Solutions of (1+1) and (m+1)-dimensional time-fractional delay PDEs with the Hilfer derivative: Separable and invariant subspace methods

The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace method to solve the scalar and coupled time-delay linear and nonlinear time-fractional PDEs with the Hilfer arbitrary-order derivative. Also, th...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 199; p. 116738
Main Authors Priyendhu, K.S., Prakash, P., Victor, Stéphane
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN0960-0779
DOI10.1016/j.chaos.2025.116738

Cover

Loading…
Abstract The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace method to solve the scalar and coupled time-delay linear and nonlinear time-fractional PDEs with the Hilfer arbitrary-order derivative. Also, this work investigates how to compute different possible types of exact solutions for the k-component coupled (m+1)-dimensional time-delay time-fractional PDEs with the Hilfer arbitrary-order derivative through the invariant subspace method together with and without the linear space variable transformation. More precisely, we show the effectiveness and usefulness of the separable and invariant subspace methods to obtain various types of variable separable forms of exact solutions for the scalar and k-component coupled (1+1)-dimensional time-delay linear and nonlinear time-fractional heat equations with the Hilfer arbitrary-order derivative. In addition, we explicitly illustrated the importance of the invariant subspace method together with and without the linear space variable transformation to compute the variable separable forms of exact solutions for the 2-component coupled (2+1)-dimensional time-delay nonlinear time-fractional diffusion convection reaction systems with the Hilfer arbitrary-order derivative subject to suitable initial and boundary conditions. From this study, we notice that the Euler-gamma, trigonometric, exponential, three-parameter Mittag-Leffler, and polynomial functions are involved in the derived exact solutions. Further, we provide the comparative study of the discussed methods along with illustrative examples in the appropriate places as well as with the existing literature wherever possible. •The Hilfer fractional derivative is considered.•The theory of separation and invariant subspace methods are discussed.•Scalar and coupled systems of fractional time-delay PDEs are investigated.•Multiplicative, additive, and generalized separable solutions are derived.•The Hilfer fractional nonlinear diffusion convection reaction time-delay systems are considered.
AbstractList The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace method to solve the scalar and coupled time-delay linear and nonlinear time-fractional PDEs with the Hilfer arbitrary-order derivative. Also, this work investigates how to compute different possible types of exact solutions for the k-component coupled (m+1)-dimensional time-delay time-fractional PDEs with the Hilfer arbitrary-order derivative through the invariant subspace method together with and without the linear space variable transformation. More precisely, we show the effectiveness and usefulness of the separable and invariant subspace methods to obtain various types of variable separable forms of exact solutions for the scalar and k-component coupled (1+1)-dimensional time-delay linear and nonlinear time-fractional heat equations with the Hilfer arbitrary-order derivative. In addition, we explicitly illustrated the importance of the invariant subspace method together with and without the linear space variable transformation to compute the variable separable forms of exact solutions for the 2-component coupled (2+1)-dimensional time-delay nonlinear time-fractional diffusion convection reaction systems with the Hilfer arbitrary-order derivative subject to suitable initial and boundary conditions. From this study, we notice that the Euler-gamma, trigonometric, exponential, three-parameter Mittag-Leffler, and polynomial functions are involved in the derived exact solutions. Further, we provide the comparative study of the discussed methods along with illustrative examples in the appropriate places as well as with the existing literature wherever possible. •The Hilfer fractional derivative is considered.•The theory of separation and invariant subspace methods are discussed.•Scalar and coupled systems of fractional time-delay PDEs are investigated.•Multiplicative, additive, and generalized separable solutions are derived.•The Hilfer fractional nonlinear diffusion convection reaction time-delay systems are considered.
ArticleNumber 116738
Author Priyendhu, K.S.
Victor, Stéphane
Prakash, P.
Author_xml – sequence: 1
  givenname: K.S.
  orcidid: 0000-0001-8343-8398
  surname: Priyendhu
  fullname: Priyendhu, K.S.
  email: ks_priyendhu@cb.students.amrita.edu
  organization: Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
– sequence: 2
  givenname: P.
  orcidid: 0000-0002-5552-5619
  surname: Prakash
  fullname: Prakash, P.
  email: p_prakash@cb.amrita.edu, vishnuindia89@gmail.com
  organization: Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
– sequence: 3
  givenname: Stéphane
  orcidid: 0000-0002-0575-0383
  surname: Victor
  fullname: Victor, Stéphane
  email: stephane.victor@ims-bordeaux.fr
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400, Talence, France
BookMark eNp9kM1OwzAQhH0oEuXnCbj4CEIJ3jiJCRIHxF-RkEAqnK2NvVFcpUllu0V9Ax6blHLmtLMazWj3O2KTfuiJsTMQKQgorxapaXEIaSayIgUolbyesKmoSpEIpapDdhTCQggBosym7Hs-dOvohj7woeHncAkXHHvLz5ejSqxbUh9GFzseR500Hk3c75Y63PL3h8fAv1xseWyJz1zXkB8t7zYY3YZu-JxW6LHu6LfW9Rv0DvvIw7oOKzTElxTbwYYTdtBgF-j0bx6zz6fHj_tZ8vr2_HJ_95oYUCImZV3mhZQ12MqqIqukyk1JFRpRG1tnCEVVYiWhwFyZpgCVS6XU-K7MKwBQ8pjJfa_xQwieGr3ybol-q0HoHUC90L8A9Q6g3gMcU7f7FI2nbRx5HYyj3pB1nkzUdnD_5n8AuR99uw
Cites_doi 10.1134/S0040579518030132
10.1063/1.4984583
10.1140/epjp/s13360-020-00445-1
10.1140/epjp/i2019-12657-3
10.1142/S0218127415500996
10.1007/s40314-023-02340-8
10.1007/s11071-021-06697-5
10.1515/fca-2020-0002
10.1007/s12043-020-01964-3
10.1142/S0217984924504487
10.1142/S0217979223502247
10.1007/s40314-021-01721-1
10.1515/fca-2015-0010
10.1016/j.cnsns.2016.05.017
10.1002/mma.4055
10.1007/s40314-021-01550-2
10.1140/epjp/s13360-020-00170-9
10.1016/j.camwa.2013.05.006
10.1016/j.chaos.2023.113603
10.3846/mma.2021.11270
10.1007/s13540-024-00330-z
10.1002/mma.10073
10.1515/fca-2015-0016
10.1016/j.ijnonlinmec.2014.02.003
10.1016/j.cnsns.2023.107245
10.1142/S0218127412500873
10.1007/s12043-022-02419-7
10.1007/s40314-024-02849-6
10.1016/j.cnsns.2017.04.001
10.1016/j.aml.2014.05.010
10.1115/1.3167615
10.1016/j.aml.2007.02.022
10.1007/s40314-022-01977-1
10.1142/S1793962319410101
10.1007/s11082-022-04088-7
10.1515/fca-2018-0015
10.1007/s11071-015-1906-7
10.1007/s11082-023-04787-9
10.1016/j.cnsns.2013.03.019
10.1016/j.cnsns.2024.108123
10.1016/j.chaos.2024.115852
10.1016/S0370-1573(00)00070-3
10.1007/s40314-020-01346-w
10.1007/s11071-022-07463-x
10.1007/s40314-023-02229-6
10.1080/01495739.2013.770693
10.1016/j.jmaa.2012.04.006
10.1515/fca-2017-0024
10.1142/S0217984920500499
10.1007/s12043-015-1103-8
10.1016/j.jmaa.2004.07.039
10.1080/14029251.2014.894726
10.1016/j.chaos.2017.07.019
10.1142/S021798492550006X
10.1007/s11425-012-4408-9
10.3390/sym8110128
10.1016/j.aop.2013.03.014
10.1016/j.cnsns.2022.106436
10.1016/j.cam.2005.10.017
10.1007/s40314-019-0879-4
10.1007/s40314-023-02540-2
10.1016/S0167-2789(00)00069-5
10.1016/j.cnsns.2012.02.024
10.1007/s13540-023-00199-4
10.1142/S0217979213300053
10.1007/s11071-016-2714-4
10.1016/j.cnsns.2018.03.009
10.1007/s11425-013-4714-x
10.1088/1751-8113/42/47/475201
10.1016/j.matcom.2025.04.014
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2025.116738
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2025_116738
S0960077925007519
GrantInformation_xml – fundername: Simons Foundation, United States
  funderid: http://dx.doi.org/10.13039/100000893
– fundername: IMU-CDC
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
ID FETCH-LOGICAL-c170t-6b64533b1d9d7529374c6e9ac0bcdb2a1596a9315a47cf5174377700034911173
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Thu Aug 07 07:11:21 EDT 2025
Sat Aug 16 17:01:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Invariant subspace method
Fractional diffusion delay systems
Separable method
Hilfer fractional derivative
Initial–boundary value problems
Exact solutions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c170t-6b64533b1d9d7529374c6e9ac0bcdb2a1596a9315a47cf5174377700034911173
ORCID 0000-0002-5552-5619
0000-0002-0575-0383
0000-0001-8343-8398
ParticipantIDs crossref_primary_10_1016_j_chaos_2025_116738
elsevier_sciencedirect_doi_10_1016_j_chaos_2025_116738
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mainardi (b7) 1997
Prakash (b58) 2021; 40
Ma (b72) 2012; 55
Jafari, Daftardar-Gejji (b65) 2006; 196
Priyendhu, Prakash, Lakshmanan (b30) 2023; 122
Tarasov, Trujillo (b8) 2013; 334
Polyanin, Sorokin, Vyazmin (b90) 2018; 52
Uma Maheswari, Bakshi (b39) 2022; 96
Bu, Zheng (b89) 2025; 237
Choudhary, Prakash, Daftardar-Gejji (b29) 2019; 38
Ye, Ma, Shen, Zhang (b75) 2014; 21
Sahadevan, Prakash (b56) 2017; 104
Zhu, Qu (b78) 2016; 8
Priyendhu, Prakash, Lakshmanan (b41) 2025; 39
Bakkyaraj, Sahadevan (b54) 2015; 85
Qu, Ji (b81) 2013; 56
Sahadevan, Bakkyaraj (b53) 2012; 393
Prakash (b79) 2019; 134
Prakash, Priyendhu, Anjitha (b31) 2022; 41
Polyanin, Zhurov (b80) 2014; 37
Metzler, Klafter (b13) 2000; 339
Song, Shen, Jin, Zhang (b77) 2013; 18
K.S. Priyendhu (b40) 2024
Sahadevan, Prakash (b21) 2016; 85
Lukashchuk (b55) 2015; 80
Cai (b91) 2015; 25
Rui, Zhang (b46) 2020; 39
Momani, Odibat (b64) 2006; 177
Datsko, Gafiychuk (b88) 2018; 21
Hilfer (b2) 2000
Prakash, Priyendhu, Lakshmanan (b44) 2025; 191
Galaktionov, Svirshchevskii (b71) 2007
Liu, Wang (b60) 2023; 42
Tarasov (b6) 2011
Ionescu, Lopes, Copot, Machado, Bates (b9) 2017; 51
Prakash, Thomas, Bakkyaraj (b36) 2023; 42
Prakash, Priyendhu, Sahadevan (b42) 2024; 27
Rui (b49) 2022; 109
Trigeassou, Maamri, Analysis (b17) 2019
Sahadevan, Bakkyaraj (b20) 2015; 18
Prakash, Priyendhu, Lakshmanan (b33) 2022; 111
Cevikel (b66) 2023; 55
Rui (b26) 2018; 339
Wu, Rui (b45) 2018; 63
Bakkyaraj (b57) 2020; 135
Chu, Inc, Hashemi, Eshaghi (b27) 2022; 41
Polyanin, Zhurov (b86) 2022
Prakash (b25) 2020; 94
Victor, Melchior (b15) 2015; 18
Prakash, Priyendhu, Meenakshi (b37) 2024; 43
Povstenko (b11) 2013; 36
Cevikel (b67) 2025; 39
Prakash, Priyendhu, Lakshmanan (b38) 2024; 137
Podlubny (b1) 1999
Gazizov, Kasatkin, Lukashchuk (b52) 2009; 136
Qu, Zhu (b76) 2009; 42
Gazizov, Kasatkin (b18) 2013; 66
Rui, He (b47) 2024; 47
Diethelm (b4) 2010
Datsko, Luchko, Gafiychuk (b87) 2012; 22
Uma Maheswari, Sahadevan, Yogeshwaran (b48) 2023; 26
Cevikel, Bekir, Guner (b68) 2023; 37
Kilbas, Srivastava, Trujillo (b5) 2006
Cevikel, Bekir (b70) 2023; 37
Ma, Zhang, Tang, Tu (b74) 2012; 218
Giusti, Colombaro, Garra, Garrappa, Polito, Popolizio, Mainardi (b83) 2020; 23
Prakash, Choudhary, Daftardar-Gejji (b28) 2020; 135
Tarasov (b12) 2013; 27
Hilfer, Luchko, Tomovski (b3) 2009; 12
Garra, Tomovski (b34) 2021; 26
Oustaloup (b16) 2014
Bagley, Torvik (b10) 1984; 51
Garra, Gorenflo, Polito, Tomovski (b14) 2014; 242
Ma, Liu (b73) 2012; 17
Polyanin, Zhurov (b85) 2014; 62
Qu, Zhang, Liu (b82) 2000; 144
Artale Harris, Garra (b19) 2013; 20
Raheel, Bekir, Tariq, Cevikel (b69) 2022; 54
Choudhary, Daftardar-Gejji (b23) 2017; 20
Garra (b35) 2017; 40
Ma, Mousa, Ali (b50) 2020; 34
Sahadevan, Prakash (b22) 2017; 42
Thomas, Bakkyaraj (b59) 2024; 43
Choudhary, Daftardar-Gejji (b32) 2019; 10
Liu, Yang (b61) 2023; 173
Axler (b84) 2014
Daftardar-Gejji, Jafari (b63) 2005; 301
Prakash, Priyendhu (b43) 2024; 58
Odibat, Momani (b51) 2008; 21
Artale Harris, Garra (b24) 2017; 58
Jannelli, Speciale (b62) 2021; 105
Song (10.1016/j.chaos.2025.116738_b77) 2013; 18
Rui (10.1016/j.chaos.2025.116738_b26) 2018; 339
Garra (10.1016/j.chaos.2025.116738_b35) 2017; 40
Diethelm (10.1016/j.chaos.2025.116738_b4) 2010
Gazizov (10.1016/j.chaos.2025.116738_b52) 2009; 136
Hilfer (10.1016/j.chaos.2025.116738_b3) 2009; 12
Daftardar-Gejji (10.1016/j.chaos.2025.116738_b63) 2005; 301
Choudhary (10.1016/j.chaos.2025.116738_b29) 2019; 38
Polyanin (10.1016/j.chaos.2025.116738_b80) 2014; 37
Oustaloup (10.1016/j.chaos.2025.116738_b16) 2014
Rui (10.1016/j.chaos.2025.116738_b46) 2020; 39
Giusti (10.1016/j.chaos.2025.116738_b83) 2020; 23
Mainardi (10.1016/j.chaos.2025.116738_b7) 1997
Qu (10.1016/j.chaos.2025.116738_b76) 2009; 42
Qu (10.1016/j.chaos.2025.116738_b82) 2000; 144
Prakash (10.1016/j.chaos.2025.116738_b36) 2023; 42
Trigeassou (10.1016/j.chaos.2025.116738_b17) 2019
Ye (10.1016/j.chaos.2025.116738_b75) 2014; 21
Cai (10.1016/j.chaos.2025.116738_b91) 2015; 25
Prakash (10.1016/j.chaos.2025.116738_b42) 2024; 27
Cevikel (10.1016/j.chaos.2025.116738_b67) 2025; 39
Hilfer (10.1016/j.chaos.2025.116738_b2) 2000
Liu (10.1016/j.chaos.2025.116738_b60) 2023; 42
Garra (10.1016/j.chaos.2025.116738_b14) 2014; 242
Ma (10.1016/j.chaos.2025.116738_b73) 2012; 17
Ionescu (10.1016/j.chaos.2025.116738_b9) 2017; 51
Cevikel (10.1016/j.chaos.2025.116738_b68) 2023; 37
Sahadevan (10.1016/j.chaos.2025.116738_b53) 2012; 393
Victor (10.1016/j.chaos.2025.116738_b15) 2015; 18
Sahadevan (10.1016/j.chaos.2025.116738_b21) 2016; 85
Ma (10.1016/j.chaos.2025.116738_b72) 2012; 55
Prakash (10.1016/j.chaos.2025.116738_b28) 2020; 135
Liu (10.1016/j.chaos.2025.116738_b61) 2023; 173
Bu (10.1016/j.chaos.2025.116738_b89) 2025; 237
Bakkyaraj (10.1016/j.chaos.2025.116738_b57) 2020; 135
Artale Harris (10.1016/j.chaos.2025.116738_b19) 2013; 20
Axler (10.1016/j.chaos.2025.116738_b84) 2014
Datsko (10.1016/j.chaos.2025.116738_b87) 2012; 22
Datsko (10.1016/j.chaos.2025.116738_b88) 2018; 21
Odibat (10.1016/j.chaos.2025.116738_b51) 2008; 21
Prakash (10.1016/j.chaos.2025.116738_b79) 2019; 134
Galaktionov (10.1016/j.chaos.2025.116738_b71) 2007
Ma (10.1016/j.chaos.2025.116738_b50) 2020; 34
Prakash (10.1016/j.chaos.2025.116738_b44) 2025; 191
Zhu (10.1016/j.chaos.2025.116738_b78) 2016; 8
Bakkyaraj (10.1016/j.chaos.2025.116738_b54) 2015; 85
Priyendhu (10.1016/j.chaos.2025.116738_b41) 2025; 39
Metzler (10.1016/j.chaos.2025.116738_b13) 2000; 339
Choudhary (10.1016/j.chaos.2025.116738_b23) 2017; 20
Artale Harris (10.1016/j.chaos.2025.116738_b24) 2017; 58
Ma (10.1016/j.chaos.2025.116738_b74) 2012; 218
Prakash (10.1016/j.chaos.2025.116738_b43) 2024; 58
Momani (10.1016/j.chaos.2025.116738_b64) 2006; 177
Priyendhu (10.1016/j.chaos.2025.116738_b30) 2023; 122
Tarasov (10.1016/j.chaos.2025.116738_b6) 2011
Prakash (10.1016/j.chaos.2025.116738_b25) 2020; 94
Uma Maheswari (10.1016/j.chaos.2025.116738_b48) 2023; 26
Polyanin (10.1016/j.chaos.2025.116738_b90) 2018; 52
Gazizov (10.1016/j.chaos.2025.116738_b18) 2013; 66
Rui (10.1016/j.chaos.2025.116738_b47) 2024; 47
Chu (10.1016/j.chaos.2025.116738_b27) 2022; 41
Sahadevan (10.1016/j.chaos.2025.116738_b56) 2017; 104
Uma Maheswari (10.1016/j.chaos.2025.116738_b39) 2022; 96
Bagley (10.1016/j.chaos.2025.116738_b10) 1984; 51
Sahadevan (10.1016/j.chaos.2025.116738_b20) 2015; 18
Jafari (10.1016/j.chaos.2025.116738_b65) 2006; 196
Tarasov (10.1016/j.chaos.2025.116738_b8) 2013; 334
Qu (10.1016/j.chaos.2025.116738_b81) 2013; 56
Prakash (10.1016/j.chaos.2025.116738_b38) 2024; 137
Wu (10.1016/j.chaos.2025.116738_b45) 2018; 63
Tarasov (10.1016/j.chaos.2025.116738_b12) 2013; 27
Prakash (10.1016/j.chaos.2025.116738_b58) 2021; 40
Sahadevan (10.1016/j.chaos.2025.116738_b22) 2017; 42
Prakash (10.1016/j.chaos.2025.116738_b37) 2024; 43
Polyanin (10.1016/j.chaos.2025.116738_b86) 2022
Prakash (10.1016/j.chaos.2025.116738_b33) 2022; 111
Povstenko (10.1016/j.chaos.2025.116738_b11) 2013; 36
Kilbas (10.1016/j.chaos.2025.116738_b5) 2006
Garra (10.1016/j.chaos.2025.116738_b34) 2021; 26
Cevikel (10.1016/j.chaos.2025.116738_b66) 2023; 55
Choudhary (10.1016/j.chaos.2025.116738_b32) 2019; 10
Lukashchuk (10.1016/j.chaos.2025.116738_b55) 2015; 80
Jannelli (10.1016/j.chaos.2025.116738_b62) 2021; 105
K.S. Priyendhu (10.1016/j.chaos.2025.116738_b40) 2024
Prakash (10.1016/j.chaos.2025.116738_b31) 2022; 41
Podlubny (10.1016/j.chaos.2025.116738_b1) 1999
Cevikel (10.1016/j.chaos.2025.116738_b70) 2023; 37
Rui (10.1016/j.chaos.2025.116738_b49) 2022; 109
Thomas (10.1016/j.chaos.2025.116738_b59) 2024; 43
Raheel (10.1016/j.chaos.2025.116738_b69) 2022; 54
Polyanin (10.1016/j.chaos.2025.116738_b85) 2014; 62
References_xml – volume: 135
  start-page: 490
  year: 2020
  ident: b28
  article-title: Exact solutions of generalized time-fractional nonlinear reaction–diffusion equations with time delay
  publication-title: Eur Phys J Plus
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  ident: b13
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys Rep
– volume: 55
  start-page: 1769
  year: 2012
  end-page: 1778
  ident: b72
  article-title: A refined invariant subspace method and applications to evolution equations
  publication-title: Sci China Math
– volume: 56
  start-page: 2187
  year: 2013
  end-page: 2203
  ident: b81
  article-title: Invariant subspaces and conditional Lie-Bäcklund symmetries of inhomogeneous nonlinear diffusion equations
  publication-title: Sci China Math
– volume: 51
  start-page: 141
  year: 2017
  end-page: 159
  ident: b9
  article-title: The role of fractional calculus in modeling biological phenomena: A review
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 218
  start-page: 7174
  year: 2012
  end-page: 7183
  ident: b74
  article-title: Hirota bilinear equations with linear subspaces of solutions
  publication-title: Appl Math Comput
– volume: 39
  year: 2025
  ident: b67
  article-title: Traveling wave solutions of Fordy-Gibbons equation
  publication-title: Modern Phys Lett B
– volume: 21
  start-page: 194
  year: 2008
  end-page: 199
  ident: b51
  article-title: A generalized differential transform method for linear partial differential equations of fractional order
  publication-title: Appl Math Lett
– volume: 393
  start-page: 341
  year: 2012
  end-page: 347
  ident: b53
  article-title: Invariant analysis of time-fractional generalized Burgers and Korteweg–de Vries equations
  publication-title: J Math Anal Appl
– volume: 20
  start-page: 471
  year: 2013
  end-page: 481
  ident: b19
  article-title: Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method
  publication-title: Nonlinear Stud
– volume: 134
  start-page: 261
  year: 2019
  ident: b79
  article-title: New exact solutions of generalized convection-reaction–diffusion equation
  publication-title: Eur Phys J Plus
– volume: 47
  start-page: 9313
  year: 2024
  end-page: 9339
  ident: b47
  article-title: Separation method of semifixed variables together with integral bifurcation method for solving generalized time-fractional thin-film equations
  publication-title: Math Methods Appl Sci
– volume: 20
  start-page: 477
  year: 2017
  end-page: 493
  ident: b23
  article-title: Invariant subspace method: A tool for solving fractional partial differential equations
  publication-title: Fract Calc Appl Anal
– volume: 39
  year: 2025
  ident: b41
  article-title: Analytical solutions of higher-dimensional coupled system of nonlinear time-fractional diffusion-convection-wave equations
  publication-title: Modern Phys Lett B
– volume: 26
  start-page: 2421
  year: 2023
  end-page: 2438
  ident: b48
  article-title: Method of separation of variables and exact solution of time fractional nonlinear partial differential and differential-difference equations
  publication-title: Fract Calc Appl Anal
– volume: 18
  start-page: 146
  year: 2015
  end-page: 162
  ident: b20
  article-title: Invariant subspace method and exact solutions of certain time-fractional nonlinear partial differential equations
  publication-title: Fract Calc Appl Anal
– volume: 63
  start-page: 88
  year: 2018
  end-page: 100
  ident: b45
  article-title: Method of separation variables combined with homogeneous balanced principle for searching exact solutions of time-fractional nonlinear biological population model
  publication-title: Commun Nonlinear Sci Numer Simul
– year: 2014
  ident: b84
  article-title: Linear algebra done right
– year: 2014
  ident: b16
  article-title: Diversity and non-integer differentiation for system dynamics
– volume: 122
  year: 2023
  ident: b30
  article-title: Invariant subspace method to the initial and boundary value problem of the higher dimensional nonlinear time-fractional PDEs
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 21
  start-page: 237
  year: 2018
  end-page: 253
  ident: b88
  article-title: Complex spatio-temporal solutions in fractional reaction–diffusion systems near a bifurcation point
  publication-title: Fract Calc Appl Anal
– start-page: 291
  year: 1997
  end-page: 348
  ident: b7
  article-title: Fractional calculus: Some basic problems in continuum and statistical mechanics
  publication-title: Fractals and fractional calculus in continuum mechanics
– volume: 18
  start-page: 238
  year: 2015
  end-page: 260
  ident: b15
  article-title: Improvements on flat output characterization for fractional systems
  publication-title: Fract Calc Appl Anal
– volume: 41
  start-page: 30
  year: 2022
  ident: b31
  article-title: Initial value problem for the (2 + 1)-dimensional time-fractional generalized convection-reaction–diffusion wave equation: invariant subspaces and exact solutions
  publication-title: Comp Appl Math
– volume: 144
  start-page: 97
  year: 2000
  end-page: 123
  ident: b82
  article-title: Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source
  publication-title: Phys D
– volume: 191
  year: 2025
  ident: b44
  article-title: Generalized separable solutions for
  publication-title: Chaos Solitons Fractals
– volume: 27
  start-page: 3240
  year: 2024
  end-page: 3290
  ident: b42
  article-title: Generalized separation of variable methods with their comparison: exact solutions of time-fractional nonlinear PDEs in higher dimensions
  publication-title: Fract Calc Appl Anal
– volume: 22
  year: 2012
  ident: b87
  article-title: Pattern formation in fractional reaction–diffusion systems with multiple homogeneous states
  publication-title: Int J Bifurcat. Chaos
– year: 2010
  ident: b4
  article-title: The analysis of fractional differential equations
– year: 2006
  ident: b5
  article-title: Theory and applications of fractional differential equations
– volume: 36
  start-page: 351
  year: 2013
  end-page: 363
  ident: b11
  article-title: Fractional heat conduction in infinite one-dimensional composite medium
  publication-title: J Therm Stress
– volume: 40
  start-page: 1307
  year: 2017
  end-page: 1315
  ident: b35
  article-title: Propagation of nonlinear thermoelastic waves in porous media within the theory of heat conduction with memory: physical derivation and exact solutions
  publication-title: Math Methods Appl Sci
– volume: 42
  start-page: 199
  year: 2023
  ident: b60
  article-title: Invariant analysis of the linear time-space fractional (2+1)-dimensional Burgers equation
  publication-title: Comp Appl Math
– year: 2000
  ident: b2
  article-title: Applications of fractional calculus in physics
– volume: 80
  start-page: 791
  year: 2015
  end-page: 802
  ident: b55
  article-title: Conservation laws for time-fractional sub-diffusion and diffusion-wave equations
  publication-title: Nonlinear Dynam
– volume: 42
  year: 2009
  ident: b76
  article-title: Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method
  publication-title: J Phys A Math Theor
– volume: 43
  start-page: 30
  year: 2024
  ident: b37
  article-title: Invariant subspace method and exact solutions of the coupled system of time-fractional convection-reaction–diffusion equations
  publication-title: Comp Appl Math
– volume: 23
  start-page: 9
  year: 2020
  end-page: 54
  ident: b83
  article-title: A practical guide to prabhakar fractional calculus
  publication-title: Fract Calc Appl Anal
– year: 2007
  ident: b71
  article-title: Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics
– volume: 42
  start-page: 158
  year: 2017
  end-page: 177
  ident: b22
  article-title: Exact solutions and maximal dimension of invariant subspaces of time-fractional coupled nonlinear partial differential equations
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 96
  start-page: 173
  year: 2022
  ident: b39
  article-title: Invariant subspace method for time-fractional nonlinear evolution equations of the third order
  publication-title: Pramana - J Phys
– volume: 109
  start-page: 943
  year: 2022
  end-page: 961
  ident: b49
  article-title: Separation method of semi-fixed variables together with dynamical system method for solving nonlinear time-fractional PDEs with higher-order terms
  publication-title: Nonlinear Dynam
– volume: 196
  start-page: 644
  year: 2006
  end-page: 651
  ident: b65
  article-title: Solving a system of nonlinear fractional differential equations using adomian decomposition
  publication-title: J Comput Appl Math
– start-page: 1
  year: 2024
  end-page: 19
  ident: b40
  article-title: On the solutions of coupled nonlinear time-fractional diffusion-reaction system with time delays
  publication-title: Eur Phys J Spec. Top
– volume: 21
  start-page: 132
  year: 2014
  end-page: 148
  ident: b75
  article-title: A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions
  publication-title: J Nonlinear Math Phys
– volume: 55
  start-page: 510
  year: 2023
  ident: b66
  article-title: Optical solutions for the (3+1)-dimensional YTSF equation
  publication-title: Opt Quantum Electron
– volume: 52
  start-page: 334
  year: 2018
  end-page: 348
  ident: b90
  article-title: Reaction–diffusion models with delay: some properties, equations, problems, and solutions
  publication-title: Theor Found Chem Eng
– volume: 27
  year: 2013
  ident: b12
  article-title: Review of some promising fractional physical models
  publication-title: Internat J Modern Phys B
– volume: 334
  start-page: 1
  year: 2013
  end-page: 23
  ident: b8
  article-title: Fractional power-law spatial dispersion in electrodynamics
  publication-title: Ann Physics
– volume: 62
  start-page: 33
  year: 2014
  end-page: 40
  ident: b85
  article-title: Non-linear instability and exact solutions to some delay reaction–diffusion systems
  publication-title: Int J Non-Linear Mech
– volume: 301
  start-page: 508
  year: 2005
  end-page: 518
  ident: b63
  article-title: Adomian decomposition: A tool for solving a system of fractional differential equations
  publication-title: J Math Anal Appl
– volume: 58
  year: 2017
  ident: b24
  article-title: Nonlinear heat conduction equations with memory: physical meaning and analytical results
  publication-title: J Math Phys
– volume: 42
  start-page: 97
  year: 2023
  ident: b36
  article-title: Invariant subspaces and exact solutions: (1+1) and (2+1)-dimensional generalized time-fractional thin-film equations
  publication-title: Comp Appl Math
– volume: 26
  start-page: 72
  year: 2021
  end-page: 81
  ident: b34
  article-title: Exact results on some nonlinear Laguerre-type diffusion equations
  publication-title: Math Model Anal
– year: 2019
  ident: b17
  article-title: Modeling and stability of fractional order differential systems 2: the infinite state approach
– volume: 51
  start-page: 294
  year: 1984
  end-page: 298
  ident: b10
  article-title: On the appearance of the fractional derivative in the behavior of real materials
  publication-title: Trans ASME, J Appl Mech
– volume: 85
  start-page: 849
  year: 2015
  end-page: 860
  ident: b54
  article-title: Group formalism of Lie transformations to time-fractional partial differential equations
  publication-title: Pramana- J Phys
– volume: 135
  start-page: 126
  year: 2020
  ident: b57
  article-title: Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative
  publication-title: Eur Phys J Plus
– volume: 17
  start-page: 3795
  year: 2012
  end-page: 3801
  ident: b73
  article-title: Invariant subspaces and exact solutions of a class of dispersive evolution equations
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 37
  start-page: 43
  year: 2014
  end-page: 48
  ident: b80
  article-title: Nonlinear delay reaction–diffusion equations with varying transfer coefficients: Exact methods and new solutions
  publication-title: Appl Math Lett
– volume: 177
  start-page: 488
  year: 2006
  end-page: 494
  ident: b64
  article-title: Analytical solution of a time-fractional Navier–Stokes equation by adomian decomposition method
  publication-title: Appl Math Comput
– volume: 37
  year: 2023
  ident: b68
  article-title: Exploration of new solitons solutions for the Fitzhugh-Nagumo-type equations with conformable derivatives
  publication-title: Internat J Modern Phys B
– year: 1999
  ident: b1
  article-title: Fractional differential equations
– volume: 10
  year: 2019
  ident: b32
  article-title: Solving systems of multi-term fractional PDEs: Invariant subspace approach
  publication-title: Int J Model Simul Sci Comput
– volume: 8
  start-page: 128
  year: 2016
  ident: b78
  article-title: Invariant subspaces of the two-dimensional nonlinear evolution equations
  publication-title: Symmetry
– year: 2022
  ident: b86
  article-title: Separation of variables and exact solutions to nonlinear pDEs
– volume: 104
  start-page: 107
  year: 2017
  end-page: 120
  ident: b56
  article-title: On Lie symmetry analysis and invariant subspace methods of coupled time-fractional partial differential equations
  publication-title: Chaos Solitons Fractals
– volume: 242
  start-page: 576
  year: 2014
  end-page: 589
  ident: b14
  article-title: Hilfer-prabhakar derivatives and some applications
  publication-title: Appl Math Comput
– volume: 41
  start-page: 271
  year: 2022
  ident: b27
  article-title: Analytical treatment of regularized prabhakar fractional differential equations by invariant subspaces
  publication-title: Comp Appl Math
– volume: 136
  year: 2009
  ident: b52
  article-title: Symmetry properties of fractional diffusion equations
  publication-title: Phys Scr T
– volume: 40
  start-page: 162
  year: 2021
  ident: b58
  article-title: On group analysis, conservation laws and exact solutions of time-fractional Kudryashov-Sinelshchikov equation
  publication-title: Comp Appl Math
– volume: 12
  start-page: 299
  year: 2009
  end-page: 318
  ident: b3
  article-title: Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives
  publication-title: Fract Calc Appl Anal
– volume: 38
  start-page: 126
  year: 2019
  ident: b29
  article-title: Invariant subspaces and exact solutions for a system of fractional PDEs in higher dimensions
  publication-title: Comp Appl Math
– volume: 58
  start-page: 502
  year: 2024
  end-page: 507
  ident: b43
  article-title: Separable solutions of the black–scholes equation with three different time fractional-order derivatives
  publication-title: IFAC- Pap
– volume: 85
  start-page: 659
  year: 2016
  end-page: 673
  ident: b21
  article-title: Exact solution of certain time-fractional nonlinear partial differential equations
  publication-title: Nonlinear Dynam
– volume: 34
  year: 2020
  ident: b50
  article-title: Application of a new hybrid method for solving singular fractional lane-Emden-type equations in astrophysics
  publication-title: Modern Phys Lett B
– volume: 37
  year: 2023
  ident: b70
  article-title: Assorted hyperbolic and trigonometric function solutions of fractional equations with conformable derivative in shallow water
  publication-title: Modern Phys Lett B
– volume: 18
  start-page: 2984
  year: 2013
  end-page: 2992
  ident: b77
  article-title: New maximal dimension of invariant subspaces to coupled systems with two-component equations
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 111
  year: 2022
  ident: b33
  article-title: Invariant subspace method for
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 54
  start-page: 668
  year: 2022
  ident: b69
  article-title: Soliton solutions to the generalized (1+1)-dimensional unstable space time-fractional nonlinear Schrödinger model
  publication-title: Opt Quantum Electron
– volume: 105
  start-page: 2375
  year: 2021
  end-page: 2385
  ident: b62
  article-title: Exact and numerical solutions of two-dimensional time-fractional diffusion-reaction equations through the Lie symmetries
  publication-title: Nonlinear Dynam
– volume: 137
  year: 2024
  ident: b38
  article-title: Nonlinear two-component system of time-fractional PDEs in (2 + 1)-dimensions: Invariant subspace method combined with variable transformation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 43
  start-page: 353
  year: 2024
  ident: b59
  article-title: Lie symmetry analysis of time fractional nonlinear partial differential equations in hilfer sense
  publication-title: Comp Appl Math
– volume: 237
  start-page: 70
  year: 2025
  end-page: 85
  ident: b89
  article-title: Local convergence analysis of L1/finite element scheme for a constant delay reaction-subdiffusion equation with uniform time mesh
  publication-title: Math Comput Simulation
– volume: 339
  start-page: 158
  year: 2018
  end-page: 171
  ident: b26
  article-title: Idea of invariant subspace combined with elementary integral method for investigating exact solutions of time-fractional NPDEs
  publication-title: Appl Math Comput
– year: 2011
  ident: b6
  article-title: Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media, nonlinear physical science
– volume: 173
  year: 2023
  ident: b61
  article-title: Symmetry group analysis of several coupled fractional partial differential equations
  publication-title: Chaos Solitons Fractals
– volume: 94
  start-page: 103
  year: 2020
  ident: b25
  article-title: Invariant subspaces and exact solutions for some types of scalar and coupled time-space fractional diffusion equations
  publication-title: Pramana- J Phys
– volume: 39
  start-page: 299
  year: 2020
  ident: b46
  article-title: Separation variable method combined with integral bifurcation method for solving time-fractional reaction–diffusion models
  publication-title: Comp Appl Math
– volume: 66
  start-page: 576
  year: 2013
  end-page: 584
  ident: b18
  article-title: Construction of exact solutions for fractional order differential equations by invariant subspace method
  publication-title: Comput Math Appl
– volume: 25
  year: 2015
  ident: b91
  article-title: Spatiotemporal dynamics in a reaction–diffusion epidemic model with a time-delay in transmission
  publication-title: Int J Bifurcat. Chaos
– volume: 52
  start-page: 334
  year: 2018
  ident: 10.1016/j.chaos.2025.116738_b90
  article-title: Reaction–diffusion models with delay: some properties, equations, problems, and solutions
  publication-title: Theor Found Chem Eng
  doi: 10.1134/S0040579518030132
– year: 2000
  ident: 10.1016/j.chaos.2025.116738_b2
– volume: 58
  year: 2017
  ident: 10.1016/j.chaos.2025.116738_b24
  article-title: Nonlinear heat conduction equations with memory: physical meaning and analytical results
  publication-title: J Math Phys
  doi: 10.1063/1.4984583
– volume: 135
  start-page: 490
  year: 2020
  ident: 10.1016/j.chaos.2025.116738_b28
  article-title: Exact solutions of generalized time-fractional nonlinear reaction–diffusion equations with time delay
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-020-00445-1
– volume: 134
  start-page: 261
  year: 2019
  ident: 10.1016/j.chaos.2025.116738_b79
  article-title: New exact solutions of generalized convection-reaction–diffusion equation
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2019-12657-3
– volume: 25
  year: 2015
  ident: 10.1016/j.chaos.2025.116738_b91
  article-title: Spatiotemporal dynamics in a reaction–diffusion epidemic model with a time-delay in transmission
  publication-title: Int J Bifurcat. Chaos
  doi: 10.1142/S0218127415500996
– volume: 136
  year: 2009
  ident: 10.1016/j.chaos.2025.116738_b52
  article-title: Symmetry properties of fractional diffusion equations
  publication-title: Phys Scr T
– volume: 42
  start-page: 199
  year: 2023
  ident: 10.1016/j.chaos.2025.116738_b60
  article-title: Invariant analysis of the linear time-space fractional (2+1)-dimensional Burgers equation
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-023-02340-8
– volume: 20
  start-page: 471
  year: 2013
  ident: 10.1016/j.chaos.2025.116738_b19
  article-title: Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method
  publication-title: Nonlinear Stud
– volume: 105
  start-page: 2375
  year: 2021
  ident: 10.1016/j.chaos.2025.116738_b62
  article-title: Exact and numerical solutions of two-dimensional time-fractional diffusion-reaction equations through the Lie symmetries
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-021-06697-5
– volume: 23
  start-page: 9
  year: 2020
  ident: 10.1016/j.chaos.2025.116738_b83
  article-title: A practical guide to prabhakar fractional calculus
  publication-title: Fract Calc Appl Anal
  doi: 10.1515/fca-2020-0002
– volume: 94
  start-page: 103
  year: 2020
  ident: 10.1016/j.chaos.2025.116738_b25
  article-title: Invariant subspaces and exact solutions for some types of scalar and coupled time-space fractional diffusion equations
  publication-title: Pramana- J Phys
  doi: 10.1007/s12043-020-01964-3
– volume: 39
  year: 2025
  ident: 10.1016/j.chaos.2025.116738_b67
  article-title: Traveling wave solutions of Fordy-Gibbons equation
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984924504487
– volume: 37
  year: 2023
  ident: 10.1016/j.chaos.2025.116738_b68
  article-title: Exploration of new solitons solutions for the Fitzhugh-Nagumo-type equations with conformable derivatives
  publication-title: Internat J Modern Phys B
  doi: 10.1142/S0217979223502247
– volume: 41
  start-page: 30
  year: 2022
  ident: 10.1016/j.chaos.2025.116738_b31
  article-title: Initial value problem for the (2 + 1)-dimensional time-fractional generalized convection-reaction–diffusion wave equation: invariant subspaces and exact solutions
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-021-01721-1
– volume: 18
  start-page: 146
  year: 2015
  ident: 10.1016/j.chaos.2025.116738_b20
  article-title: Invariant subspace method and exact solutions of certain time-fractional nonlinear partial differential equations
  publication-title: Fract Calc Appl Anal
  doi: 10.1515/fca-2015-0010
– volume: 42
  start-page: 158
  year: 2017
  ident: 10.1016/j.chaos.2025.116738_b22
  article-title: Exact solutions and maximal dimension of invariant subspaces of time-fractional coupled nonlinear partial differential equations
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2016.05.017
– volume: 40
  start-page: 1307
  year: 2017
  ident: 10.1016/j.chaos.2025.116738_b35
  article-title: Propagation of nonlinear thermoelastic waves in porous media within the theory of heat conduction with memory: physical derivation and exact solutions
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.4055
– volume: 40
  start-page: 162
  year: 2021
  ident: 10.1016/j.chaos.2025.116738_b58
  article-title: On group analysis, conservation laws and exact solutions of time-fractional Kudryashov-Sinelshchikov equation
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-021-01550-2
– volume: 135
  start-page: 126
  year: 2020
  ident: 10.1016/j.chaos.2025.116738_b57
  article-title: Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-020-00170-9
– volume: 12
  start-page: 299
  year: 2009
  ident: 10.1016/j.chaos.2025.116738_b3
  article-title: Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives
  publication-title: Fract Calc Appl Anal
– volume: 66
  start-page: 576
  year: 2013
  ident: 10.1016/j.chaos.2025.116738_b18
  article-title: Construction of exact solutions for fractional order differential equations by invariant subspace method
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2013.05.006
– volume: 173
  year: 2023
  ident: 10.1016/j.chaos.2025.116738_b61
  article-title: Symmetry group analysis of several coupled fractional partial differential equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2023.113603
– volume: 26
  start-page: 72
  year: 2021
  ident: 10.1016/j.chaos.2025.116738_b34
  article-title: Exact results on some nonlinear Laguerre-type diffusion equations
  publication-title: Math Model Anal
  doi: 10.3846/mma.2021.11270
– volume: 27
  start-page: 3240
  year: 2024
  ident: 10.1016/j.chaos.2025.116738_b42
  article-title: Generalized separation of variable methods with their comparison: exact solutions of time-fractional nonlinear PDEs in higher dimensions
  publication-title: Fract Calc Appl Anal
  doi: 10.1007/s13540-024-00330-z
– year: 2007
  ident: 10.1016/j.chaos.2025.116738_b71
– year: 1999
  ident: 10.1016/j.chaos.2025.116738_b1
– year: 2014
  ident: 10.1016/j.chaos.2025.116738_b84
– volume: 47
  start-page: 9313
  year: 2024
  ident: 10.1016/j.chaos.2025.116738_b47
  article-title: Separation method of semifixed variables together with integral bifurcation method for solving generalized time-fractional thin-film equations
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.10073
– volume: 18
  start-page: 238
  year: 2015
  ident: 10.1016/j.chaos.2025.116738_b15
  article-title: Improvements on flat output characterization for fractional systems
  publication-title: Fract Calc Appl Anal
  doi: 10.1515/fca-2015-0016
– year: 2022
  ident: 10.1016/j.chaos.2025.116738_b86
– volume: 62
  start-page: 33
  year: 2014
  ident: 10.1016/j.chaos.2025.116738_b85
  article-title: Non-linear instability and exact solutions to some delay reaction–diffusion systems
  publication-title: Int J Non-Linear Mech
  doi: 10.1016/j.ijnonlinmec.2014.02.003
– year: 2006
  ident: 10.1016/j.chaos.2025.116738_b5
– volume: 122
  year: 2023
  ident: 10.1016/j.chaos.2025.116738_b30
  article-title: Invariant subspace method to the initial and boundary value problem of the higher dimensional nonlinear time-fractional PDEs
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2023.107245
– volume: 22
  year: 2012
  ident: 10.1016/j.chaos.2025.116738_b87
  article-title: Pattern formation in fractional reaction–diffusion systems with multiple homogeneous states
  publication-title: Int J Bifurcat. Chaos
  doi: 10.1142/S0218127412500873
– volume: 96
  start-page: 173
  year: 2022
  ident: 10.1016/j.chaos.2025.116738_b39
  article-title: Invariant subspace method for time-fractional nonlinear evolution equations of the third order
  publication-title: Pramana - J Phys
  doi: 10.1007/s12043-022-02419-7
– volume: 43
  start-page: 353
  year: 2024
  ident: 10.1016/j.chaos.2025.116738_b59
  article-title: Lie symmetry analysis of time fractional nonlinear partial differential equations in hilfer sense
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-024-02849-6
– volume: 51
  start-page: 141
  year: 2017
  ident: 10.1016/j.chaos.2025.116738_b9
  article-title: The role of fractional calculus in modeling biological phenomena: A review
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2017.04.001
– volume: 339
  start-page: 158
  year: 2018
  ident: 10.1016/j.chaos.2025.116738_b26
  article-title: Idea of invariant subspace combined with elementary integral method for investigating exact solutions of time-fractional NPDEs
  publication-title: Appl Math Comput
– volume: 37
  start-page: 43
  year: 2014
  ident: 10.1016/j.chaos.2025.116738_b80
  article-title: Nonlinear delay reaction–diffusion equations with varying transfer coefficients: Exact methods and new solutions
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2014.05.010
– volume: 51
  start-page: 294
  year: 1984
  ident: 10.1016/j.chaos.2025.116738_b10
  article-title: On the appearance of the fractional derivative in the behavior of real materials
  publication-title: Trans ASME, J Appl Mech
  doi: 10.1115/1.3167615
– volume: 21
  start-page: 194
  year: 2008
  ident: 10.1016/j.chaos.2025.116738_b51
  article-title: A generalized differential transform method for linear partial differential equations of fractional order
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2007.02.022
– volume: 41
  start-page: 271
  year: 2022
  ident: 10.1016/j.chaos.2025.116738_b27
  article-title: Analytical treatment of regularized prabhakar fractional differential equations by invariant subspaces
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-022-01977-1
– year: 2010
  ident: 10.1016/j.chaos.2025.116738_b4
– volume: 10
  year: 2019
  ident: 10.1016/j.chaos.2025.116738_b32
  article-title: Solving systems of multi-term fractional PDEs: Invariant subspace approach
  publication-title: Int J Model Simul Sci Comput
  doi: 10.1142/S1793962319410101
– year: 2011
  ident: 10.1016/j.chaos.2025.116738_b6
– volume: 54
  start-page: 668
  year: 2022
  ident: 10.1016/j.chaos.2025.116738_b69
  article-title: Soliton solutions to the generalized (1+1)-dimensional unstable space time-fractional nonlinear Schrödinger model
  publication-title: Opt Quantum Electron
  doi: 10.1007/s11082-022-04088-7
– volume: 21
  start-page: 237
  year: 2018
  ident: 10.1016/j.chaos.2025.116738_b88
  article-title: Complex spatio-temporal solutions in fractional reaction–diffusion systems near a bifurcation point
  publication-title: Fract Calc Appl Anal
  doi: 10.1515/fca-2018-0015
– volume: 80
  start-page: 791
  year: 2015
  ident: 10.1016/j.chaos.2025.116738_b55
  article-title: Conservation laws for time-fractional sub-diffusion and diffusion-wave equations
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-015-1906-7
– volume: 55
  start-page: 510
  year: 2023
  ident: 10.1016/j.chaos.2025.116738_b66
  article-title: Optical solutions for the (3+1)-dimensional YTSF equation
  publication-title: Opt Quantum Electron
  doi: 10.1007/s11082-023-04787-9
– volume: 18
  start-page: 2984
  year: 2013
  ident: 10.1016/j.chaos.2025.116738_b77
  article-title: New maximal dimension of invariant subspaces to coupled systems with two-component equations
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2013.03.019
– volume: 137
  year: 2024
  ident: 10.1016/j.chaos.2025.116738_b38
  article-title: Nonlinear two-component system of time-fractional PDEs in (2 + 1)-dimensions: Invariant subspace method combined with variable transformation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2024.108123
– volume: 191
  year: 2025
  ident: 10.1016/j.chaos.2025.116738_b44
  article-title: Generalized separable solutions for (2+1) and (3+1)-dimensional m-component coupled nonlinear systems of PDEs under three different time-fractional derivatives
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.115852
– volume: 339
  start-page: 1
  year: 2000
  ident: 10.1016/j.chaos.2025.116738_b13
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys Rep
  doi: 10.1016/S0370-1573(00)00070-3
– volume: 39
  start-page: 299
  year: 2020
  ident: 10.1016/j.chaos.2025.116738_b46
  article-title: Separation variable method combined with integral bifurcation method for solving time-fractional reaction–diffusion models
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-020-01346-w
– volume: 109
  start-page: 943
  year: 2022
  ident: 10.1016/j.chaos.2025.116738_b49
  article-title: Separation method of semi-fixed variables together with dynamical system method for solving nonlinear time-fractional PDEs with higher-order terms
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-022-07463-x
– volume: 42
  start-page: 97
  year: 2023
  ident: 10.1016/j.chaos.2025.116738_b36
  article-title: Invariant subspaces and exact solutions: (1+1) and (2+1)-dimensional generalized time-fractional thin-film equations
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-023-02229-6
– volume: 36
  start-page: 351
  year: 2013
  ident: 10.1016/j.chaos.2025.116738_b11
  article-title: Fractional heat conduction in infinite one-dimensional composite medium
  publication-title: J Therm Stress
  doi: 10.1080/01495739.2013.770693
– volume: 393
  start-page: 341
  year: 2012
  ident: 10.1016/j.chaos.2025.116738_b53
  article-title: Invariant analysis of time-fractional generalized Burgers and Korteweg–de Vries equations
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2012.04.006
– volume: 20
  start-page: 477
  year: 2017
  ident: 10.1016/j.chaos.2025.116738_b23
  article-title: Invariant subspace method: A tool for solving fractional partial differential equations
  publication-title: Fract Calc Appl Anal
  doi: 10.1515/fca-2017-0024
– volume: 34
  year: 2020
  ident: 10.1016/j.chaos.2025.116738_b50
  article-title: Application of a new hybrid method for solving singular fractional lane-Emden-type equations in astrophysics
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984920500499
– volume: 85
  start-page: 849
  year: 2015
  ident: 10.1016/j.chaos.2025.116738_b54
  article-title: Group formalism of Lie transformations to time-fractional partial differential equations
  publication-title: Pramana- J Phys
  doi: 10.1007/s12043-015-1103-8
– volume: 301
  start-page: 508
  year: 2005
  ident: 10.1016/j.chaos.2025.116738_b63
  article-title: Adomian decomposition: A tool for solving a system of fractional differential equations
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2004.07.039
– volume: 21
  start-page: 132
  year: 2014
  ident: 10.1016/j.chaos.2025.116738_b75
  article-title: A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions
  publication-title: J Nonlinear Math Phys
  doi: 10.1080/14029251.2014.894726
– volume: 104
  start-page: 107
  year: 2017
  ident: 10.1016/j.chaos.2025.116738_b56
  article-title: On Lie symmetry analysis and invariant subspace methods of coupled time-fractional partial differential equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2017.07.019
– volume: 39
  issue: 16
  year: 2025
  ident: 10.1016/j.chaos.2025.116738_b41
  article-title: Analytical solutions of higher-dimensional coupled system of nonlinear time-fractional diffusion-convection-wave equations
  publication-title: Modern Phys Lett B
  doi: 10.1142/S021798492550006X
– volume: 55
  start-page: 1769
  year: 2012
  ident: 10.1016/j.chaos.2025.116738_b72
  article-title: A refined invariant subspace method and applications to evolution equations
  publication-title: Sci China Math
  doi: 10.1007/s11425-012-4408-9
– volume: 8
  start-page: 128
  year: 2016
  ident: 10.1016/j.chaos.2025.116738_b78
  article-title: Invariant subspaces of the two-dimensional nonlinear evolution equations
  publication-title: Symmetry
  doi: 10.3390/sym8110128
– volume: 334
  start-page: 1
  year: 2013
  ident: 10.1016/j.chaos.2025.116738_b8
  article-title: Fractional power-law spatial dispersion in electrodynamics
  publication-title: Ann Physics
  doi: 10.1016/j.aop.2013.03.014
– volume: 111
  year: 2022
  ident: 10.1016/j.chaos.2025.116738_b33
  article-title: Invariant subspace method for (m+1)-dimensional non-linear time-fractional partial differential equations
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2022.106436
– volume: 196
  start-page: 644
  year: 2006
  ident: 10.1016/j.chaos.2025.116738_b65
  article-title: Solving a system of nonlinear fractional differential equations using adomian decomposition
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2005.10.017
– volume: 38
  start-page: 126
  year: 2019
  ident: 10.1016/j.chaos.2025.116738_b29
  article-title: Invariant subspaces and exact solutions for a system of fractional PDEs in higher dimensions
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-019-0879-4
– start-page: 1
  year: 2024
  ident: 10.1016/j.chaos.2025.116738_b40
  article-title: On the solutions of coupled nonlinear time-fractional diffusion-reaction system with time delays
  publication-title: Eur Phys J Spec. Top
– year: 2014
  ident: 10.1016/j.chaos.2025.116738_b16
– volume: 242
  start-page: 576
  year: 2014
  ident: 10.1016/j.chaos.2025.116738_b14
  article-title: Hilfer-prabhakar derivatives and some applications
  publication-title: Appl Math Comput
– year: 2019
  ident: 10.1016/j.chaos.2025.116738_b17
– volume: 43
  start-page: 30
  year: 2024
  ident: 10.1016/j.chaos.2025.116738_b37
  article-title: Invariant subspace method and exact solutions of the coupled system of time-fractional convection-reaction–diffusion equations
  publication-title: Comp Appl Math
  doi: 10.1007/s40314-023-02540-2
– volume: 144
  start-page: 97
  year: 2000
  ident: 10.1016/j.chaos.2025.116738_b82
  article-title: Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source
  publication-title: Phys D
  doi: 10.1016/S0167-2789(00)00069-5
– volume: 17
  start-page: 3795
  year: 2012
  ident: 10.1016/j.chaos.2025.116738_b73
  article-title: Invariant subspaces and exact solutions of a class of dispersive evolution equations
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.02.024
– start-page: 291
  year: 1997
  ident: 10.1016/j.chaos.2025.116738_b7
  article-title: Fractional calculus: Some basic problems in continuum and statistical mechanics
– volume: 26
  start-page: 2421
  year: 2023
  ident: 10.1016/j.chaos.2025.116738_b48
  article-title: Method of separation of variables and exact solution of time fractional nonlinear partial differential and differential-difference equations
  publication-title: Fract Calc Appl Anal
  doi: 10.1007/s13540-023-00199-4
– volume: 37
  year: 2023
  ident: 10.1016/j.chaos.2025.116738_b70
  article-title: Assorted hyperbolic and trigonometric function solutions of fractional equations with conformable derivative in shallow water
  publication-title: Modern Phys Lett B
– volume: 27
  year: 2013
  ident: 10.1016/j.chaos.2025.116738_b12
  article-title: Review of some promising fractional physical models
  publication-title: Internat J Modern Phys B
  doi: 10.1142/S0217979213300053
– volume: 85
  start-page: 659
  year: 2016
  ident: 10.1016/j.chaos.2025.116738_b21
  article-title: Exact solution of certain time-fractional nonlinear partial differential equations
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-016-2714-4
– volume: 218
  start-page: 7174
  year: 2012
  ident: 10.1016/j.chaos.2025.116738_b74
  article-title: Hirota bilinear equations with linear subspaces of solutions
  publication-title: Appl Math Comput
– volume: 58
  start-page: 502
  year: 2024
  ident: 10.1016/j.chaos.2025.116738_b43
  article-title: Separable solutions of the black–scholes equation with three different time fractional-order derivatives
  publication-title: IFAC- Pap
– volume: 177
  start-page: 488
  year: 2006
  ident: 10.1016/j.chaos.2025.116738_b64
  article-title: Analytical solution of a time-fractional Navier–Stokes equation by adomian decomposition method
  publication-title: Appl Math Comput
– volume: 63
  start-page: 88
  year: 2018
  ident: 10.1016/j.chaos.2025.116738_b45
  article-title: Method of separation variables combined with homogeneous balanced principle for searching exact solutions of time-fractional nonlinear biological population model
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2018.03.009
– volume: 56
  start-page: 2187
  year: 2013
  ident: 10.1016/j.chaos.2025.116738_b81
  article-title: Invariant subspaces and conditional Lie-Bäcklund symmetries of inhomogeneous nonlinear diffusion equations
  publication-title: Sci China Math
  doi: 10.1007/s11425-013-4714-x
– volume: 42
  year: 2009
  ident: 10.1016/j.chaos.2025.116738_b76
  article-title: Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method
  publication-title: J Phys A Math Theor
  doi: 10.1088/1751-8113/42/47/475201
– volume: 237
  start-page: 70
  year: 2025
  ident: 10.1016/j.chaos.2025.116738_b89
  article-title: Local convergence analysis of L1/finite element scheme for a constant delay reaction-subdiffusion equation with uniform time mesh
  publication-title: Math Comput Simulation
  doi: 10.1016/j.matcom.2025.04.014
SSID ssj0001062
Score 2.4652793
Snippet The main aim of this work is to systematically present two analytical approaches that are known as (i) the separable method and (ii) the invariant subspace...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116738
SubjectTerms Exact solutions
Fractional diffusion delay systems
Hilfer fractional derivative
Initial–boundary value problems
Invariant subspace method
Separable method
Title Solutions of (1+1) and (m+1)-dimensional time-fractional delay PDEs with the Hilfer derivative: Separable and invariant subspace methods
URI https://dx.doi.org/10.1016/j.chaos.2025.116738
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRgBDV-kh48QLSwwdaCN4IQ1EBMkITbsnZtxOAgDEm8ePbP9rXdUBPjwdu69WPpa9_7tX39PYQuAFEAjldNwuuMErDXPuECJh5XUiqpqJCGdnEwpP2xdzfxJznUye7CaLfKVPdbnW60dfqmlvZmbTGd1kYafDuMtcCIg90z1J-exzR_fvX9y80DljzmJAEyE507Yx4yPl7iKZxrzu66X9XnEfqSym_W6ZvF6e2h3RQq4rb9mwLKybiIdgYbntWkiArp1ExwOeWPruyjj81WF54rXHYv3QoO4wiXX-CJRJrO31JxYB1YnqilvdsAac0Y-YYfbroJ1vuzGFrC_elMySV8Wpo4aGt5jUdSE4bzmTTVTuM1rLdBQDgBJQRLcIltWOrkAI173cdOn6QBF4hwmbMilFMP4B93o1bEfAACzBNUtkLhcBHxegjQh4athuuHHhNKc1w3GGOW4wZ0Jmsconw8j-URwlHdlSF3qKMk9VwVNRsCoAKDyiUPQUkco6uso4OF5dUIMoez58DIJdByCaxcjhHNhBH8GB4BaP6_Cp78t-Ap2tYp67d3hvKr5as8B_yx4iUzwEpoq3173x9-AjxQ2MM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA7DHdSDOD9wfubgYaJxbdcmqzdRR-fcEFTwFpo0wcnsxjoH_gN_tm-adiiIB29t06Qlb_K8T76eF6FjYBTA43WbCI9RAv46IEJCxxNaKa00lSqXXewPaPTk3z4HzxV0VZ6FMdsqC-y3mJ6jdfGkWdRmczIcNh8M-XYYC8GJg98z0p9Vo04Fjb162e1FgwUgw6gnX0yA94nJUIoP5du85Es8NrLdXnBuliTMOZXfHNQ3p9NZR2sFW8SX9odqqKLSDbTaX0itZhuoVvTODDcKCemTTfS5mO3CY40b7ql7guM0wY03uCKJUfS3ahzYxJYnemqPN8C9EY38wPfXNxk2U7QYvoSj4UirKSRN81Boc3WBH5TRDBcjlRc7TOcw5AYb4QxwCEbhCtvI1NkWeurcPF5FpIi5QKTLnBmhgvrAAIWbhAkLgAswX1IVxtIRMhFeDOyHxmHLDWKfSW1krluMMStzA7DJWttoKR2nagfhxHNVLBzqaEV9VyftlgS2wKBwJWLAiTo6KyuaT6y0Bi_3nL3y3C7c2IVbu9QRLY3Bf7QQDuD_V8bd_2Y8QsvRY_-O33UHvT20YlLsNr59tDSbvqsDoCMzcVg0ty-7Ddt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+of+%28+1+%2B+1+%29+and+%28+m+%2B+1+%29+-dimensional+time-fractional+delay+PDEs+with+the+Hilfer+derivative%3A+Separable+and+invariant+subspace+methods&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Priyendhu%2C+K.S.&rft.au=Prakash%2C+P.&rft.au=Victor%2C+St%C3%A9phane&rft.date=2025-10-01&rft.issn=0960-0779&rft.volume=199&rft.spage=116738&rft_id=info:doi/10.1016%2Fj.chaos.2025.116738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2025_116738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon