Solutions of (1+1) and (m+1)-dimensional time-fractional delay PDEs with the Hilfer derivative: Separable and invariant subspace methods
The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace method to solve the scalar and coupled time-delay linear and nonlinear time-fractional PDEs with the Hilfer arbitrary-order derivative. Also, th...
Saved in:
Published in | Chaos, solitons and fractals Vol. 199; p. 116738 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-0779 |
DOI | 10.1016/j.chaos.2025.116738 |
Cover
Loading…
Abstract | The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace method to solve the scalar and coupled time-delay linear and nonlinear time-fractional PDEs with the Hilfer arbitrary-order derivative. Also, this work investigates how to compute different possible types of exact solutions for the k-component coupled (m+1)-dimensional time-delay time-fractional PDEs with the Hilfer arbitrary-order derivative through the invariant subspace method together with and without the linear space variable transformation. More precisely, we show the effectiveness and usefulness of the separable and invariant subspace methods to obtain various types of variable separable forms of exact solutions for the scalar and k-component coupled (1+1)-dimensional time-delay linear and nonlinear time-fractional heat equations with the Hilfer arbitrary-order derivative. In addition, we explicitly illustrated the importance of the invariant subspace method together with and without the linear space variable transformation to compute the variable separable forms of exact solutions for the 2-component coupled (2+1)-dimensional time-delay nonlinear time-fractional diffusion convection reaction systems with the Hilfer arbitrary-order derivative subject to suitable initial and boundary conditions. From this study, we notice that the Euler-gamma, trigonometric, exponential, three-parameter Mittag-Leffler, and polynomial functions are involved in the derived exact solutions. Further, we provide the comparative study of the discussed methods along with illustrative examples in the appropriate places as well as with the existing literature wherever possible.
•The Hilfer fractional derivative is considered.•The theory of separation and invariant subspace methods are discussed.•Scalar and coupled systems of fractional time-delay PDEs are investigated.•Multiplicative, additive, and generalized separable solutions are derived.•The Hilfer fractional nonlinear diffusion convection reaction time-delay systems are considered. |
---|---|
AbstractList | The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace method to solve the scalar and coupled time-delay linear and nonlinear time-fractional PDEs with the Hilfer arbitrary-order derivative. Also, this work investigates how to compute different possible types of exact solutions for the k-component coupled (m+1)-dimensional time-delay time-fractional PDEs with the Hilfer arbitrary-order derivative through the invariant subspace method together with and without the linear space variable transformation. More precisely, we show the effectiveness and usefulness of the separable and invariant subspace methods to obtain various types of variable separable forms of exact solutions for the scalar and k-component coupled (1+1)-dimensional time-delay linear and nonlinear time-fractional heat equations with the Hilfer arbitrary-order derivative. In addition, we explicitly illustrated the importance of the invariant subspace method together with and without the linear space variable transformation to compute the variable separable forms of exact solutions for the 2-component coupled (2+1)-dimensional time-delay nonlinear time-fractional diffusion convection reaction systems with the Hilfer arbitrary-order derivative subject to suitable initial and boundary conditions. From this study, we notice that the Euler-gamma, trigonometric, exponential, three-parameter Mittag-Leffler, and polynomial functions are involved in the derived exact solutions. Further, we provide the comparative study of the discussed methods along with illustrative examples in the appropriate places as well as with the existing literature wherever possible.
•The Hilfer fractional derivative is considered.•The theory of separation and invariant subspace methods are discussed.•Scalar and coupled systems of fractional time-delay PDEs are investigated.•Multiplicative, additive, and generalized separable solutions are derived.•The Hilfer fractional nonlinear diffusion convection reaction time-delay systems are considered. |
ArticleNumber | 116738 |
Author | Priyendhu, K.S. Victor, Stéphane Prakash, P. |
Author_xml | – sequence: 1 givenname: K.S. orcidid: 0000-0001-8343-8398 surname: Priyendhu fullname: Priyendhu, K.S. email: ks_priyendhu@cb.students.amrita.edu organization: Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India – sequence: 2 givenname: P. orcidid: 0000-0002-5552-5619 surname: Prakash fullname: Prakash, P. email: p_prakash@cb.amrita.edu, vishnuindia89@gmail.com organization: Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India – sequence: 3 givenname: Stéphane orcidid: 0000-0002-0575-0383 surname: Victor fullname: Victor, Stéphane email: stephane.victor@ims-bordeaux.fr organization: Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400, Talence, France |
BookMark | eNp9kM1OwzAQhH0oEuXnCbj4CEIJ3jiJCRIHxF-RkEAqnK2NvVFcpUllu0V9Ax6blHLmtLMazWj3O2KTfuiJsTMQKQgorxapaXEIaSayIgUolbyesKmoSpEIpapDdhTCQggBosym7Hs-dOvohj7woeHncAkXHHvLz5ejSqxbUh9GFzseR500Hk3c75Y63PL3h8fAv1xseWyJz1zXkB8t7zYY3YZu-JxW6LHu6LfW9Rv0DvvIw7oOKzTElxTbwYYTdtBgF-j0bx6zz6fHj_tZ8vr2_HJ_95oYUCImZV3mhZQ12MqqIqukyk1JFRpRG1tnCEVVYiWhwFyZpgCVS6XU-K7MKwBQ8pjJfa_xQwieGr3ybol-q0HoHUC90L8A9Q6g3gMcU7f7FI2nbRx5HYyj3pB1nkzUdnD_5n8AuR99uw |
Cites_doi | 10.1134/S0040579518030132 10.1063/1.4984583 10.1140/epjp/s13360-020-00445-1 10.1140/epjp/i2019-12657-3 10.1142/S0218127415500996 10.1007/s40314-023-02340-8 10.1007/s11071-021-06697-5 10.1515/fca-2020-0002 10.1007/s12043-020-01964-3 10.1142/S0217984924504487 10.1142/S0217979223502247 10.1007/s40314-021-01721-1 10.1515/fca-2015-0010 10.1016/j.cnsns.2016.05.017 10.1002/mma.4055 10.1007/s40314-021-01550-2 10.1140/epjp/s13360-020-00170-9 10.1016/j.camwa.2013.05.006 10.1016/j.chaos.2023.113603 10.3846/mma.2021.11270 10.1007/s13540-024-00330-z 10.1002/mma.10073 10.1515/fca-2015-0016 10.1016/j.ijnonlinmec.2014.02.003 10.1016/j.cnsns.2023.107245 10.1142/S0218127412500873 10.1007/s12043-022-02419-7 10.1007/s40314-024-02849-6 10.1016/j.cnsns.2017.04.001 10.1016/j.aml.2014.05.010 10.1115/1.3167615 10.1016/j.aml.2007.02.022 10.1007/s40314-022-01977-1 10.1142/S1793962319410101 10.1007/s11082-022-04088-7 10.1515/fca-2018-0015 10.1007/s11071-015-1906-7 10.1007/s11082-023-04787-9 10.1016/j.cnsns.2013.03.019 10.1016/j.cnsns.2024.108123 10.1016/j.chaos.2024.115852 10.1016/S0370-1573(00)00070-3 10.1007/s40314-020-01346-w 10.1007/s11071-022-07463-x 10.1007/s40314-023-02229-6 10.1080/01495739.2013.770693 10.1016/j.jmaa.2012.04.006 10.1515/fca-2017-0024 10.1142/S0217984920500499 10.1007/s12043-015-1103-8 10.1016/j.jmaa.2004.07.039 10.1080/14029251.2014.894726 10.1016/j.chaos.2017.07.019 10.1142/S021798492550006X 10.1007/s11425-012-4408-9 10.3390/sym8110128 10.1016/j.aop.2013.03.014 10.1016/j.cnsns.2022.106436 10.1016/j.cam.2005.10.017 10.1007/s40314-019-0879-4 10.1007/s40314-023-02540-2 10.1016/S0167-2789(00)00069-5 10.1016/j.cnsns.2012.02.024 10.1007/s13540-023-00199-4 10.1142/S0217979213300053 10.1007/s11071-016-2714-4 10.1016/j.cnsns.2018.03.009 10.1007/s11425-013-4714-x 10.1088/1751-8113/42/47/475201 10.1016/j.matcom.2025.04.014 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2025.116738 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
