surname: Li fullname: Li, Qinxue organization: Department of Electrical Engineering, Guangzhou Maritime University, Guangzhou, China – sequence: 2 givenname: Xiaofen surname: Yang fullname: Yang, Xiaofen organization: School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, China – sequence: 3 givenname: Xuhuan orcidid: 0000-0002-8494-3094 surname: Xie fullname: Xie, Xuhuan organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Guiyun orcidid: 0000-0002-4830-8878 surname: Liu fullname: Liu, Guiyun organization: School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, China |
BookMark | eNplkM1OwzAQhH0oEqX0Abj5BQL-i90cUcWfVIlLOUebjZO6tE7ltUB5e1LojT3MSp9m5jA3bBaH6Bm7k-JeSucehFBCVUYoI5VdGWNmbH5mxRlesyXRXky3stYqO2e03XneQgaePA5fPo2ccoLs-5EPkR8BdyF6fvCQYog9hx5CpMw7ONAlGOLeYw6TG3IG_KSJ8NPw7RPHsZn0tBspIBw4jZT9kW7Z1W98efkL9vH8tF2_Fpv3l7f146ZA6UQuXGk0utbqRiNaUzllbWdKWKFvGwVCoWyk1daWUneVltBZ8KZpoCqd67DVCyb_ejENRMl39SmFI6SxlqI-j1X_G0v_AM56Yj0 |
Cites_doi | 10.1109/TII.2018.2875529 10.1016/j.jfranklin.2018.10.022 10.1561/2200000016 10.1016/j.neunet.2021.05.033 10.1016/j.jss.2012.05.073 10.1109/ACCESS.2021.3059042 10.1109/TSG.2022.3164874 10.1109/TSG.2021.3109628 10.1109/JIOT.2021.3113900 10.1038/s41598-018-24271-9 10.1109/TVT.2020.2978263 10.1109/TIM.2023.3267372 10.1109/TSG.2020.3010510 10.1109/TSG.2022.3204796 10.1007/s00521-023-08840-2 10.1109/LSP.2022.3224880 10.1016/j.epsr.2022.108975 10.1561/2400000003 10.1109/TSG.2019.2949998 10.1016/j.rser.2022.112423 10.1109/TMECH.2022.3214314 10.1109/CAC57257.2022.10055697 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1177/00202940241268444 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1177_00202940241268444 |
GroupedDBID | -~X 01A 0R~ 54M AARDL AATBZ AAYXX ABAWP ABQXT ABVFX ACARO ACDXX ACGFS ACGZU ACSIQ ADBBV ADOGD AEDFJ AERKM AEUHG AEUIJ AEWDL AEWHI AFCOW AFKRA AFKRG AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV BCNDV BDDNI BENPR BSEHC CCPQU CITATION DV7 EBS GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION J8X K.F OK1 P.B PIMPY Q1R ROL SFC UCJ |
ID | FETCH-LOGICAL-c170t-7543c7d63b3cc6497266f45a8cedb2a02c1b16366513f931af6ae4bba9577fcd3 |
ISSN | 0020-2940 |
IngestDate | Wed Sep 04 12:40:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c170t-7543c7d63b3cc6497266f45a8cedb2a02c1b16366513f931af6ae4bba9577fcd3 |
ORCID | 0000-0002-4830-8878 0000-0002-8494-3094 0000-0001-8791-4056 |
OpenAccessLink | https://doi.org/10.1177/00202940241268444 |
ParticipantIDs | crossref_primary_10_1177_00202940241268444 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-31 |
PublicationDateYYYYMMDD | 2024-08-31 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Measurement and control (London) |
PublicationYear | 2024 |
References | bibr12-00202940241268444 bibr25-00202940241268444 bibr22-00202940241268444 Liu L (bibr19-00202940241268444) 2014; 5 bibr28-00202940241268444 bibr7-00202940241268444 bibr2-00202940241268444 bibr5-00202940241268444 bibr10-00202940241268444 bibr26-00202940241268444 bibr13-00202940241268444 Liu Y (bibr18-00202940241268444) 2011; 14 bibr23-00202940241268444 bibr9-00202940241268444 bibr6-00202940241268444 Lu KD (bibr3-00202940241268444) 2022; 69 Cao W (bibr16-00202940241268444) 2018; 31 bibr21-00202940241268444 bibr1-00202940241268444 bibr8-00202940241268444 bibr17-00202940241268444 bibr27-00202940241268444 bibr4-00202940241268444 Yoon J (bibr15-00202940241268444) 2018 Hao J (bibr20-00202940241268444) 2015; 11 bibr24-00202940241268444 bibr11-00202940241268444 bibr14-00202940241268444 |
References_xml | – ident: bibr7-00202940241268444 doi: 10.1109/TII.2018.2875529 – ident: bibr22-00202940241268444 doi: 10.1016/j.jfranklin.2018.10.022 – ident: bibr23-00202940241268444 doi: 10.1561/2200000016 – ident: bibr27-00202940241268444 doi: 10.1016/j.neunet.2021.05.033 – ident: bibr28-00202940241268444 doi: 10.1016/j.jss.2012.05.073 – ident: bibr2-00202940241268444 doi: 10.1109/ACCESS.2021.3059042 – volume: 69 start-page: 3924 issue: 9 year: 2022 ident: bibr3-00202940241268444 publication-title: IEEE Trans Circuits Syst II Express Briefs contributor: fullname: Lu KD – ident: bibr21-00202940241268444 doi: 10.1109/TSG.2022.3164874 – ident: bibr10-00202940241268444 doi: 10.1109/TSG.2021.3109628 – ident: bibr12-00202940241268444 doi: 10.1109/JIOT.2021.3113900 – ident: bibr17-00202940241268444 doi: 10.1038/s41598-018-24271-9 – ident: bibr24-00202940241268444 doi: 10.1109/TVT.2020.2978263 – volume: 14 start-page: 1 issue: 1 year: 2011 ident: bibr18-00202940241268444 publication-title: ACM T Inf Syst Se contributor: fullname: Liu Y – ident: bibr13-00202940241268444 doi: 10.1109/TIM.2023.3267372 – ident: bibr9-00202940241268444 doi: 10.1109/TSG.2020.3010510 – volume: 5 start-page: 612 issue: 2 year: 2014 ident: bibr19-00202940241268444 publication-title: IEEE T contributor: fullname: Liu L – ident: bibr11-00202940241268444 doi: 10.1109/TSG.2022.3204796 – ident: bibr26-00202940241268444 doi: 10.1007/s00521-023-08840-2 – ident: bibr14-00202940241268444 doi: 10.1109/LSP.2022.3224880 – ident: bibr1-00202940241268444 doi: 10.1016/j.epsr.2022.108975 – volume: 11 start-page: 1 issue: 5 year: 2015 ident: bibr20-00202940241268444 publication-title: IEEE T contributor: fullname: Hao J – volume: 31 start-page: 6775 year: 2018 ident: bibr16-00202940241268444 publication-title: Adv Neural Inform Process Syst contributor: fullname: Cao W – ident: bibr25-00202940241268444 doi: 10.1561/2400000003 – ident: bibr5-00202940241268444 doi: 10.1109/TSG.2019.2949998 – start-page: 5689 volume-title: Proceedings of the 35th international conference on machine learning year: 2018 ident: bibr15-00202940241268444 contributor: fullname: Yoon J – ident: bibr6-00202940241268444 doi: 10.1016/j.rser.2022.112423 – ident: bibr4-00202940241268444 doi: 10.1109/TMECH.2022.3214314 – ident: bibr8-00202940241268444 doi: 10.1109/CAC57257.2022.10055697 |
SSID | ssj0000866626 |
Score | 2.3581457 |
Snippet | During the transmission of power measurement data through communication networks from remote terminal unit (RTU) to the state estimator in Supervisory Control... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | The data recovery strategy on machine learning against false data injection attacks in power cyber physical systems |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFA5OX7aHofvBdCp52NNK5bbND_sooog4Qbmy7kmSNHEV7BVvC7v76z1Jk7ZeN5h7CbchDeF-H-nJyTnfQeiLlZFShNCYlzSPCS95LFJ4ZHlJEk2Mnmib4PztnJ1ckdOCFkMor8suaeSe-v3HvJL_QRX6AFebJfsCZPtJoQN-A77QAsLQ_jPGNsQzssdaWP0imndiswt7B3Dn4iR1KAxxE4kbUYE1GBlYmH-xqm-1LxbeNDbd3kWV28ppkVpIaO8DjvORtHmoADX4F316XBf2PqoS0rsZzlzUwEVV_2p7Kv3wvuqiEjMzpKQV3ZVJ0f5sRwFDVetc-G21aOuxqyIlwfc6bL9wVk3zTp_p-d7tbo_tGDsELAsrRNOJQz7VyV76fvVRhUmQLl-e4hVaS2Efgg1w7eD48vu0d8LBeY4xV5KvX5q_-XaiXMvzjGyXkREyXUdv_ekBH3RU2EArun6H3ow0Jd-jOZACW2xxIAUOpMCzGntS4EAK7EmBHSm6F3tSYE8K6MGOFNiRAgdSYE-KD-jq-Gh6eBL7yhqxSvikiTklmeIly2SmFCM5BzPNECr2lS5lKiapSiQY6ozRJDN5lgjDhCZSipxyblSZfUSr9azWnxDmicnhTAqGtCqJ5hO5nxqmDGdaU8mo3ERfw392fd8JqFz_Faitlwz-jF4PJNtGq81Dq3fAQmzkrsd513lYHgGLQGXC |
link.rule.ids | 315,783,787,867,27936,27937 |
linkProvider | SAGE Publications |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+data+recovery+strategy+on+machine+learning+against+false+data+injection+attacks+in+power+cyber+physical+systems&rft.jtitle=Measurement+and+control+%28London%29&rft.au=Li%2C+Qinxue&rft.au=Yang%2C+Xiaofen&rft.au=Xie%2C+Xuhuan&rft.au=Liu%2C+Guiyun&rft.date=2024-08-31&rft.issn=0020-2940&rft_id=info:doi/10.1177%2F00202940241268444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00202940241268444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-2940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-2940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-2940&client=summon |