ExternalDocumentID | 10_1016_j_chaos_2025_116738 S0960077925007519 |
GrantInformation_xml | – fundername: Simons Foundation, United States funderid: http://dx.doi.org/10.13039/100000893 – fundername: IMU-CDC |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AAYXX AFXIZ AGRNS BNPGV CITATION |
ID | FETCH-LOGICAL-c170t-6b64533b1d9d7529374c6e9ac0bcdb2a1596a9315a47cf5174377700034911173 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Thu Aug 07 07:11:21 EDT 2025 Sat Aug 16 17:01:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Invariant subspace method Fractional diffusion delay systems Separable method Hilfer fractional derivative Initial–boundary value problems Exact solutions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c170t-6b64533b1d9d7529374c6e9ac0bcdb2a1596a9315a47cf5174377700034911173 |
ORCID | 0000-0002-5552-5619 0000-0002-0575-0383 0000-0001-8343-8398 |
ParticipantIDs | crossref_primary_10_1016_j_chaos_2025_116738 elsevier_sciencedirect_doi_10_1016_j_chaos_2025_116738 |
PublicationCentury | 2000 |
PublicationDate | October 2025 2025-10-00 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
PublicationDecade | 2020 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mainardi (b7) 1997 Prakash (b58) 2021; 40 Ma (b72) 2012; 55 Jafari, Daftardar-Gejji (b65) 2006; 196 Priyendhu, Prakash, Lakshmanan (b30) 2023; 122 Tarasov, Trujillo (b8) 2013; 334 Polyanin, Sorokin, Vyazmin (b90) 2018; 52 Uma Maheswari, Bakshi (b39) 2022; 96 Bu, Zheng (b89) 2025; 237 Choudhary, Prakash, Daftardar-Gejji (b29) 2019; 38 Ye, Ma, Shen, Zhang (b75) 2014; 21 Sahadevan, Prakash (b56) 2017; 104 Zhu, Qu (b78) 2016; 8 Priyendhu, Prakash, Lakshmanan (b41) 2025; 39 Bakkyaraj, Sahadevan (b54) 2015; 85 Qu, Ji (b81) 2013; 56 Sahadevan, Bakkyaraj (b53) 2012; 393 Prakash (b79) 2019; 134 Prakash, Priyendhu, Anjitha (b31) 2022; 41 Polyanin, Zhurov (b80) 2014; 37 Metzler, Klafter (b13) 2000; 339 Song, Shen, Jin, Zhang (b77) 2013; 18 K.S. Priyendhu (b40) 2024 Sahadevan, Prakash (b21) 2016; 85 Lukashchuk (b55) 2015; 80 Cai (b91) 2015; 25 Rui, Zhang (b46) 2020; 39 Momani, Odibat (b64) 2006; 177 Datsko, Gafiychuk (b88) 2018; 21 Hilfer (b2) 2000 Prakash, Priyendhu, Lakshmanan (b44) 2025; 191 Galaktionov, Svirshchevskii (b71) 2007 Liu, Wang (b60) 2023; 42 Tarasov (b6) 2011 Ionescu, Lopes, Copot, Machado, Bates (b9) 2017; 51 Prakash, Thomas, Bakkyaraj (b36) 2023; 42 Prakash, Priyendhu, Sahadevan (b42) 2024; 27 Rui (b49) 2022; 109 Trigeassou, Maamri, Analysis (b17) 2019 Sahadevan, Bakkyaraj (b20) 2015; 18 Prakash, Priyendhu, Lakshmanan (b33) 2022; 111 Cevikel (b66) 2023; 55 Rui (b26) 2018; 339 Wu, Rui (b45) 2018; 63 Bakkyaraj (b57) 2020; 135 Chu, Inc, Hashemi, Eshaghi (b27) 2022; 41 Polyanin, Zhurov (b86) 2022 Prakash (b25) 2020; 94 Victor, Melchior (b15) 2015; 18 Prakash, Priyendhu, Meenakshi (b37) 2024; 43 Povstenko (b11) 2013; 36 Cevikel (b67) 2025; 39 Prakash, Priyendhu, Lakshmanan (b38) 2024; 137 Podlubny (b1) 1999 Gazizov, Kasatkin, Lukashchuk (b52) 2009; 136 Qu, Zhu (b76) 2009; 42 Gazizov, Kasatkin (b18) 2013; 66 Rui, He (b47) 2024; 47 Diethelm (b4) 2010 Datsko, Luchko, Gafiychuk (b87) 2012; 22 Uma Maheswari, Sahadevan, Yogeshwaran (b48) 2023; 26 Cevikel, Bekir, Guner (b68) 2023; 37 Kilbas, Srivastava, Trujillo (b5) 2006 Cevikel, Bekir (b70) 2023; 37 Ma, Zhang, Tang, Tu (b74) 2012; 218 Giusti, Colombaro, Garra, Garrappa, Polito, Popolizio, Mainardi (b83) 2020; 23 Prakash, Choudhary, Daftardar-Gejji (b28) 2020; 135 Tarasov (b12) 2013; 27 Hilfer, Luchko, Tomovski (b3) 2009; 12 Garra, Tomovski (b34) 2021; 26 Oustaloup (b16) 2014 Bagley, Torvik (b10) 1984; 51 Garra, Gorenflo, Polito, Tomovski (b14) 2014; 242 Ma, Liu (b73) 2012; 17 Polyanin, Zhurov (b85) 2014; 62 Qu, Zhang, Liu (b82) 2000; 144 Artale Harris, Garra (b19) 2013; 20 Raheel, Bekir, Tariq, Cevikel (b69) 2022; 54 Choudhary, Daftardar-Gejji (b23) 2017; 20 Garra (b35) 2017; 40 Ma, Mousa, Ali (b50) 2020; 34 Sahadevan, Prakash (b22) 2017; 42 Thomas, Bakkyaraj (b59) 2024; 43 Choudhary, Daftardar-Gejji (b32) 2019; 10 Liu, Yang (b61) 2023; 173 Axler (b84) 2014 Daftardar-Gejji, Jafari (b63) 2005; 301 Prakash, Priyendhu (b43) 2024; 58 Odibat, Momani (b51) 2008; 21 Artale Harris, Garra (b24) 2017; 58 Jannelli, Speciale (b62) 2021; 105 Song (10.1016/j.chaos.2025.116738_b77) 2013; 18 Rui (10.1016/j.chaos.2025.116738_b26) 2018; 339 Garra (10.1016/j.chaos.2025.116738_b35) 2017; 40 Diethelm (10.1016/j.chaos.2025.116738_b4) 2010 Gazizov (10.1016/j.chaos.2025.116738_b52) 2009; 136 Hilfer (10.1016/j.chaos.2025.116738_b3) 2009; 12 Daftardar-Gejji (10.1016/j.chaos.2025.116738_b63) 2005; 301 Choudhary (10.1016/j.chaos.2025.116738_b29) 2019; 38 Polyanin (10.1016/j.chaos.2025.116738_b80) 2014; 37 Oustaloup (10.1016/j.chaos.2025.116738_b16) 2014 Rui (10.1016/j.chaos.2025.116738_b46) 2020; 39 Giusti (10.1016/j.chaos.2025.116738_b83) 2020; 23 Mainardi (10.1016/j.chaos.2025.116738_b7) 1997 Qu (10.1016/j.chaos.2025.116738_b76) 2009; 42 Qu (10.1016/j.chaos.2025.116738_b82) 2000; 144 Prakash (10.1016/j.chaos.2025.116738_b36) 2023; 42 Trigeassou (10.1016/j.chaos.2025.116738_b17) 2019 Ye (10.1016/j.chaos.2025.116738_b75) 2014; 21 Cai (10.1016/j.chaos.2025.116738_b91) 2015; 25 Prakash (10.1016/j.chaos.2025.116738_b42) 2024; 27 Cevikel (10.1016/j.chaos.2025.116738_b67) 2025; 39 Hilfer (10.1016/j.chaos.2025.116738_b2) 2000 Liu (10.1016/j.chaos.2025.116738_b60) 2023; 42 Garra (10.1016/j.chaos.2025.116738_b14) 2014; 242 Ma (10.1016/j.chaos.2025.116738_b73) 2012; 17 Ionescu (10.1016/j.chaos.2025.116738_b9) 2017; 51 Cevikel (10.1016/j.chaos.2025.116738_b68) 2023; 37 Sahadevan (10.1016/j.chaos.2025.116738_b53) 2012; 393 Victor (10.1016/j.chaos.2025.116738_b15) 2015; 18 Sahadevan (10.1016/j.chaos.2025.116738_b21) 2016; 85 Ma (10.1016/j.chaos.2025.116738_b72) 2012; 55 Prakash (10.1016/j.chaos.2025.116738_b28) 2020; 135 Liu (10.1016/j.chaos.2025.116738_b61) 2023; 173 Bu (10.1016/j.chaos.2025.116738_b89) 2025; 237 Bakkyaraj (10.1016/j.chaos.2025.116738_b57) 2020; 135 Artale Harris (10.1016/j.chaos.2025.116738_b19) 2013; 20 Axler (10.1016/j.chaos.2025.116738_b84) 2014 Datsko (10.1016/j.chaos.2025.116738_b87) 2012; 22 Datsko (10.1016/j.chaos.2025.116738_b88) 2018; 21 Odibat (10.1016/j.chaos.2025.116738_b51) 2008; 21 Prakash (10.1016/j.chaos.2025.116738_b79) 2019; 134 Galaktionov (10.1016/j.chaos.2025.116738_b71) 2007 Ma (10.1016/j.chaos.2025.116738_b50) 2020; 34 Prakash (10.1016/j.chaos.2025.116738_b44) 2025; 191 Zhu (10.1016/j.chaos.2025.116738_b78) 2016; 8 Bakkyaraj (10.1016/j.chaos.2025.116738_b54) 2015; 85 Priyendhu (10.1016/j.chaos.2025.116738_b41) 2025; 39 Metzler (10.1016/j.chaos.2025.116738_b13) 2000; 339 Choudhary (10.1016/j.chaos.2025.116738_b23) 2017; 20 Artale Harris (10.1016/j.chaos.2025.116738_b24) 2017; 58 Ma (10.1016/j.chaos.2025.116738_b74) 2012; 218 Prakash (10.1016/j.chaos.2025.116738_b43) 2024; 58 Momani (10.1016/j.chaos.2025.116738_b64) 2006; 177 Priyendhu (10.1016/j.chaos.2025.116738_b30) 2023; 122 Tarasov (10.1016/j.chaos.2025.116738_b6) 2011 Prakash (10.1016/j.chaos.2025.116738_b25) 2020; 94 Uma Maheswari (10.1016/j.chaos.2025.116738_b48) 2023; 26 Polyanin (10.1016/j.chaos.2025.116738_b90) 2018; 52 Gazizov (10.1016/j.chaos.2025.116738_b18) 2013; 66 Rui (10.1016/j.chaos.2025.116738_b47) 2024; 47 Chu (10.1016/j.chaos.2025.116738_b27) 2022; 41 Sahadevan (10.1016/j.chaos.2025.116738_b56) 2017; 104 Uma Maheswari (10.1016/j.chaos.2025.116738_b39) 2022; 96 Bagley (10.1016/j.chaos.2025.116738_b10) 1984; 51 Sahadevan (10.1016/j.chaos.2025.116738_b20) 2015; 18 Jafari (10.1016/j.chaos.2025.116738_b65) 2006; 196 Tarasov (10.1016/j.chaos.2025.116738_b8) 2013; 334 Qu (10.1016/j.chaos.2025.116738_b81) 2013; 56 Prakash (10.1016/j.chaos.2025.116738_b38) 2024; 137 Wu (10.1016/j.chaos.2025.116738_b45) 2018; 63 Tarasov (10.1016/j.chaos.2025.116738_b12) 2013; 27 Prakash (10.1016/j.chaos.2025.116738_b58) 2021; 40 Sahadevan (10.1016/j.chaos.2025.116738_b22) 2017; 42 Prakash (10.1016/j.chaos.2025.116738_b37) 2024; 43 Polyanin (10.1016/j.chaos.2025.116738_b86) 2022 Prakash (10.1016/j.chaos.2025.116738_b33) 2022; 111 Povstenko (10.1016/j.chaos.2025.116738_b11) 2013; 36 Kilbas (10.1016/j.chaos.2025.116738_b5) 2006 Garra (10.1016/j.chaos.2025.116738_b34) 2021; 26 Cevikel (10.1016/j.chaos.2025.116738_b66) 2023; 55 Choudhary (10.1016/j.chaos.2025.116738_b32) 2019; 10 Lukashchuk (10.1016/j.chaos.2025.116738_b55) 2015; 80 Jannelli (10.1016/j.chaos.2025.116738_b62) 2021; 105 K.S. Priyendhu (10.1016/j.chaos.2025.116738_b40) 2024 Prakash (10.1016/j.chaos.2025.116738_b31) 2022; 41 Podlubny (10.1016/j.chaos.2025.116738_b1) 1999 Cevikel (10.1016/j.chaos.2025.116738_b70) 2023; 37 Rui (10.1016/j.chaos.2025.116738_b49) 2022; 109 Thomas (10.1016/j.chaos.2025.116738_b59) 2024; 43 Raheel (10.1016/j.chaos.2025.116738_b69) 2022; 54 Polyanin (10.1016/j.chaos.2025.116738_b85) 2014; 62 |
References_xml | – volume: 135 start-page: 490 year: 2020 ident: b28 article-title: Exact solutions of generalized time-fractional nonlinear reaction–diffusion equations with time delay publication-title: Eur Phys J Plus – volume: 339 start-page: 1 year: 2000 end-page: 77 ident: b13 article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys Rep – volume: 55 start-page: 1769 year: 2012 end-page: 1778 ident: b72 article-title: A refined invariant subspace method and applications to evolution equations publication-title: Sci China Math – volume: 56 start-page: 2187 year: 2013 end-page: 2203 ident: b81 article-title: Invariant subspaces and conditional Lie-Bäcklund symmetries of inhomogeneous nonlinear diffusion equations publication-title: Sci China Math – volume: 51 start-page: 141 year: 2017 end-page: 159 ident: b9 article-title: The role of fractional calculus in modeling biological phenomena: A review publication-title: Commun Nonlinear Sci Numer Simul – volume: 218 start-page: 7174 year: 2012 end-page: 7183 ident: b74 article-title: Hirota bilinear equations with linear subspaces of solutions publication-title: Appl Math Comput – volume: 39 year: 2025 ident: b67 article-title: Traveling wave solutions of Fordy-Gibbons equation publication-title: Modern Phys Lett B – volume: 21 start-page: 194 year: 2008 end-page: 199 ident: b51 article-title: A generalized differential transform method for linear partial differential equations of fractional order publication-title: Appl Math Lett – volume: 393 start-page: 341 year: 2012 end-page: 347 ident: b53 article-title: Invariant analysis of time-fractional generalized Burgers and Korteweg–de Vries equations publication-title: J Math Anal Appl – volume: 20 start-page: 471 year: 2013 end-page: 481 ident: b19 article-title: Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method publication-title: Nonlinear Stud – volume: 134 start-page: 261 year: 2019 ident: b79 article-title: New exact solutions of generalized convection-reaction–diffusion equation publication-title: Eur Phys J Plus – volume: 47 start-page: 9313 year: 2024 end-page: 9339 ident: b47 article-title: Separation method of semifixed variables together with integral bifurcation method for solving generalized time-fractional thin-film equations publication-title: Math Methods Appl Sci – volume: 20 start-page: 477 year: 2017 end-page: 493 ident: b23 article-title: Invariant subspace method: A tool for solving fractional partial differential equations publication-title: Fract Calc Appl Anal – volume: 39 year: 2025 ident: b41 article-title: Analytical solutions of higher-dimensional coupled system of nonlinear time-fractional diffusion-convection-wave equations publication-title: Modern Phys Lett B – volume: 26 start-page: 2421 year: 2023 end-page: 2438 ident: b48 article-title: Method of separation of variables and exact solution of time fractional nonlinear partial differential and differential-difference equations publication-title: Fract Calc Appl Anal – volume: 18 start-page: 146 year: 2015 end-page: 162 ident: b20 article-title: Invariant subspace method and exact solutions of certain time-fractional nonlinear partial differential equations publication-title: Fract Calc Appl Anal – volume: 63 start-page: 88 year: 2018 end-page: 100 ident: b45 article-title: Method of separation variables combined with homogeneous balanced principle for searching exact solutions of time-fractional nonlinear biological population model publication-title: Commun Nonlinear Sci Numer Simul – year: 2014 ident: b84 article-title: Linear algebra done right – year: 2014 ident: b16 article-title: Diversity and non-integer differentiation for system dynamics – volume: 122 year: 2023 ident: b30 article-title: Invariant subspace method to the initial and boundary value problem of the higher dimensional nonlinear time-fractional PDEs publication-title: Commun Nonlinear Sci Numer Simul – volume: 21 start-page: 237 year: 2018 end-page: 253 ident: b88 article-title: Complex spatio-temporal solutions in fractional reaction–diffusion systems near a bifurcation point publication-title: Fract Calc Appl Anal – start-page: 291 year: 1997 end-page: 348 ident: b7 article-title: Fractional calculus: Some basic problems in continuum and statistical mechanics publication-title: Fractals and fractional calculus in continuum mechanics – volume: 18 start-page: 238 year: 2015 end-page: 260 ident: b15 article-title: Improvements on flat output characterization for fractional systems publication-title: Fract Calc Appl Anal – volume: 41 start-page: 30 year: 2022 ident: b31 article-title: Initial value problem for the (2 + 1)-dimensional time-fractional generalized convection-reaction–diffusion wave equation: invariant subspaces and exact solutions publication-title: Comp Appl Math – volume: 144 start-page: 97 year: 2000 end-page: 123 ident: b82 article-title: Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source publication-title: Phys D – volume: 191 year: 2025 ident: b44 article-title: Generalized separable solutions for publication-title: Chaos Solitons Fractals – volume: 27 start-page: 3240 year: 2024 end-page: 3290 ident: b42 article-title: Generalized separation of variable methods with their comparison: exact solutions of time-fractional nonlinear PDEs in higher dimensions publication-title: Fract Calc Appl Anal – volume: 22 year: 2012 ident: b87 article-title: Pattern formation in fractional reaction–diffusion systems with multiple homogeneous states publication-title: Int J Bifurcat. Chaos – year: 2010 ident: b4 article-title: The analysis of fractional differential equations – year: 2006 ident: b5 article-title: Theory and applications of fractional differential equations – volume: 36 start-page: 351 year: 2013 end-page: 363 ident: b11 article-title: Fractional heat conduction in infinite one-dimensional composite medium publication-title: J Therm Stress – volume: 40 start-page: 1307 year: 2017 end-page: 1315 ident: b35 article-title: Propagation of nonlinear thermoelastic waves in porous media within the theory of heat conduction with memory: physical derivation and exact solutions publication-title: Math Methods Appl Sci – volume: 42 start-page: 199 year: 2023 ident: b60 article-title: Invariant analysis of the linear time-space fractional (2+1)-dimensional Burgers equation publication-title: Comp Appl Math – year: 2000 ident: b2 article-title: Applications of fractional calculus in physics – volume: 80 start-page: 791 year: 2015 end-page: 802 ident: b55 article-title: Conservation laws for time-fractional sub-diffusion and diffusion-wave equations publication-title: Nonlinear Dynam – volume: 42 year: 2009 ident: b76 article-title: Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method publication-title: J Phys A Math Theor – volume: 43 start-page: 30 year: 2024 ident: b37 article-title: Invariant subspace method and exact solutions of the coupled system of time-fractional convection-reaction–diffusion equations publication-title: Comp Appl Math – volume: 23 start-page: 9 year: 2020 end-page: 54 ident: b83 article-title: A practical guide to prabhakar fractional calculus publication-title: Fract Calc Appl Anal – year: 2007 ident: b71 article-title: Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics – volume: 42 start-page: 158 year: 2017 end-page: 177 ident: b22 article-title: Exact solutions and maximal dimension of invariant subspaces of time-fractional coupled nonlinear partial differential equations publication-title: Commun Nonlinear Sci Numer Simul – volume: 96 start-page: 173 year: 2022 ident: b39 article-title: Invariant subspace method for time-fractional nonlinear evolution equations of the third order publication-title: Pramana - J Phys – volume: 109 start-page: 943 year: 2022 end-page: 961 ident: b49 article-title: Separation method of semi-fixed variables together with dynamical system method for solving nonlinear time-fractional PDEs with higher-order terms publication-title: Nonlinear Dynam – volume: 196 start-page: 644 year: 2006 end-page: 651 ident: b65 article-title: Solving a system of nonlinear fractional differential equations using adomian decomposition publication-title: J Comput Appl Math – start-page: 1 year: 2024 end-page: 19 ident: b40 article-title: On the solutions of coupled nonlinear time-fractional diffusion-reaction system with time delays publication-title: Eur Phys J Spec. Top – volume: 21 start-page: 132 year: 2014 end-page: 148 ident: b75 article-title: A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions publication-title: J Nonlinear Math Phys – volume: 55 start-page: 510 year: 2023 ident: b66 article-title: Optical solutions for the (3+1)-dimensional YTSF equation publication-title: Opt Quantum Electron – volume: 52 start-page: 334 year: 2018 end-page: 348 ident: b90 article-title: Reaction–diffusion models with delay: some properties, equations, problems, and solutions publication-title: Theor Found Chem Eng – volume: 27 year: 2013 ident: b12 article-title: Review of some promising fractional physical models publication-title: Internat J Modern Phys B – volume: 334 start-page: 1 year: 2013 end-page: 23 ident: b8 article-title: Fractional power-law spatial dispersion in electrodynamics publication-title: Ann Physics – volume: 62 start-page: 33 year: 2014 end-page: 40 ident: b85 article-title: Non-linear instability and exact solutions to some delay reaction–diffusion systems publication-title: Int J Non-Linear Mech – volume: 301 start-page: 508 year: 2005 end-page: 518 ident: b63 article-title: Adomian decomposition: A tool for solving a system of fractional differential equations publication-title: J Math Anal Appl – volume: 58 year: 2017 ident: b24 article-title: Nonlinear heat conduction equations with memory: physical meaning and analytical results publication-title: J Math Phys – volume: 42 start-page: 97 year: 2023 ident: b36 article-title: Invariant subspaces and exact solutions: (1+1) and (2+1)-dimensional generalized time-fractional thin-film equations publication-title: Comp Appl Math – volume: 26 start-page: 72 year: 2021 end-page: 81 ident: b34 article-title: Exact results on some nonlinear Laguerre-type diffusion equations publication-title: Math Model Anal – year: 2019 ident: b17 article-title: Modeling and stability of fractional order differential systems 2: the infinite state approach – volume: 51 start-page: 294 year: 1984 end-page: 298 ident: b10 article-title: On the appearance of the fractional derivative in the behavior of real materials publication-title: Trans ASME, J Appl Mech – volume: 85 start-page: 849 year: 2015 end-page: 860 ident: b54 article-title: Group formalism of Lie transformations to time-fractional partial differential equations publication-title: Pramana- J Phys – volume: 135 start-page: 126 year: 2020 ident: b57 article-title: Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative publication-title: Eur Phys J Plus – volume: 17 start-page: 3795 year: 2012 end-page: 3801 ident: b73 article-title: Invariant subspaces and exact solutions of a class of dispersive evolution equations publication-title: Commun Nonlinear Sci Numer Simul – volume: 37 start-page: 43 year: 2014 end-page: 48 ident: b80 article-title: Nonlinear delay reaction–diffusion equations with varying transfer coefficients: Exact methods and new solutions publication-title: Appl Math Lett – volume: 177 start-page: 488 year: 2006 end-page: 494 ident: b64 article-title: Analytical solution of a time-fractional Navier–Stokes equation by adomian decomposition method publication-title: Appl Math Comput – volume: 37 year: 2023 ident: b68 article-title: Exploration of new solitons solutions for the Fitzhugh-Nagumo-type equations with conformable derivatives publication-title: Internat J Modern Phys B – year: 1999 ident: b1 article-title: Fractional differential equations – volume: 10 year: 2019 ident: b32 article-title: Solving systems of multi-term fractional PDEs: Invariant subspace approach publication-title: Int J Model Simul Sci Comput – volume: 8 start-page: 128 year: 2016 ident: b78 article-title: Invariant subspaces of the two-dimensional nonlinear evolution equations publication-title: Symmetry – year: 2022 ident: b86 article-title: Separation of variables and exact solutions to nonlinear pDEs – volume: 104 start-page: 107 year: 2017 end-page: 120 ident: b56 article-title: On Lie symmetry analysis and invariant subspace methods of coupled time-fractional partial differential equations publication-title: Chaos Solitons Fractals – volume: 242 start-page: 576 year: 2014 end-page: 589 ident: b14 article-title: Hilfer-prabhakar derivatives and some applications publication-title: Appl Math Comput – volume: 41 start-page: 271 year: 2022 ident: b27 article-title: Analytical treatment of regularized prabhakar fractional differential equations by invariant subspaces publication-title: Comp Appl Math – volume: 136 year: 2009 ident: b52 article-title: Symmetry properties of fractional diffusion equations publication-title: Phys Scr T – volume: 40 start-page: 162 year: 2021 ident: b58 article-title: On group analysis, conservation laws and exact solutions of time-fractional Kudryashov-Sinelshchikov equation publication-title: Comp Appl Math – volume: 12 start-page: 299 year: 2009 end-page: 318 ident: b3 article-title: Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives publication-title: Fract Calc Appl Anal – volume: 38 start-page: 126 year: 2019 ident: b29 article-title: Invariant subspaces and exact solutions for a system of fractional PDEs in higher dimensions publication-title: Comp Appl Math – volume: 58 start-page: 502 year: 2024 end-page: 507 ident: b43 article-title: Separable solutions of the black–scholes equation with three different time fractional-order derivatives publication-title: IFAC- Pap – volume: 85 start-page: 659 year: 2016 end-page: 673 ident: b21 article-title: Exact solution of certain time-fractional nonlinear partial differential equations publication-title: Nonlinear Dynam – volume: 34 year: 2020 ident: b50 article-title: Application of a new hybrid method for solving singular fractional lane-Emden-type equations in astrophysics publication-title: Modern Phys Lett B – volume: 37 year: 2023 ident: b70 article-title: Assorted hyperbolic and trigonometric function solutions of fractional equations with conformable derivative in shallow water publication-title: Modern Phys Lett B – volume: 18 start-page: 2984 year: 2013 end-page: 2992 ident: b77 article-title: New maximal dimension of invariant subspaces to coupled systems with two-component equations publication-title: Commun Nonlinear Sci Numer Simul – volume: 111 year: 2022 ident: b33 article-title: Invariant subspace method for publication-title: Commun Nonlinear Sci Numer Simul – volume: 54 start-page: 668 year: 2022 ident: b69 article-title: Soliton solutions to the generalized (1+1)-dimensional unstable space time-fractional nonlinear Schrödinger model publication-title: Opt Quantum Electron – volume: 105 start-page: 2375 year: 2021 end-page: 2385 ident: b62 article-title: Exact and numerical solutions of two-dimensional time-fractional diffusion-reaction equations through the Lie symmetries publication-title: Nonlinear Dynam – volume: 137 year: 2024 ident: b38 article-title: Nonlinear two-component system of time-fractional PDEs in (2 + 1)-dimensions: Invariant subspace method combined with variable transformation publication-title: Commun Nonlinear Sci Numer Simul – volume: 43 start-page: 353 year: 2024 ident: b59 article-title: Lie symmetry analysis of time fractional nonlinear partial differential equations in hilfer sense publication-title: Comp Appl Math – volume: 237 start-page: 70 year: 2025 end-page: 85 ident: b89 article-title: Local convergence analysis of L1/finite element scheme for a constant delay reaction-subdiffusion equation with uniform time mesh publication-title: Math Comput Simulation – volume: 339 start-page: 158 year: 2018 end-page: 171 ident: b26 article-title: Idea of invariant subspace combined with elementary integral method for investigating exact solutions of time-fractional NPDEs publication-title: Appl Math Comput – year: 2011 ident: b6 article-title: Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media, nonlinear physical science – volume: 173 year: 2023 ident: b61 article-title: Symmetry group analysis of several coupled fractional partial differential equations publication-title: Chaos Solitons Fractals – volume: 94 start-page: 103 year: 2020 ident: b25 article-title: Invariant subspaces and exact solutions for some types of scalar and coupled time-space fractional diffusion equations publication-title: Pramana- J Phys – volume: 39 start-page: 299 year: 2020 ident: b46 article-title: Separation variable method combined with integral bifurcation method for solving time-fractional reaction–diffusion models publication-title: Comp Appl Math – volume: 66 start-page: 576 year: 2013 end-page: 584 ident: b18 article-title: Construction of exact solutions for fractional order differential equations by invariant subspace method publication-title: Comput Math Appl – volume: 25 year: 2015 ident: b91 article-title: Spatiotemporal dynamics in a reaction–diffusion epidemic model with a time-delay in transmission publication-title: Int J Bifurcat. Chaos – volume: 52 start-page: 334 year: 2018 ident: 10.1016/j.chaos.2025.116738_b90 article-title: Reaction–diffusion models with delay: some properties, equations, problems, and solutions publication-title: Theor Found Chem Eng doi: 10.1134/S0040579518030132 – year: 2000 ident: 10.1016/j.chaos.2025.116738_b2 – volume: 58 year: 2017 ident: 10.1016/j.chaos.2025.116738_b24 article-title: Nonlinear heat conduction equations with memory: physical meaning and analytical results publication-title: J Math Phys doi: 10.1063/1.4984583 – volume: 135 start-page: 490 year: 2020 ident: 10.1016/j.chaos.2025.116738_b28 article-title: Exact solutions of generalized time-fractional nonlinear reaction–diffusion equations with time delay publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-020-00445-1 – volume: 134 start-page: 261 year: 2019 ident: 10.1016/j.chaos.2025.116738_b79 article-title: New exact solutions of generalized convection-reaction–diffusion equation publication-title: Eur Phys J Plus doi: 10.1140/epjp/i2019-12657-3 – volume: 25 year: 2015 ident: 10.1016/j.chaos.2025.116738_b91 article-title: Spatiotemporal dynamics in a reaction–diffusion epidemic model with a time-delay in transmission publication-title: Int J Bifurcat. Chaos doi: 10.1142/S0218127415500996 – volume: 136 year: 2009 ident: 10.1016/j.chaos.2025.116738_b52 article-title: Symmetry properties of fractional diffusion equations publication-title: Phys Scr T – volume: 42 start-page: 199 year: 2023 ident: 10.1016/j.chaos.2025.116738_b60 article-title: Invariant analysis of the linear time-space fractional (2+1)-dimensional Burgers equation publication-title: Comp Appl Math doi: 10.1007/s40314-023-02340-8 – volume: 20 start-page: 471 year: 2013 ident: 10.1016/j.chaos.2025.116738_b19 article-title: Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method publication-title: Nonlinear Stud – volume: 105 start-page: 2375 year: 2021 ident: 10.1016/j.chaos.2025.116738_b62 article-title: Exact and numerical solutions of two-dimensional time-fractional diffusion-reaction equations through the Lie symmetries publication-title: Nonlinear Dynam doi: 10.1007/s11071-021-06697-5 – volume: 23 start-page: 9 year: 2020 ident: 10.1016/j.chaos.2025.116738_b83 article-title: A practical guide to prabhakar fractional calculus publication-title: Fract Calc Appl Anal doi: 10.1515/fca-2020-0002 – volume: 94 start-page: 103 year: 2020 ident: 10.1016/j.chaos.2025.116738_b25 article-title: Invariant subspaces and exact solutions for some types of scalar and coupled time-space fractional diffusion equations publication-title: Pramana- J Phys doi: 10.1007/s12043-020-01964-3 – volume: 39 year: 2025 ident: 10.1016/j.chaos.2025.116738_b67 article-title: Traveling wave solutions of Fordy-Gibbons equation publication-title: Modern Phys Lett B doi: 10.1142/S0217984924504487 – volume: 37 year: 2023 ident: 10.1016/j.chaos.2025.116738_b68 article-title: Exploration of new solitons solutions for the Fitzhugh-Nagumo-type equations with conformable derivatives publication-title: Internat J Modern Phys B doi: 10.1142/S0217979223502247 – volume: 41 start-page: 30 year: 2022 ident: 10.1016/j.chaos.2025.116738_b31 article-title: Initial value problem for the (2 + 1)-dimensional time-fractional generalized convection-reaction–diffusion wave equation: invariant subspaces and exact solutions publication-title: Comp Appl Math doi: 10.1007/s40314-021-01721-1 – volume: 18 start-page: 146 year: 2015 ident: 10.1016/j.chaos.2025.116738_b20 article-title: Invariant subspace method and exact solutions of certain time-fractional nonlinear partial differential equations publication-title: Fract Calc Appl Anal doi: 10.1515/fca-2015-0010 – volume: 42 start-page: 158 year: 2017 ident: 10.1016/j.chaos.2025.116738_b22 article-title: Exact solutions and maximal dimension of invariant subspaces of time-fractional coupled nonlinear partial differential equations publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2016.05.017 – volume: 40 start-page: 1307 year: 2017 ident: 10.1016/j.chaos.2025.116738_b35 article-title: Propagation of nonlinear thermoelastic waves in porous media within the theory of heat conduction with memory: physical derivation and exact solutions publication-title: Math Methods Appl Sci doi: 10.1002/mma.4055 – volume: 40 start-page: 162 year: 2021 ident: 10.1016/j.chaos.2025.116738_b58 article-title: On group analysis, conservation laws and exact solutions of time-fractional Kudryashov-Sinelshchikov equation publication-title: Comp Appl Math doi: 10.1007/s40314-021-01550-2 – volume: 135 start-page: 126 year: 2020 ident: 10.1016/j.chaos.2025.116738_b57 article-title: Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-020-00170-9 – volume: 12 start-page: 299 year: 2009 ident: 10.1016/j.chaos.2025.116738_b3 article-title: Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives publication-title: Fract Calc Appl Anal – volume: 66 start-page: 576 year: 2013 ident: 10.1016/j.chaos.2025.116738_b18 article-title: Construction of exact solutions for fractional order differential equations by invariant subspace method publication-title: Comput Math Appl doi: 10.1016/j.camwa.2013.05.006 – volume: 173 year: 2023 ident: 10.1016/j.chaos.2025.116738_b61 article-title: Symmetry group analysis of several coupled fractional partial differential equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113603 – volume: 26 start-page: 72 year: 2021 ident: 10.1016/j.chaos.2025.116738_b34 article-title: Exact results on some nonlinear Laguerre-type diffusion equations publication-title: Math Model Anal doi: 10.3846/mma.2021.11270 – volume: 27 start-page: 3240 year: 2024 ident: 10.1016/j.chaos.2025.116738_b42 article-title: Generalized separation of variable methods with their comparison: exact solutions of time-fractional nonlinear PDEs in higher dimensions publication-title: Fract Calc Appl Anal doi: 10.1007/s13540-024-00330-z – year: 2007 ident: 10.1016/j.chaos.2025.116738_b71 – year: 1999 ident: 10.1016/j.chaos.2025.116738_b1 – year: 2014 ident: 10.1016/j.chaos.2025.116738_b84 – volume: 47 start-page: 9313 year: 2024 ident: 10.1016/j.chaos.2025.116738_b47 article-title: Separation method of semifixed variables together with integral bifurcation method for solving generalized time-fractional thin-film equations publication-title: Math Methods Appl Sci doi: 10.1002/mma.10073 – volume: 18 start-page: 238 year: 2015 ident: 10.1016/j.chaos.2025.116738_b15 article-title: Improvements on flat output characterization for fractional systems publication-title: Fract Calc Appl Anal doi: 10.1515/fca-2015-0016 – year: 2022 ident: 10.1016/j.chaos.2025.116738_b86 – volume: 62 start-page: 33 year: 2014 ident: 10.1016/j.chaos.2025.116738_b85 article-title: Non-linear instability and exact solutions to some delay reaction–diffusion systems publication-title: Int J Non-Linear Mech doi: 10.1016/j.ijnonlinmec.2014.02.003 – year: 2006 ident: 10.1016/j.chaos.2025.116738_b5 – volume: 122 year: 2023 ident: 10.1016/j.chaos.2025.116738_b30 article-title: Invariant subspace method to the initial and boundary value problem of the higher dimensional nonlinear time-fractional PDEs publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2023.107245 – volume: 22 year: 2012 ident: 10.1016/j.chaos.2025.116738_b87 article-title: Pattern formation in fractional reaction–diffusion systems with multiple homogeneous states publication-title: Int J Bifurcat. Chaos doi: 10.1142/S0218127412500873 – volume: 96 start-page: 173 year: 2022 ident: 10.1016/j.chaos.2025.116738_b39 article-title: Invariant subspace method for time-fractional nonlinear evolution equations of the third order publication-title: Pramana - J Phys doi: 10.1007/s12043-022-02419-7 – volume: 43 start-page: 353 year: 2024 ident: 10.1016/j.chaos.2025.116738_b59 article-title: Lie symmetry analysis of time fractional nonlinear partial differential equations in hilfer sense publication-title: Comp Appl Math doi: 10.1007/s40314-024-02849-6 – volume: 51 start-page: 141 year: 2017 ident: 10.1016/j.chaos.2025.116738_b9 article-title: The role of fractional calculus in modeling biological phenomena: A review publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2017.04.001 – volume: 339 start-page: 158 year: 2018 ident: 10.1016/j.chaos.2025.116738_b26 article-title: Idea of invariant subspace combined with elementary integral method for investigating exact solutions of time-fractional NPDEs publication-title: Appl Math Comput – volume: 37 start-page: 43 year: 2014 ident: 10.1016/j.chaos.2025.116738_b80 article-title: Nonlinear delay reaction–diffusion equations with varying transfer coefficients: Exact methods and new solutions publication-title: Appl Math Lett doi: 10.1016/j.aml.2014.05.010 – volume: 51 start-page: 294 year: 1984 ident: 10.1016/j.chaos.2025.116738_b10 article-title: On the appearance of the fractional derivative in the behavior of real materials publication-title: Trans ASME, J Appl Mech doi: 10.1115/1.3167615 – volume: 21 start-page: 194 year: 2008 ident: 10.1016/j.chaos.2025.116738_b51 article-title: A generalized differential transform method for linear partial differential equations of fractional order publication-title: Appl Math Lett doi: 10.1016/j.aml.2007.02.022 – volume: 41 start-page: 271 year: 2022 ident: 10.1016/j.chaos.2025.116738_b27 article-title: Analytical treatment of regularized prabhakar fractional differential equations by invariant subspaces publication-title: Comp Appl Math doi: 10.1007/s40314-022-01977-1 – year: 2010 ident: 10.1016/j.chaos.2025.116738_b4 – volume: 10 year: 2019 ident: 10.1016/j.chaos.2025.116738_b32 article-title: Solving systems of multi-term fractional PDEs: Invariant subspace approach publication-title: Int J Model Simul Sci Comput doi: 10.1142/S1793962319410101 – year: 2011 ident: 10.1016/j.chaos.2025.116738_b6 – volume: 54 start-page: 668 year: 2022 ident: 10.1016/j.chaos.2025.116738_b69 article-title: Soliton solutions to the generalized (1+1)-dimensional unstable space time-fractional nonlinear Schrödinger model publication-title: Opt Quantum Electron doi: 10.1007/s11082-022-04088-7 – volume: 21 start-page: 237 year: 2018 ident: 10.1016/j.chaos.2025.116738_b88 article-title: Complex spatio-temporal solutions in fractional reaction–diffusion systems near a bifurcation point publication-title: Fract Calc Appl Anal doi: 10.1515/fca-2018-0015 – volume: 80 start-page: 791 year: 2015 ident: 10.1016/j.chaos.2025.116738_b55 article-title: Conservation laws for time-fractional sub-diffusion and diffusion-wave equations publication-title: Nonlinear Dynam doi: 10.1007/s11071-015-1906-7 – volume: 55 start-page: 510 year: 2023 ident: 10.1016/j.chaos.2025.116738_b66 article-title: Optical solutions for the (3+1)-dimensional YTSF equation publication-title: Opt Quantum Electron doi: 10.1007/s11082-023-04787-9 – volume: 18 start-page: 2984 year: 2013 ident: 10.1016/j.chaos.2025.116738_b77 article-title: New maximal dimension of invariant subspaces to coupled systems with two-component equations publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2013.03.019 – volume: 137 year: 2024 ident: 10.1016/j.chaos.2025.116738_b38 article-title: Nonlinear two-component system of time-fractional PDEs in (2 + 1)-dimensions: Invariant subspace method combined with variable transformation publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2024.108123 – volume: 191 year: 2025 ident: 10.1016/j.chaos.2025.116738_b44 article-title: Generalized separable solutions for (2+1) and (3+1)-dimensional m-component coupled nonlinear systems of PDEs under three different time-fractional derivatives publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2024.115852 – volume: 339 start-page: 1 year: 2000 ident: 10.1016/j.chaos.2025.116738_b13 article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys Rep doi: 10.1016/S0370-1573(00)00070-3 – volume: 39 start-page: 299 year: 2020 ident: 10.1016/j.chaos.2025.116738_b46 article-title: Separation variable method combined with integral bifurcation method for solving time-fractional reaction–diffusion models publication-title: Comp Appl Math doi: 10.1007/s40314-020-01346-w – volume: 109 start-page: 943 year: 2022 ident: 10.1016/j.chaos.2025.116738_b49 article-title: Separation method of semi-fixed variables together with dynamical system method for solving nonlinear time-fractional PDEs with higher-order terms publication-title: Nonlinear Dynam doi: 10.1007/s11071-022-07463-x – volume: 42 start-page: 97 year: 2023 ident: 10.1016/j.chaos.2025.116738_b36 article-title: Invariant subspaces and exact solutions: (1+1) and (2+1)-dimensional generalized time-fractional thin-film equations publication-title: Comp Appl Math doi: 10.1007/s40314-023-02229-6 – volume: 36 start-page: 351 year: 2013 ident: 10.1016/j.chaos.2025.116738_b11 article-title: Fractional heat conduction in infinite one-dimensional composite medium publication-title: J Therm Stress doi: 10.1080/01495739.2013.770693 – volume: 393 start-page: 341 year: 2012 ident: 10.1016/j.chaos.2025.116738_b53 article-title: Invariant analysis of time-fractional generalized Burgers and Korteweg–de Vries equations publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2012.04.006 – volume: 20 start-page: 477 year: 2017 ident: 10.1016/j.chaos.2025.116738_b23 article-title: Invariant subspace method: A tool for solving fractional partial differential equations publication-title: Fract Calc Appl Anal doi: 10.1515/fca-2017-0024 – volume: 34 year: 2020 ident: 10.1016/j.chaos.2025.116738_b50 article-title: Application of a new hybrid method for solving singular fractional lane-Emden-type equations in astrophysics publication-title: Modern Phys Lett B doi: 10.1142/S0217984920500499 – volume: 85 start-page: 849 year: 2015 ident: 10.1016/j.chaos.2025.116738_b54 article-title: Group formalism of Lie transformations to time-fractional partial differential equations publication-title: Pramana- J Phys doi: 10.1007/s12043-015-1103-8 – volume: 301 start-page: 508 year: 2005 ident: 10.1016/j.chaos.2025.116738_b63 article-title: Adomian decomposition: A tool for solving a system of fractional differential equations publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2004.07.039 – volume: 21 start-page: 132 year: 2014 ident: 10.1016/j.chaos.2025.116738_b75 article-title: A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions publication-title: J Nonlinear Math Phys doi: 10.1080/14029251.2014.894726 – volume: 104 start-page: 107 year: 2017 ident: 10.1016/j.chaos.2025.116738_b56 article-title: On Lie symmetry analysis and invariant subspace methods of coupled time-fractional partial differential equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.07.019 – volume: 39 issue: 16 year: 2025 ident: 10.1016/j.chaos.2025.116738_b41 article-title: Analytical solutions of higher-dimensional coupled system of nonlinear time-fractional diffusion-convection-wave equations publication-title: Modern Phys Lett B doi: 10.1142/S021798492550006X – volume: 55 start-page: 1769 year: 2012 ident: 10.1016/j.chaos.2025.116738_b72 article-title: A refined invariant subspace method and applications to evolution equations publication-title: Sci China Math doi: 10.1007/s11425-012-4408-9 – volume: 8 start-page: 128 year: 2016 ident: 10.1016/j.chaos.2025.116738_b78 article-title: Invariant subspaces of the two-dimensional nonlinear evolution equations publication-title: Symmetry doi: 10.3390/sym8110128 – volume: 334 start-page: 1 year: 2013 ident: 10.1016/j.chaos.2025.116738_b8 article-title: Fractional power-law spatial dispersion in electrodynamics publication-title: Ann Physics doi: 10.1016/j.aop.2013.03.014 – volume: 111 year: 2022 ident: 10.1016/j.chaos.2025.116738_b33 article-title: Invariant subspace method for (m+1)-dimensional non-linear time-fractional partial differential equations publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2022.106436 – volume: 196 start-page: 644 year: 2006 ident: 10.1016/j.chaos.2025.116738_b65 article-title: Solving a system of nonlinear fractional differential equations using adomian decomposition publication-title: J Comput Appl Math doi: 10.1016/j.cam.2005.10.017 – volume: 38 start-page: 126 year: 2019 ident: 10.1016/j.chaos.2025.116738_b29 article-title: Invariant subspaces and exact solutions for a system of fractional PDEs in higher dimensions publication-title: Comp Appl Math doi: 10.1007/s40314-019-0879-4 – start-page: 1 year: 2024 ident: 10.1016/j.chaos.2025.116738_b40 article-title: On the solutions of coupled nonlinear time-fractional diffusion-reaction system with time delays publication-title: Eur Phys J Spec. Top – year: 2014 ident: 10.1016/j.chaos.2025.116738_b16 – volume: 242 start-page: 576 year: 2014 ident: 10.1016/j.chaos.2025.116738_b14 article-title: Hilfer-prabhakar derivatives and some applications publication-title: Appl Math Comput – year: 2019 ident: 10.1016/j.chaos.2025.116738_b17 – volume: 43 start-page: 30 year: 2024 ident: 10.1016/j.chaos.2025.116738_b37 article-title: Invariant subspace method and exact solutions of the coupled system of time-fractional convection-reaction–diffusion equations publication-title: Comp Appl Math doi: 10.1007/s40314-023-02540-2 – volume: 144 start-page: 97 year: 2000 ident: 10.1016/j.chaos.2025.116738_b82 article-title: Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source publication-title: Phys D doi: 10.1016/S0167-2789(00)00069-5 – volume: 17 start-page: 3795 year: 2012 ident: 10.1016/j.chaos.2025.116738_b73 article-title: Invariant subspaces and exact solutions of a class of dispersive evolution equations publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.02.024 – start-page: 291 year: 1997 ident: 10.1016/j.chaos.2025.116738_b7 article-title: Fractional calculus: Some basic problems in continuum and statistical mechanics – volume: 26 start-page: 2421 year: 2023 ident: 10.1016/j.chaos.2025.116738_b48 article-title: Method of separation of variables and exact solution of time fractional nonlinear partial differential and differential-difference equations publication-title: Fract Calc Appl Anal doi: 10.1007/s13540-023-00199-4 – volume: 37 year: 2023 ident: 10.1016/j.chaos.2025.116738_b70 article-title: Assorted hyperbolic and trigonometric function solutions of fractional equations with conformable derivative in shallow water publication-title: Modern Phys Lett B – volume: 27 year: 2013 ident: 10.1016/j.chaos.2025.116738_b12 article-title: Review of some promising fractional physical models publication-title: Internat J Modern Phys B doi: 10.1142/S0217979213300053 – volume: 85 start-page: 659 year: 2016 ident: 10.1016/j.chaos.2025.116738_b21 article-title: Exact solution of certain time-fractional nonlinear partial differential equations publication-title: Nonlinear Dynam doi: 10.1007/s11071-016-2714-4 – volume: 218 start-page: 7174 year: 2012 ident: 10.1016/j.chaos.2025.116738_b74 article-title: Hirota bilinear equations with linear subspaces of solutions publication-title: Appl Math Comput – volume: 58 start-page: 502 year: 2024 ident: 10.1016/j.chaos.2025.116738_b43 article-title: Separable solutions of the black–scholes equation with three different time fractional-order derivatives publication-title: IFAC- Pap – volume: 177 start-page: 488 year: 2006 ident: 10.1016/j.chaos.2025.116738_b64 article-title: Analytical solution of a time-fractional Navier–Stokes equation by adomian decomposition method publication-title: Appl Math Comput – volume: 63 start-page: 88 year: 2018 ident: 10.1016/j.chaos.2025.116738_b45 article-title: Method of separation variables combined with homogeneous balanced principle for searching exact solutions of time-fractional nonlinear biological population model publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2018.03.009 – volume: 56 start-page: 2187 year: 2013 ident: 10.1016/j.chaos.2025.116738_b81 article-title: Invariant subspaces and conditional Lie-Bäcklund symmetries of inhomogeneous nonlinear diffusion equations publication-title: Sci China Math doi: 10.1007/s11425-013-4714-x – volume: 42 year: 2009 ident: 10.1016/j.chaos.2025.116738_b76 article-title: Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method publication-title: J Phys A Math Theor doi: 10.1088/1751-8113/42/47/475201 – volume: 237 start-page: 70 year: 2025 ident: 10.1016/j.chaos.2025.116738_b89 article-title: Local convergence analysis of L1/finite element scheme for a constant delay reaction-subdiffusion equation with uniform time mesh publication-title: Math Comput Simulation doi: 10.1016/j.matcom.2025.04.014 |
SSID | ssj0001062 |
Score | 2.4652793 |
Snippet | The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 116738 |
SubjectTerms | Exact solutions Fractional diffusion delay systems Hilfer fractional derivative Initial–boundary value problems Invariant subspace method Separable method |
Title | Solutions of (1+1) and (m+1)-dimensional time-fractional delay PDEs with the Hilfer derivative: Separable and invariant subspace methods |
URI | https://dx.doi.org/10.1016/j.chaos.2025.116738 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRgBDV-kh48QLSwwdaCN4IQ1EBMkITbsnZtxOAgDEm8ePbP9rXdUBPjwdu69WPpa9_7tX39PYQuAFEAjldNwuuMErDXPuECJh5XUiqpqJCGdnEwpP2xdzfxJznUye7CaLfKVPdbnW60dfqmlvZmbTGd1kYafDuMtcCIg90z1J-exzR_fvX9y80DljzmJAEyE507Yx4yPl7iKZxrzu66X9XnEfqSym_W6ZvF6e2h3RQq4rb9mwLKybiIdgYbntWkiArp1ExwOeWPruyjj81WF54rXHYv3QoO4wiXX-CJRJrO31JxYB1YnqilvdsAac0Y-YYfbroJ1vuzGFrC_elMySV8Wpo4aGt5jUdSE4bzmTTVTuM1rLdBQDgBJQRLcIltWOrkAI173cdOn6QBF4hwmbMilFMP4B93o1bEfAACzBNUtkLhcBHxegjQh4athuuHHhNKc1w3GGOW4wZ0Jmsconw8j-URwlHdlSF3qKMk9VwVNRsCoAKDyiUPQUkco6uso4OF5dUIMoez58DIJdByCaxcjhHNhBH8GB4BaP6_Cp78t-Ap2tYp67d3hvKr5as8B_yx4iUzwEpoq3173x9-AjxQ2MM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA7DHdSDOD9wfubgYaJxbdcmqzdRR-fcEFTwFpo0wcnsxjoH_gN_tm-adiiIB29t06Qlb_K8T76eF6FjYBTA43WbCI9RAv46IEJCxxNaKa00lSqXXewPaPTk3z4HzxV0VZ6FMdsqC-y3mJ6jdfGkWdRmczIcNh8M-XYYC8GJg98z0p9Vo04Fjb162e1FgwUgw6gnX0yA94nJUIoP5du85Es8NrLdXnBuliTMOZXfHNQ3p9NZR2sFW8SX9odqqKLSDbTaX0itZhuoVvTODDcKCemTTfS5mO3CY40b7ql7guM0wY03uCKJUfS3ahzYxJYnemqPN8C9EY38wPfXNxk2U7QYvoSj4UirKSRN81Boc3WBH5TRDBcjlRc7TOcw5AYb4QxwCEbhCtvI1NkWeurcPF5FpIi5QKTLnBmhgvrAAIWbhAkLgAswX1IVxtIRMhFeDOyHxmHLDWKfSW1krluMMStzA7DJWttoKR2nagfhxHNVLBzqaEV9VyftlgS2wKBwJWLAiTo6KyuaT6y0Bi_3nL3y3C7c2IVbu9QRLY3Bf7QQDuD_V8bd_2Y8QsvRY_-O33UHvT20YlLsNr59tDSbvqsDoCMzcVg0ty-7Ddt0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+of+%28+1+%2B+1+%29+and+%28+m+%2B+1+%29+-dimensional+time-fractional+delay+PDEs+with+the+Hilfer+derivative%3A+Separable+and+invariant+subspace+methods&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Priyendhu%2C+K.S.&rft.au=Prakash%2C+P.&rft.au=Victor%2C+St%C3%A9phane&rft.date=2025-10-01&rft.issn=0960-0779&rft.volume=199&rft.spage=116738&rft_id=info:doi/10.1016%2Fj.chaos.2025.116738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2025_116738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |